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Semi-Quasitriangularity of Toeplitz Operators

An Hyun Kima

aDepartment of Mathematics, Changwon National University, Changwon 641–773, Korea

Abstract. In this paper we give a necessary and sufficient condition, in terms of the coefficients of ϕ,
in order for the Toeplitz operator Tϕ to be semi-quasitriangular when ϕ is a trigonometric polynomial of
degree two and has real coefficients.

1. Introduction

Let B(H) denote the algebra of bounded linear operators on a complex separable Hilbert space H. The
Hilbert space L2(T), where T denotes the unit circle in the complex plane C, has a canonical orthonormal
basis given by the trigonometric functions en(z) = zn (n ∈ Z), and the Hardy space H2(T) is the closed linear
span of {en : n = 0, 1, · · · }. If P denotes the projection operator L2(T)→ H2(T), then for every ϕ ∈ L∞(T), the
operator Tϕ on H2(T) defined by

Tϕ1 = P(ϕ1) for all 1 ∈ H2(T)

is called the Toeplitz operator with symbol ϕ. It is familiar that the matrix representation of Tϕ with respect to
the basis {en : n = 0, 1, 2, · · · } is a Toeplitz matrix (λi j). In this case, λi j = ai− j, where ϕ(θ) =

∑
∞

n=0 aneinθ is the
Fourier expansion of ϕ. In this paper, we concentrate a Toeplitz operator Tϕ with trigonometric polynomial
symbol ϕ of the form ϕ(θ) =

∑N
n=−N aneinθ: its matrix representation is the following.

Tϕ =



a0 a−1 . . . . . . a−N
a1 a0 a−1 a−N
... a1 a0 a−1

. . .
...

. . .
. . .

. . .

aN
. . .

. . .
. . .

aN
. . .

. . .
. . .

. . .
. . .

. . .


(1)
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On the other hand, from the spectral property of Toeplitz operators with continuous symbols (cf. [7]), we
can see that if ϕ(θ) =

∑N
n=−N aneinθ is a trigonometric polynomial then we have

σe(Tϕ) = ϕ(T) and ind (Tϕ − λ) = −wn (ϕ − λ) for each λ ∈ C \ σe(Tϕ), (2)

where σe(·) denotes the essential spectrum, ind (·) denotes the (Fredholm) index of the Fredholm operator
and wnψ denotes the winding number of ψ with respect to 0. We recall ([8, Definition 4.8]) that that an
operator T ∈ B(H) is called quasitriangular if there exists an increasing sequence {Pn} of projections of finite
rank in B(H) that converges strongly to the identity and satisfies ||(I − Pn)TPn|| → 0. The quasitriangularity
can be rewritten in terms of the “spectral picture” of the operator T, denoted SP(T), which consists of the
set σe(T), the collection of holes and pseudoholes in σe(T), and the indices associated with these holes and
pseudoholes. By a theorem of Apostol, Foias, and Voiculescu (in brief, AFV theorem; cf. [8, Theorem 1.31]),
T is quasitriangular if and only if SP(T) contains no hole or pseudohole with a negative Fredholm index
number.

Definition 1.1. (cf. [5]) An operator T ∈ B(H) is called semi-quasitriangular if either T or T∗ is quasitriangular.

If ϕ is a trigonometric polynomial then the semi-quasitriangularity of Tϕ can be determined by a
geometrical character of the symbol ϕ.

Proposition 1.2. If Tϕ is a Toeplitz operator with trigonometric polynomial symbol ϕ then the following are equiva-
lent:

(i) Tϕ is semi-quasitriangular.

(ii) wn (ϕ − λ) wn (ϕ − µ) ≥ 0 for each pair λ, µ ∈ C \ ϕ(T).

Proof. Since, evidently, SP(Tϕ) has no pseudoholes it follows from the AFV theorem that Tϕ is semi-
quasitriangular if and only if ind (Tϕ − λ) ind (Tϕ − µ) ≥ 0 for each pair λ, µ ∈ C \ σe(Tϕ). Thus the desired
equivalence follows from the second equality in (2).

