Filomat 31:3 (2017), 729–735 DOI 10.2298/FIL1703729K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Semi-Quasitriangularity of Toeplitz Operators

An Hyun Kim^a

^aDepartment of Mathematics, Changwon National University, Changwon 641–773, Korea

Abstract. In this paper we give a necessary and sufficient condition, in terms of the coefficients of φ , in order for the Toeplitz operator T_{φ} to be semi-quasitriangular when φ is a trigonometric polynomial of degree two and has real coefficients.

1. Introduction

Let B(H) denote the algebra of bounded linear operators on a complex separable Hilbert space H. The Hilbert space $L^2(\mathbb{T})$, where \mathbb{T} denotes the unit circle in the complex plane \mathbb{C} , has a canonical orthonormal basis given by the trigonometric functions $e_n(z) = z^n$ ($n \in \mathbb{Z}$), and the Hardy space $H^2(\mathbb{T})$ is the closed linear span of $\{e_n : n = 0, 1, \cdots\}$. If P denotes the projection operator $L^2(\mathbb{T}) \to H^2(\mathbb{T})$, then for every $\varphi \in L^{\infty}(\mathbb{T})$, the operator T_{φ} on $H^2(\mathbb{T})$ defined by

$$T_{\varphi}g = P(\varphi g) \text{ for all } g \in H^2(\mathbb{T})$$

is called the *Toeplitz operator with symbol* φ . It is familiar that the matrix representation of T_{φ} with respect to the basis $\{e_n : n = 0, 1, 2, \dots\}$ is a Toeplitz matrix (λ_{ij}) . In this case, $\lambda_{ij} = a_{i-j}$, where $\varphi(\theta) = \sum_{n=0}^{\infty} a_n e^{in\theta}$ is the Fourier expansion of φ . In this paper, we concentrate a Toeplitz operator T_{φ} with trigonometric polynomial symbol φ of the form $\varphi(\theta) = \sum_{n=-N}^{N} a_n e^{in\theta}$: its matrix representation is the following.

$T_{\varphi} =$	$\begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$	$a_{-1} \\ a_0$	 a ₋₁		<i>a</i> _{-N}	<i>a</i> _{-N})
	:	a_1	a_0	<i>a</i> ₋₁			·
	:		·	·	·		
	a_N			·	·.	·.	
		a_N			·.	·.	·
			·			·	·.)

(1)

2010 Mathematics Subject Classification. Primary 47A53, 47B35

Keywords. Toeplitz operators; semi-quasitriangular; pure

Received: 27 December 2014; Accepted: 25 March 2015

Communicated by Dragan S. Djordjević

The author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-0022158).

Email address: ahkim@changwon.ac.kr (An Hyun Kim)

On the other hand, from the spectral property of Toeplitz operators with continuous symbols (cf. [7]), we can see that if $\varphi(\theta) = \sum_{n=-N}^{N} a_n e^{in\theta}$ is a trigonometric polynomial then we have

$$\sigma_e(T_{\varphi}) = \varphi(\mathbb{T}) \text{ and } \operatorname{ind}(T_{\varphi} - \lambda) = -\operatorname{wn}(\varphi - \lambda) \text{ for each } \lambda \in \mathbb{C} \setminus \sigma_e(T_{\varphi}),$$
(2)

where $\sigma_e(\cdot)$ denotes the essential spectrum, ind (·) denotes the (Fredholm) index of the Fredholm operator and wn ψ denotes the winding number of ψ with respect to 0. We recall ([8, Definition 4.8]) that that an operator $T \in B(H)$ is called *quasitriangular* if there exists an increasing sequence { P_n } of projections of finite rank in B(H) that converges strongly to the identity and satisfies $||(I - P_n)TP_n|| \rightarrow 0$. The quasitriangularity can be rewritten in terms of the "spectral picture" of the operator T, denoted SP(T), which consists of the set $\sigma_e(T)$, the collection of holes and pseudoholes in $\sigma_e(T)$, and the indices associated with these holes and pseudoholes. By a theorem of Apostol, Foias, and Voiculescu (in brief, AFV theorem; cf. [8, Theorem 1.31]), T is quasitriangular if and only if SP(T) contains no hole or pseudohole with a negative Fredholm index number.

