Semi-Quasitriangularity of Toeplitz Operators

An Hyun Kim ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Changwon National University, Changwon 641-773, Korea

Abstract

In this paper we give a necessary and sufficient condition, in terms of the coefficients of φ, in order for the Toeplitz operator T_{φ} to be semi-quasitriangular when φ is a trigonometric polynomial of degree two and has real coefficients.

1. Introduction

Let $B(H)$ denote the algebra of bounded linear operators on a complex separable Hilbert space H. The Hilbert space $L^{2}(\mathbb{T})$, where \mathbb{T} denotes the unit circle in the complex plane \mathbb{C}, has a canonical orthonormal basis given by the trigonometric functions $e_{n}(z)=z^{n}(n \in \mathbb{Z})$, and the Hardy space $H^{2}(\mathbb{T})$ is the closed linear span of $\left\{e_{n}: n=0,1, \cdots\right\}$. If P denotes the projection operator $L^{2}(\mathbb{T}) \rightarrow H^{2}(\mathbb{T})$, then for every $\varphi \in L^{\infty}(\mathbb{T})$, the operator T_{φ} on $H^{2}(\mathbb{T})$ defined by

$$
T_{\varphi} g=P(\varphi g) \quad \text { for all } g \in H^{2}(\mathbb{T})
$$

is called the Toeplitz operator with symbol φ. It is familiar that the matrix representation of T_{φ} with respect to the basis $\left\{e_{n}: n=0,1,2, \cdots\right\}$ is a Toeplitz matrix $\left(\lambda_{i j}\right)$. In this case, $\lambda_{i j}=a_{i-j}$, where $\varphi(\theta)=\sum_{n=0}^{\infty} a_{n} e^{i n \theta}$ is the Fourier expansion of φ. In this paper, we concentrate a Toeplitz operator T_{φ} with trigonometric polynomial symbol φ of the form $\varphi(\theta)=\sum_{n=-N}^{N} a_{n} e^{i n \theta}$: its matrix representation is the following.

$$
T_{\varphi}=\left(\begin{array}{ccccccc}
a_{0} & a_{-1} & \ldots & \ldots & a_{-N} & & \tag{1}\\
a_{1} & a_{0} & a_{-1} & & & a_{-N} & \\
\vdots & a_{1} & a_{0} & a_{-1} & & & \ddots \\
\vdots & & \ddots & \ddots & \ddots & & \\
a_{N} & & & \ddots & \ddots & \ddots & \\
& a_{N} & & & \ddots & \ddots & \ddots \\
& & \ddots & & & \ddots & \ddots
\end{array}\right)
$$

[^0]On the other hand, from the spectral property of Toeplitz operators with continuous symbols (cf. [7]), we can see that if $\varphi(\theta)=\sum_{n=-N}^{N} a_{n} e^{i n \theta}$ is a trigonometric polynomial then we have

$$
\begin{equation*}
\sigma_{e}\left(T_{\varphi}\right)=\varphi(\mathbb{T}) \text { and } \operatorname{ind}\left(T_{\varphi}-\lambda\right)=-\mathrm{wn}(\varphi-\lambda) \text { for each } \lambda \in \mathbb{C} \backslash \sigma_{e}\left(T_{\varphi}\right) \tag{2}
\end{equation*}
$$

where $\sigma_{e}(\cdot)$ denotes the essential spectrum, ind (\cdot) denotes the (Fredholm) index of the Fredholm operator and wn ψ denotes the winding number of ψ with respect to 0 . We recall ([8, Definition 4.8]) that that an operator $T \in B(H)$ is called quasitriangular if there exists an increasing sequence $\left\{P_{n}\right\}$ of projections of finite rank in $B(H)$ that converges strongly to the identity and satisfies $\left\|\left(I-P_{n}\right) T P_{n}\right\| \rightarrow 0$. The quasitriangularity can be rewritten in terms of the "spectral picture" of the operator T, denoted $\mathcal{S P}(T)$, which consists of the set $\sigma_{e}(T)$, the collection of holes and pseudoholes in $\sigma_{e}(T)$, and the indices associated with these holes and pseudoholes. By a theorem of Apostol, Foias, and Voiculescu (in brief, AFV theorem; cf. [8, Theorem 1.31]), T is quasitriangular if and only if $\mathcal{S P}(T)$ contains no hole or pseudohole with a negative Fredholm index number.

Definition 1.1. (cf. [5]) An operator $T \in B(H)$ is called semi-quasitriangular if either T or T^{*} is quasitriangular.
If φ is a trigonometric polynomial then the semi-quasitriangularity of T_{φ} can be determined by a geometrical character of the symbol φ.

Proposition 1.2. If T_{φ} is a Toeplitz operator with trigonometric polynomial symbol φ then the following are equivalent:
(i) T_{φ} is semi-quasitriangular.
(ii) $w n(\varphi-\lambda) w n(\varphi-\mu) \geq 0$ for each pair $\lambda, \mu \in \mathbb{C} \backslash \varphi(\mathbb{T})$.