We would remark that the semi-quasitriangularity is related to the spectral mapping theorem for the
Weyl spectrum (the Weyl spectrum of T ∈ B(H) means the complement, in C, of the set of all complex
numbers λ which T − λ is Fredholm of index zero.) In fact, from [4, Theorem 5], we have that the semi-
quasitriangularity of Tϕ is equivalent to the condition that the spectral mapping theorem holds for ω(Tϕ),
the Weyl spectrum of Tϕ:

pω(Tϕ) = ω p(Tϕ) for each polynomial p.

Thus this equivalence says that if Tϕ is semi-quasitriangular then to find the Weyl spectrum of p(Tϕ), it
suffices to determine the following set:

p
(
ϕ(T) ∪

{
λ ∈ C \ ϕ(T) : wn (ϕ − λ) , 0

})
.

On the other hand we say that “Weyl’s theorem holds” for T ∈ B(H) when the complement in the spectrum
of the Weyl spectrum coincides with the isolated points of the spectrum which are eigenvalues of finite
multiplicity (cf. [4]). Then if ϕ is a trigonometric polynomial and if f is an analytic function defined on
some open set containing σ(Tϕ) then it follows from Proposition 1.2 and [2, Lemma 3.1; Theorem 3.7] that
Weyl’s theorem holds for f (Tϕ) whenever Tϕ is semi-quasitriangular. In fact, if Tϕ is a Toeplitz operator
with quasicontinuous symbol then Tϕ is semi-quasitriangular if and only if Weyl’s theorem holds for f (Tϕ)
(cf. [5]).

The following notion was introduced by W.Y. Lee [6] in an operator theory seminar at Seoul National
University:
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Definition 1.3. A trigonometric polynomial ϕ is said to be pure if holes of ϕ(T) have all non-negative (or all
non-positive) winding numbers.

From Proposition 1.2, we can see that if ϕ(θ) =
∑N

n=−N aneinθ and if Tϕ is a Toeplitz operator with symbol
ϕ then

Tϕ is semi-quasitriangular ⇐⇒ ϕ is pure. (3)

In [2], the following problem was raised.

Problem 1.4. If ϕ is a trigonometric polynomial, find necessary and sufficient conditions, in terms of the coefficients
of ϕ, in order for Tϕ to be semi-quasitriangular.

In this paper, we give a solution to the above problem in the case that ϕ is a trigonometric polynomial
of degree two and has real coefficients:

ϕ(θ) = a−2e−2iθ + a−1e−iθ + a1eiθ + a2e2iθ (a1, a2, a−1, a−2 ∈ R).

Since the semi-quasitriangularity of the Toeplitz operator Tϕ does not depend on the translation, we may
assume that a0 = 0. For brevity, in the sequel, we use the following notations: If ϕ(θ) = a−2e−2iθ + a−1e−iθ +
a1eiθ + a2e2iθ (a1, a2, a−1, a−2 ∈ R), define

L := |a1 + a−1|, M := |a2 + a−2|, N := |a1 − a−1|, P := |a2 − a−2|;

sgnϕ :=

1 if (a2
2 − a2

−2)(a2
1 − a2

−1) ≥ 0
−1 if (a2

2 − a2
−2)(a2

1 − a2
−1) < 0.

Then our main result can be stated as follows:

Theorem 1.5. If

ϕ(θ) = a−2e−2iθ + a−1e−iθ + a1eiθ + a2e2iθ (a1, a2, a−1, a−2 ∈ R), (4)

then Tϕ is semi-quasitriangular if and only if
L = 0 or N ≥ 2P if L ≥ 4M,

PL ≥ (1−s1nϕ)
4 M

(√
N2 + 32P2 −N

)
if L < 4M, N ≥ 2P,

PL ≤M
(
2P + (sgnϕ)N

)
if L < 4M, N < 2P.

This paper consists of three sections. In §2, we consider the case that |a2| = |a−2|. In §3, we give a proof
of Theorem 1.5.