Definition 1.1. (cf. [5]) An operator $T \in B(H)$ is called semi-quasitriangular if either T or T^* is quasitriangular.

If φ is a trigonometric polynomial then the semi-quasitriangularity of T_{φ} can be determined by a geometrical character of the symbol φ .

Proposition 1.2. If T_{φ} is a Toeplitz operator with trigonometric polynomial symbol φ then the following are equivalent:

- (*i*) T_{φ} is semi-quasitriangular.
- (*ii*) $wn(\varphi \lambda) wn(\varphi \mu) \ge 0$ for each pair $\lambda, \mu \in \mathbb{C} \setminus \varphi(\mathbb{T})$.

Proof. Since, evidently, $SP(T_{\varphi})$ has no pseudoholes it follows from the AFV theorem that T_{φ} is semiquasitriangular if and only if $\operatorname{ind} (T_{\varphi} - \lambda) \operatorname{ind} (T_{\varphi} - \mu) \ge 0$ for each pair $\lambda, \mu \in \mathbb{C} \setminus \sigma_e(T_{\varphi})$. Thus the desired equivalence follows from the second equality in (2). \Box

We would remark that the semi-quasitriangularity is related to the spectral mapping theorem for the Weyl spectrum (the *Weyl spectrum* of $T \in B(H)$ means the complement, in \mathbb{C} , of the set of all complex numbers λ which $T - \lambda$ is Fredholm of index zero.) In fact, from [4, Theorem 5], we have that the semi-quasitriangularity of T_{φ} is equivalent to the condition that the spectral mapping theorem holds for $\omega(T_{\varphi})$, the Weyl spectrum of T_{φ} :

$$p \omega(T_{\varphi}) = \omega p(T_{\varphi})$$
 for each polynomial *p*.

Thus this equivalence says that if T_{φ} is semi-quasitriangular then to find the Weyl spectrum of $p(T_{\varphi})$, it suffices to determine the following set:

$$p\Big(\varphi(\mathbb{T})\cup\big\{\lambda\in\mathbb{C}\setminus\varphi(\mathbb{T})\ :\ \mathrm{wn}\,(\varphi-\lambda)\neq0\big\}\Big).$$

On the other hand we say that "Weyl's theorem holds" for $T \in B(H)$ when the complement in the spectrum of the Weyl spectrum coincides with the isolated points of the spectrum which are eigenvalues of finite multiplicity (cf. [4]). Then if φ is a trigonometric polynomial and if f is an analytic function defined on some open set containing $\sigma(T_{\varphi})$ then it follows from Proposition 1.2 and [2, Lemma 3.1; Theorem 3.7] that Weyl's theorem holds for $f(T_{\varphi})$ whenever T_{φ} is semi-quasitriangular. In fact, if T_{φ} is a Toeplitz operator with quasicontinuous symbol then T_{φ} is semi-quasitriangular if and only if Weyl's theorem holds for $f(T_{\varphi})$ (cf. [5]).

The following notion was introduced by W.Y. Lee [6] in an operator theory seminar at Seoul National University:

Definition 1.3. A trigonometric polynomial φ is said to be pure if holes of $\varphi(\mathbb{T})$ have all non-negative (or all non-positive) winding numbers.

From Proposition 1.2, we can see that if $\varphi(\theta) = \sum_{n=-N}^{N} a_n e^{in\theta}$ and if T_{φ} is a Toeplitz operator with symbol φ then

 T_{φ} is semi-quasitriangular $\iff \varphi$ is pure. (3)

In [2], the following problem was raised.

Problem 1.4. If φ is a trigonometric polynomial, find necessary and sufficient conditions, in terms of the coefficients of φ , in order for T_{φ} to be semi-quasitriangular.