2. The Case that |a2| = |a−2|

In [2], it is shown that the cases that |a2| = |a−2| are extremal among all possibilities for hyponormality
of Tϕ. In this section we consider the semi-quasitriangularity of Tϕ with symbol ϕ defined as in (4) when
|a2| = |a−2|.

We begin with:
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Lemma 2.1. Let ϕ(θ) =
(
x(θ), y(θ)

)
(0 ≤ θ ≤ 2α) be a continuous curve with ϕ(0) = ϕ(2α). Suppose ϕ(θ) satisfies

the following properties:

(i) x(θ) is strictly increasing (or strictly decreasing) in (0, α) and is symmetric with respect to the line θ = α.

(ii) y(0) = y(α) = y(2α) = 0 and y(θ) is non-constant and anti-symmetric with respect to the line θ = α.

Then we have that ϕ is pure if and only if y(θ) is non-negative or non-positive in (0, α).

Proof. Observe that the curve of ϕ(θ) is symmetric with respect to the line y = 0. On the other hand, ϕ is not
pure if and only if ϕ has at least two holes of winding numbers with different signs. But by the conditions
(i) and (ii), ϕ has at least two holes of winding numbers with different signs if and only if y(θ) has at least
two values with different signs in (0, α).

We then have:

Theorem 2.2. Let ϕ be defined as in (4). Then we have:

(i) If a2 = a−2, then Tϕ is semi-quasitriangular.

(ii) If a2 = −a−2, then Tϕ is semi-quasitriangular if and only if

either a1 + a−1 = 0 or 2|a2 − a−2| ≤ |a1 − a−1|.

(iii) If a1 = −a−1, then Tϕ is semi-quasitriangular.

Proof. Suppose that ϕ(θ) = a−2e−2iθ + a−1e−iθ + a1eiθ + a2e2iθ. In view of (3), it suffices to consider the purity
of ϕ.

(i) Let a2 = a−2. Then

ϕ(θ) = 4a2cos2θ + (a1 + a−1)cosθ − 2a2 + i(a1 − a−1)sinθ (0 ≤ θ ≤ 2π).

If a1 = ±a−1 then ϕ represents a segment or a parabola, so that ϕ(T) has no holes. If a1 , ±a−1, then a
straightforward calculation shows that ϕ is simple in (0, 2π). Thus ϕ has just one hole. But then this case
gives that ϕ has at most one hole; therefore ϕ is pure.

(ii) Let a2 = −a−2. Then ϕ(θ) = (a1 + a−1)cosθ + i
(
(a1 − a−1)sinθ + (a2 − a−2)sin2θ

)
. If a1 = a−1 then by

Lemma 2.1, ϕ is not pure. Thus we assume that a1 , a−1. Now we put

ϕ(θ) =
(
x(θ), y(θ)

)
=

(
(a1 + a−1)cosθ, (a1 − a−1)

(
sinθ +

a2 − a−2

a1 − a−1
sin2θ

))
.

If a1 + a−1 = 0 then evidently, ϕ is pure. If a1 + a−1 , 0 then Lemma 2.1 gives that ϕ is pure if and only if
y(θ) = (a1 − a−1)sinθ

(
1 +

2(a2−a−2)
a1−a−1

cosθ
)

is non-negative or non-positive in (0, π). Since sinθ > 0 in (0, π), it

follows that ϕ is pure if and only if |cosθ| =
∣∣∣∣ a1−a−1

2(a2−a−2)

∣∣∣∣ ≥ 1, and hence 2|a2 − a−2| ≤ |a1 − a−1|.

(iii) Let a1 = −a−1. Put

ϕ(θ) =
(
x(θ), y(θ)

)
=

(
(a2 + a−2)cos2θ, (a1 − a−1)sinθ + (a2 − a−2)sin2θ

)
.

If a2 = ±a−2 then by (i) and (ii), ϕ is pure. If instead a2 , ±a−2, then a straightforward calculation shows that
ϕ is simple in (0, π). But since x(0) = x(π), y(0) = y(π) = 0 and y(θ) has at most one zero in (0, π), it follows
that ϕ is pure.
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Example 2.3. (a) An application of Theorem 2.2 shows that the matrix Tϕ is semi-quasitriangular, while Tψ is not:

Tϕ =


0 −3 1
1 0 −3 1
−1 1 0 −3 1

−1 1 0 −3 1
. . .

. . .
. . .

. . .
. . .


, Tψ =


0 −2 1
1 0 −2 1
−1 1 0 −2 1

−1 1 0 −2 1
. . .

. . .
. . .

. . .
. . .


(b) If U is the unilateral shift on `2 then a U2 + b U + c U∗ + a U∗2 is semi-quasitriangular for any a, b, c ∈ R.

(c) If |a2| = |a−2| and det
(

a1 a2
a−1 a−2

)
= 0 then Tϕ = a−2U∗2 + a−1U∗ + a1U + a2U2 is semi-quasitriangular because

the given condition implies that if a2 = −a−2 then a1 + a−1 = 0. In fact, Tϕ is hyponormal (cf. [2, Theorem 1.4]).

3. Proof of Theorem 1.5

To prove the main theorem we need the following:

Lemma 3.1. The curve of ϕ(θ) = (Lcosθ + Mcos 2θ, Nsinθ ± Psin 2θ) (0 < θ < π) with L,M,P > 0 and N ≥ 0
has at most one crossing point.

Proof. Write
x(θ) := Lcosθ + Mcos 2θ and y(θ) := Nsinθ ± Psin 2θ

and suppose that, for 0 < θ1 < θ2 < π, x(θ1) = x(θ2) and y(θ1) = y(θ2). Then we have cosθ1 + cosθ2 = − L
2M ,

so that
cos

(
θ1 + θ2

2

)
cos

(
θ1 − θ2

2

)
= −

L
4M

.

Thus noting that θ1+θ2
2 > π

2 , we get

(sinθ1 − sinθ2)
(
N ± 2P (cosθ1 + cosθ2)

)
= ±2Psin(θ1 − θ2),

which gives

θ1 = cos−1

(
−

√
PL

2(PL ∓MN)

)
− cos−1


√

L(PL ∓MN)
8M2P

 ,
θ2 = cos−1

(
−

√
PL

2(PL ∓MN)

)
+ cos−1


√

L(PL ∓MN)
8M2P

 .
We can now prove Theorem 1.5.

Proof of Theorem 1.5. Suppose that ϕ(θ) = a−2e−2iθ + a−1e−iθ + a1eiθ + a2e2iθ. In view of (3), it suffices to
consider the purity of ϕ. We write

ϕ(θ) =
(
x(θ), y(θ)

)
=

(
(a1 + a−1)cosθ + (a2 + a−2)cos2θ, (a1 − a−1)sinθ + (a2 − a−2)sin2θ

)
.

Note that since replacing x(θ) (resp. y(θ)) with −x(θ) (resp. −y(θ)) does not influence the purity of ϕ, it is
sufficient to consider the following four cases for purity of ϕ:

Case 1: x(θ) = Lcosθ + Mcos 2θ, y(θ) = Nsinθ − Psin 2θ
Case 2: x(θ) = Lcosθ + Mcos 2θ, y(θ) = Nsinθ + Psin 2θ
Case 3: x(θ) = Lcosθ −Mcos 2θ, y(θ) = Nsinθ + Psin 2θ
Case 4: x(θ) = Lcosθ −Mcos 2θ, y(θ) = Nsinθ − Psin 2θ.

(5)
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Furthermore, since x(θ) is symmetric with respect to θ = π and y(θ) is anti-symmetric with respect to θ = π,
considering the above cases only for 0 ≤ θ ≤ π gives the desired information. If at least one of L,M and P is
zero then the result follows from Theorem 2.2. Thus we assume that L,M and P are all non-zero. Now we
split the proof of the theorem into the four cases in (5).

(i) Case 1: ϕ(θ) =
(
x(θ), y(θ)

)
=

(
Lcosθ + Mcos 2θ, Nsinθ − Psin 2θ

)
Write 

θx := the local minimizer of x(θ) if L < 4M,
θy1 := the local maximizer of y(θ),
θy2 := the local minimizer of y(θ) if N < 2P,
θ0 := the zero point of y(θ) if N < 2P.