In this paper, we give a solution to the above problem in the case that φ is a trigonometric polynomial of degree two and has real coefficients:

$$\varphi(\theta) = a_{-2}e^{-2i\theta} + a_{-1}e^{-i\theta} + a_{1}e^{i\theta} + a_{2}e^{2i\theta} \quad (a_{1}, a_{2}, a_{-1}, a_{-2} \in \mathbb{R}).$$

Since the semi-quasitriangularity of the Toeplitz operator T_{φ} does not depend on the translation, we may assume that $a_0 = 0$. For brevity, in the sequel, we use the following notations: If $\varphi(\theta) = a_{-2}e^{-2i\theta} + a_{-1}e^{-i\theta} + a_1e^{i\theta} + a_2e^{2i\theta}$ ($a_1, a_2, a_{-1}, a_{-2} \in \mathbb{R}$), define

$$\begin{split} L &:= |a_1 + a_{-1}|, \quad M := |a_2 + a_{-2}|, \quad N := |a_1 - a_{-1}|, \quad P := |a_2 - a_{-2}|;\\ \mathrm{sgn}\,\varphi &:= \begin{cases} 1 & \mathrm{if}\;(a_2^2 - a_{-2}^2)(a_1^2 - a_{-1}^2) \geq 0\\ -1 & \mathrm{if}\;(a_2^2 - a_{-2}^2)(a_1^2 - a_{-1}^2) < 0. \end{cases} \end{split}$$

Then our main result can be stated as follows:

Theorem 1.5. If

$$\varphi(\theta) = a_{-2}e^{-2i\theta} + a_{-1}e^{-i\theta} + a_{1}e^{i\theta} + a_{2}e^{2i\theta} \quad (a_{1}, a_{2}, a_{-1}, a_{-2} \in \mathbb{R}),$$
(4)

then T_{φ} is semi-quasitriangular if and only if

$$\begin{cases} L = 0 \text{ or } N \ge 2P & \text{if } L \ge 4M, \\ PL \ge \frac{(1-sgn\,\varphi)}{4}M\Big(\sqrt{N^2 + 32P^2} - N\Big) & \text{if } L < 4M, \ N \ge 2P, \\ PL \le M\Big(2P + (sgn\,\varphi)N\Big) & \text{if } L < 4M, \ N < 2P. \end{cases}$$

This paper consists of three sections. In §2, we consider the case that $|a_2| = |a_{-2}|$. In §3, we give a proof of Theorem 1.5.

2. The Case that $|a_2| = |a_{-2}|$

In [2], it is shown that the cases that $|a_2| = |a_{-2}|$ are extremal among all possibilities for hyponormality of T_{φ} . In this section we consider the semi-quasitriangularity of T_{φ} with symbol φ defined as in (4) when $|a_2| = |a_{-2}|$.

We begin with:

Lemma 2.1. Let $\varphi(\theta) = (x(\theta), y(\theta)) (0 \le \theta \le 2\alpha)$ be a continuous curve with $\varphi(0) = \varphi(2\alpha)$. Suppose $\varphi(\theta)$ satisfies the following properties:

- (*i*) $x(\theta)$ is strictly increasing (or strictly decreasing) in $(0, \alpha)$ and is symmetric with respect to the line $\theta = \alpha$.
- (ii) $y(0) = y(\alpha) = y(2\alpha) = 0$ and $y(\theta)$ is non-constant and anti-symmetric with respect to the line $\theta = \alpha$.

Then we have that φ is pure if and only if $y(\theta)$ is non-negative or non-positive in $(0, \alpha)$.

Proof. Observe that the curve of $\varphi(\theta)$ is symmetric with respect to the line y = 0. On the other hand, φ is not pure if and only if φ has at least two holes of winding numbers with different signs. But by the conditions (i) and (ii), φ has at least two holes of winding numbers with different signs if and only if $y(\theta)$ has at least two values with different signs in $(0, \alpha)$.

We then have:

Theorem 2.2. Let φ be defined as in (4). Then we have:

- (*i*) If $a_2 = a_{-2}$, then T_{φ} is semi-quasitriangular.
- (ii) If $a_2 = -a_{-2}$, then T_{φ} is semi-quasitriangular if and only if

either
$$a_1 + a_{-1} = 0$$
 or $2|a_2 - a_{-2}| \le |a_1 - a_{-1}|$.

(iii) If $a_1 = -a_{-1}$, then T_{φ} is semi-quasitriangular.

Proof. Suppose that $\varphi(\theta) = a_{-2}e^{-2i\theta} + a_{-1}e^{-i\theta} + a_{1}e^{i\theta} + a_{2}e^{2i\theta}$. In view of (3), it suffices to consider the purity of φ .

(i) Let $a_2 = a_{-2}$. Then

$$\varphi(\theta) = 4a_2\cos^2\theta + (a_1 + a_{-1})\cos\theta - 2a_2 + i(a_1 - a_{-1})\sin\theta \quad (0 \le \theta \le 2\pi)$$

If $a_1 = \pm a_{-1}$ then φ represents a segment or a parabola, so that $\varphi(\mathbb{T})$ has no holes. If $a_1 \neq \pm a_{-1}$, then a straightforward calculation shows that φ is simple in $(0, 2\pi)$. Thus φ has just one hole. But then this case gives that φ has at most one hole; therefore φ is pure.

(ii) Let $a_2 = -a_{-2}$. Then $\varphi(\theta) = (a_1 + a_{-1})\cos\theta + i((a_1 - a_{-1})\sin\theta + (a_2 - a_{-2})\sin2\theta)$. If $a_1 = a_{-1}$ then by Lemma 2.1, φ is not pure. Thus we assume that $a_1 \neq a_{-1}$. Now we put

$$\varphi(\theta) = \left(x(\theta), y(\theta)\right) = \left((a_1 + a_{-1})\cos\theta, (a_1 - a_{-1})\left(\sin\theta + \frac{a_2 - a_{-2}}{a_1 - a_{-1}}\sin2\theta\right)\right).$$

If $a_1 + a_{-1} = 0$ then evidently, φ is pure. If $a_1 + a_{-1} \neq 0$ then Lemma 2.1 gives that φ is pure if and only if $y(\theta) = (a_1 - a_{-1})\sin\theta \left(1 + \frac{2(a_2 - a_{-2})}{a_1 - a_{-1}}\cos\theta\right)$ is non-negative or non-positive in $(0, \pi)$. Since $\sin\theta > 0$ in $(0, \pi)$, it follows that φ is pure if and only if $|\cos \theta| = \left|\frac{a_1 - a_{-1}}{2(a_2 - a_{-2})}\right| \geq 1$, and hence $2|a_2 - a_{-2}| \leq |a_1 - a_{-1}|$.

(iii) Let $a_1 = -a_{-1}$. Put

$$\varphi(\theta) = \left(x(\theta), y(\theta)\right) = \left((a_2 + a_{-2})\cos 2\theta, (a_1 - a_{-1})\sin \theta + (a_2 - a_{-2})\sin 2\theta\right).$$

If $a_2 = \pm a_{-2}$ then by (i) and (ii), φ is pure. If instead $a_2 \neq \pm a_{-2}$, then a straightforward calculation shows that φ is simple in $(0, \pi)$. But since $x(0) = x(\pi)$, $y(0) = y(\pi) = 0$ and $y(\theta)$ has at most one zero in $(0, \pi)$, it follows that φ is pure. \Box

Example 2.3. (a) An application of Theorem 2.2 shows that the matrix T_{φ} is semi-quasitriangular, while T_{ψ} is not:

$$T_{\varphi} = \begin{pmatrix} 0 & -3 & 1 & & & \\ 1 & 0 & -3 & 1 & & \\ -1 & 1 & 0 & -3 & 1 & & \\ & -1 & 1 & 0 & -3 & 1 & \\ & & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}, \quad T_{\psi} = \begin{pmatrix} 0 & -2 & 1 & & & \\ 1 & 0 & -2 & 1 & & \\ -1 & 1 & 0 & -2 & 1 & \\ & -1 & 1 & 0 & -2 & 1 & \\ & & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