Then a straightforward calculation shows
π
2 < θx < π, cos(θx) = − L

4M ,
π
2 < θy1 ≤

3π
4 , cos(θy1 ) = N−

√

N2+32P2

8P ,

0 < θy2 ≤
π
4 , cos(θy2 ) = N+

√

N2+32P2

8P ,

0 < θ0 ≤
π
2 , cos(θ0) = N

2P .

Now, in view of Lemma 3.1, the curve tracing in rough ofϕ(θ) can be classified in terms of L ≥ 4M (L < 4M),
N ≥ 2P (N < 2P), θx, θy1 , θ0 into several cases and three cases can be chosen for ϕ to be pure. We then have

ϕ is pure⇐⇒


(i) L ≥ 4M, N ≥ 2P
(ii) L < 4M, N ≥ 2P, PL ≥ M

2

(√
N2 + 32P2 −N

)
(iii) L < 4M, N < 2P, PL ≤M(2P −N).

(ii) Case 2: ϕ(θ) =
(
x(θ), y(θ)

)
=

(
Lcosθ + Mcos2θ, Nsinθ − Psin2θ

)
With the notations of Case 1, a straightforward calculation also shows

π
2 < θx < π, cos(θx) = − L

4M ,
π
4 ≤ θy1 <

π
2 , cos(θy1 ) = −N+

√

N2+32P2

8P ,
3π
4 ≤ θy2 < π, cos(θy2 ) = −N−

√

N2+32P2

8P ,
π
2 ≤ θ0 < π, cos(θ0) = − N

2P .

Now after classifying the curve tracing in rough of ϕ(θ) into several cases in the same manner as Case 1, we
can choose three cases for ϕ to be pure. We then have

ϕ is pure⇐⇒


(i) L ≥ 4M, N ≥ 2P
(ii) L < 4M, N ≥ 2P
(iii) L < 4M, N < 2P, PL ≤M(2P + N).

(iii) Case 3: ϕ(θ) =
(
x(θ), y(θ)

)
=

(
Lcosθ −Mcos 2θ, Nsinθ + Psin 2θ

)
Replacingϕ(θ) with −ϕ(θ−π) reduces this case to Case 1. Furthermore, since such a replacement represents
a reflection and translation, it does not influence the purity of ϕ; therefore this case has the same result as
Case 1.

(iv) Case 4: ϕ(θ) =
(
x(θ), y(θ)

)
=

(
Lcosθ −Mcos 2θ, Nsinθ − Psin 2θ

)
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Replacing ϕ(θ) with −ϕ(θ − π) reduces this case to Case 2, and thus this case has the same result as Case 2.
This completes the proof. �

Remark 3.2. By generalized circulant we mean a (finite Toeplitz) matrix of the form

a0 eiωaN . . . . . . eiωa1

a1 a0
. . .

...
...

. . .
. . .

. . .
...

...
. . . a0 eiωaN

aN . . . . . . a1 a0


for some fixed ω ∈ [0, 2π). In [1], it was shown that a finite Toeplitz matrix is normal if and only if it is either
a generalized circulant or a translation and rotation of a hermitian Toeplitz matrix. But this is not the case for a
Toeplitz operator. In fact, if ϕ(θ) =

∑N
n=−N aneinθ is a generalized circulant polynomial (i.e., a−k = eiωaN−k+1 for every

1 ≤ k ≤ N), then a Toeplitz operator with symbol ϕ need not be even hyponormal (cf. [3]). But our Theorem 1.5
shows that a 2 × 2 real Toeplitz operator with generalized circulant polynomial symbol, i.e.,

a0 eiωa2 eiωa1
a1 a0 eiωa2 eiωa1
a2 a1 a0 eiωa2 eiωa1

a2 a1 a0 eiωa2 eiωa1
. . .

. . .
. . .

. . .
. . .


(ω = 0, π; a0, a1, a2 ∈ R)

is semi-quasitriangular because this case implies that L = M and N = P.
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