(b) If U is the unilateral shift on ℓ_2 then $a U^2 + b U + c U^* + a U^{*2}$ is semi-quasitriangular for any $a, b, c \in \mathbb{R}$. (c) If $|a_2| = |a_{-2}|$ and $det \begin{pmatrix} a_1 & a_2 \\ a_{-1} & a_{-2} \end{pmatrix} = 0$ then $T_{\varphi} = a_{-2}U^{*2} + a_{-1}U^* + a_1U + a_2U^2$ is semi-quasitriangular because the given condition implies that if $a_2 = -a_{-2}$ then $a_1 + a_{-1} = 0$. In fact, T_{φ} is hyponormal (cf. [2, Theorem 1.4]).

3. Proof of Theorem 1.5

To prove the main theorem we need the following:

Lemma 3.1. The curve of $\varphi(\theta) = (L\cos\theta + M\cos 2\theta, N\sin\theta \pm P\sin 2\theta)$ $(0 < \theta < \pi)$ with L, M, P > 0 and $N \ge 0$ has at most one crossing point.

Proof. Write

$$x(\theta) := L\cos\theta + M\cos 2\theta$$
 and $y(\theta) := N\sin\theta \pm P\sin 2\theta$

and suppose that, for $0 < \theta_1 < \theta_2 < \pi$, $x(\theta_1) = x(\theta_2)$ and $y(\theta_1) = y(\theta_2)$. Then we have $\cos \theta_1 + \cos \theta_2 = -\frac{L}{2M}$, so that

$$\cos\left(\frac{\theta_1+\theta_2}{2}\right)\cos\left(\frac{\theta_1-\theta_2}{2}\right) = -\frac{L}{4M}$$

Thus noting that $\frac{\theta_1+\theta_2}{2} > \frac{\pi}{2}$, we get

$$(\sin \theta_1 - \sin \theta_2) \left(N \pm 2P \left(\cos \theta_1 + \cos \theta_2 \right) \right) = \pm 2P \sin(\theta_1 - \theta_2),$$

which gives

$$\theta_1 = \cos^{-1}\left(-\sqrt{\frac{PL}{2(PL \mp MN)}}\right) - \cos^{-1}\left(\sqrt{\frac{L(PL \mp MN)}{8M^2P}}\right),$$
$$\theta_2 = \cos^{-1}\left(-\sqrt{\frac{PL}{2(PL \mp MN)}}\right) + \cos^{-1}\left(\sqrt{\frac{L(PL \mp MN)}{8M^2P}}\right).$$

We can now prove Theorem 1.5.

Proof of Theorem 1.5. Suppose that $\varphi(\theta) = a_{-2}e^{-2i\theta} + a_{-1}e^{-i\theta} + a_{1}e^{i\theta} + a_{2}e^{2i\theta}$. In view of (3), it suffices to consider the purity of φ . We write

$$\varphi(\theta) = (x(\theta), y(\theta)) = ((a_1 + a_{-1})\cos\theta + (a_2 + a_{-2})\cos2\theta, (a_1 - a_{-1})\sin\theta + (a_2 - a_{-2})\sin2\theta).$$

Note that since replacing $x(\theta)$ (resp. $y(\theta)$) with $-x(\theta)$ (resp. $-y(\theta)$) does not influence the purity of φ , it is sufficient to consider the following four cases for purity of φ :

$$\begin{cases}
\text{Case 1:} \quad x(\theta) = L\cos\theta + M\cos 2\theta, \quad y(\theta) = N\sin\theta - P\sin 2\theta \\
\text{Case 2:} \quad x(\theta) = L\cos\theta + M\cos 2\theta, \quad y(\theta) = N\sin\theta + P\sin 2\theta \\
\text{Case 3:} \quad x(\theta) = L\cos\theta - M\cos 2\theta, \quad y(\theta) = N\sin\theta + P\sin 2\theta \\
\text{Case 4:} \quad x(\theta) = L\cos\theta - M\cos 2\theta, \quad y(\theta) = N\sin\theta - P\sin 2\theta.
\end{cases}$$
(5)

Furthermore, since $x(\theta)$ is symmetric with respect to $\theta = \pi$ and $y(\theta)$ is anti-symmetric with respect to $\theta = \pi$, considering the above cases only for $0 \le \theta \le \pi$ gives the desired information. If at least one of *L*, *M* and *P* is zero then the result follows from Theorem 2.2. Thus we assume that *L*, *M* and *P* are all non-zero. Now we split the proof of the theorem into the four cases in (5).

(*i*) Case 1:
$$\varphi(\theta) = (x(\theta), y(\theta)) = (L\cos\theta + M\cos 2\theta, N\sin\theta - P\sin 2\theta)$$

Write

 $\begin{cases} \theta_x := \text{the local minimizer of } x(\theta) \text{ if } L < 4M, \\ \theta_{y_1} := \text{the local maximizer of } y(\theta), \\ \theta_{y_2} := \text{the local minimizer of } y(\theta) \text{ if } N < 2P, \\ \theta_0 := \text{the zero point of } y(\theta) \text{ if } N < 2P. \end{cases}$

Then a straightforward calculation shows

$$\begin{cases} \frac{\pi}{2} < \theta_x < \pi, & \cos(\theta_x) = -\frac{L}{4M}, \\ \frac{\pi}{2} < \theta_{y_1} \le \frac{3\pi}{4}, & \cos(\theta_{y_1}) = \frac{N - \sqrt{N^2 + 32P^2}}{8P}, \\ 0 < \theta_{y_2} \le \frac{\pi}{4}, & \cos(\theta_{y_2}) = \frac{N + \sqrt{N^2 + 32P^2}}{8P}, \\ 0 < \theta_0 \le \frac{\pi}{2}, & \cos(\theta_0) = \frac{N}{2P}. \end{cases}$$

Now, in view of Lemma 3.1, the curve tracing in rough of $\varphi(\theta)$ can be classified in terms of $L \ge 4M$ (L < 4M), $N \ge 2P$ (N < 2P), θ_x , θ_{y_1} , θ_0 into several cases and three cases can be chosen for φ to be pure. We then have

$$\varphi \text{ is pure} \iff \begin{cases} (i) \ L \ge 4M, \ N \ge 2P \\ (ii) \ L < 4M, \ N \ge 2P, \ PL \ge \frac{M}{2} \left(\sqrt{N^2 + 32P^2} - N \right) \\ (iii) \ L < 4M, \ N < 2P, \ PL \le M(2P - N). \end{cases}$$

(*ii*) Case 2: $\varphi(\theta) = (x(\theta), y(\theta)) = (L\cos\theta + M\cos2\theta, N\sin\theta - P\sin2\theta)$

With the notations of Case 1, a straightforward calculation also shows

$$\begin{cases} \frac{\pi}{2} < \theta_x < \pi, & \cos(\theta_x) = -\frac{L}{4M}, \\ \frac{\pi}{4} \le \theta_{y_1} < \frac{\pi}{2}, & \cos(\theta_{y_1}) = \frac{-N + \sqrt{N^2 + 32P^2}}{8P}, \\ \frac{3\pi}{4} \le \theta_{y_2} < \pi, & \cos(\theta_{y_2}) = \frac{-N - \sqrt{N^2 + 32P^2}}{8P}, \\ \frac{\pi}{2} \le \theta_0 < \pi, & \cos(\theta_0) = -\frac{N}{2P}. \end{cases}$$

Now after classifying the curve tracing in rough of $\varphi(\theta)$ into several cases in the same manner as *Case 1*, we can choose three cases for φ to be pure. We then have

$$\varphi \text{ is pure} \iff \begin{cases} (i) \ L \ge 4M, \ N \ge 2P \\ (ii) \ L < 4M, \ N \ge 2P \\ (iii) \ L < 4M, \ N \ge 2P \\ (iii) \ L < 4M, \ N < 2P, \ PL \le M(2P + N). \end{cases}$$

(*iii*) Case 3: $\varphi(\theta) = (x(\theta), y(\theta)) = (L\cos\theta - M\cos 2\theta, N\sin\theta + P\sin 2\theta)$

Replacing $\varphi(\theta)$ with $-\varphi(\theta - \pi)$ reduces this case to *Case 1*. Furthermore, since such a replacement represents a reflection and translation, it does not influence the purity of φ ; therefore this case has the same result as *Case 1*.

(*iv*) Case 4: $\varphi(\theta) = (x(\theta), y(\theta)) = (L\cos\theta - M\cos 2\theta, N\sin\theta - P\sin 2\theta)$

Replacing $\varphi(\theta)$ with $-\varphi(\theta - \pi)$ reduces this case to *Case 2*, and thus this case has the same result as *Case 2*. This completes the proof.

Remark 3.2. By generalized circulant we mean a (finite Toeplitz) matrix of the form

 $\begin{pmatrix} a_0 & e^{i\omega}a_N & \dots & e^{i\omega}a_1 \\ a_1 & a_0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & a_0 & e^{i\omega}a_N \\ a_N & \dots & \dots & a_1 & a_0 \end{pmatrix}$

for some fixed $\omega \in [0, 2\pi)$. In [1], it was shown that a finite Toeplitz matrix is normal if and only if it is either a generalized circulant or a translation and rotation of a hermitian Toeplitz matrix. But this is not the case for a Toeplitz operator. In fact, if $\varphi(\theta) = \sum_{n=-N}^{N} a_n e^{in\theta}$ is a generalized circulant polynomial (i.e., $a_{-k} = e^{i\omega}a_{N-k+1}$ for every $1 \le k \le N$), then a Toeplitz operator with symbol φ need not be even hyponormal (cf. [3]). But our Theorem 1.5 shows that a 2×2 real Toeplitz operator with generalized circulant polynomial symbol, i.e.,

$$\begin{pmatrix} a_0 & e^{i\omega}a_2 & e^{i\omega}a_1 & & & \\ a_1 & a_0 & e^{i\omega}a_2 & e^{i\omega}a_1 & & & \\ a_2 & a_1 & a_0 & e^{i\omega}a_2 & e^{i\omega}a_1 & & \\ & a_2 & a_1 & a_0 & e^{i\omega}a_2 & e^{i\omega}a_1 & \\ & & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix} \qquad (\omega = 0, \, \pi; \, a_0, a_1, a_2 \in \mathbb{R})$$

is semi-quasitriangular because this case implies that L = M and N = P.

Acknowledgement. The author is thankful to Prof. Woo Young Lee for valuable discussion on this topic.

References

- [1] D. R. Farenick, M. Krupnik, N. Krupnik, W. Y. Lee, Normal Toeplitz matrices, SIAM J. Matrix Anal. Appl. 17 (1996) 1037–1043.
- [2] D. R. Farenick, W. Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996) 4153–4174.
- [3] D. R. Farenick, W. Y. Lee, On hyponormal Toeplitz operator with polynomial and circulant-type symbols, Integral Equations Operator Theory 29(2) (1997) 202–210.
- [4] R. E. Harte, W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349(5) (1997) 2115–2124.
- [5] I. H. Kim, W. Y. Lee, On the semi-quasitriangularity of Toeplitz operators with quasicontinuous symbols, Commun. Korean Math. Soc. 13(1) (1998) 77–84.
- [6] W. Y. Lee, private communication.
- [7] N. K. Nikolskii, Treatise on the shift operator, Springer, New York, 1986.
- [8] C. M. Pearcy, Some recent developments in operator theory, CBMS 36, Providence:AMS, 1978.