Proof. Since, evidently, $\mathcal{S P}\left(T_{\varphi}\right)$ has no pseudoholes it follows from the AFV theorem that T_{φ} is semiquasitriangular if and only if ind $\left(T_{\varphi}-\lambda\right)$ ind $\left(T_{\varphi}-\mu\right) \geq 0$ for each pair $\lambda, \mu \in \mathbb{C} \backslash \sigma_{e}\left(T_{\varphi}\right)$. Thus the desired equivalence follows from the second equality in (2).

We would remark that the semi-quasitriangularity is related to the spectral mapping theorem for the Weyl spectrum (the Weyl spectrum of $T \in B(H)$ means the complement, in \mathbb{C}, of the set of all complex numbers λ which $T-\lambda$ is Fredholm of index zero.) In fact, from [4, Theorem 5], we have that the semiquasitriangularity of T_{φ} is equivalent to the condition that the spectral mapping theorem holds for $\omega\left(T_{\varphi}\right)$, the Weyl spectrum of T_{φ} :

$$
p \omega\left(T_{\varphi}\right)=\omega p\left(T_{\varphi}\right) \quad \text { for each polynomial } p .
$$

Thus this equivalence says that if T_{φ} is semi-quasitriangular then to find the Weyl spectrum of $p\left(T_{\varphi}\right)$, it suffices to determine the following set:

$$
p(\varphi(\mathbb{T}) \cup\{\lambda \in \mathbb{C} \backslash \varphi(\mathbb{T}): \operatorname{wn}(\varphi-\lambda) \neq 0\})
$$

On the other hand we say that "Weyl's theorem holds" for $T \in B(H)$ when the complement in the spectrum of the Weyl spectrum coincides with the isolated points of the spectrum which are eigenvalues of finite multiplicity (cf. [4]). Then if φ is a trigonometric polynomial and if f is an analytic function defined on some open set containing $\sigma\left(T_{\varphi}\right)$ then it follows from Proposition 1.2 and [2, Lemma 3.1; Theorem 3.7] that Weyl's theorem holds for $f\left(T_{\varphi}\right)$ whenever T_{φ} is semi-quasitriangular. In fact, if T_{φ} is a Toeplitz operator with quasicontinuous symbol then T_{φ} is semi-quasitriangular if and only if Weyl's theorem holds for $f\left(T_{\varphi}\right)$ (cf. [5]).

The following notion was introduced by W.Y. Lee [6] in an operator theory seminar at Seoul National University:

Definition 1.3. A trigonometric polynomial φ is said to be pure if holes of $\varphi(\mathbb{T})$ have all non-negative (or all non-positive) winding numbers.

From Proposition 1.2, we can see that if $\varphi(\theta)=\sum_{n=-N}^{N} a_{n} e^{i n \theta}$ and if T_{φ} is a Toeplitz operator with symbol φ then

$$
\begin{equation*}
T_{\varphi} \text { is semi-quasitriangular } \Longleftrightarrow \varphi \text { is pure. } \tag{3}
\end{equation*}
$$

In [2], the following problem was raised.
Problem 1.4. If φ is a trigonometric polynomial, find necessary and sufficient conditions, in terms of the coefficients of φ, in order for T_{φ} to be semi-quasitriangular.

In this paper, we give a solution to the above problem in the case that φ is a trigonometric polynomial of degree two and has real coefficients:

$$
\varphi(\theta)=a_{-2} e^{-2 i \theta}+a_{-1} e^{-i \theta}+a_{1} e^{i \theta}+a_{2} e^{2 i \theta} \quad\left(a_{1}, a_{2}, a_{-1}, a_{-2} \in \mathbb{R}\right)
$$

Since the semi-quasitriangularity of the Toeplitz operator T_{φ} does not depend on the translation, we may assume that $a_{0}=0$. For brevity, in the sequel, we use the following notations: If $\varphi(\theta)=a_{-2} e^{-2 i \theta}+a_{-1} e^{-i \theta}+$ $a_{1} e^{i \theta}+a_{2} e^{2 i \theta}\left(a_{1}, a_{2}, a_{-1}, a_{-2} \in \mathbb{R}\right)$, define

$$
\begin{aligned}
& L:=\left|a_{1}+a_{-1}\right|, \quad M:=\left|a_{2}+a_{-2}\right|, \quad N:=\left|a_{1}-a_{-1}\right|, \quad P:=\left|a_{2}-a_{-2}\right| ; \\
& \operatorname{sgn} \varphi:= \begin{cases}1 & \text { if }\left(a_{2}^{2}-a_{-2}^{2}\right)\left(a_{1}^{2}-a_{-1}^{2}\right) \geq 0 \\
-1 & \text { if }\left(a_{2}^{2}-a_{-2}^{2}\right)\left(a_{1}^{2}-a_{-1}^{2}\right)<0 .\end{cases}
\end{aligned}
$$

Then our main result can be stated as follows:
Theorem 1.5. If

$$
\begin{equation*}
\varphi(\theta)=a_{-2} e^{-2 i \theta}+a_{-1} e^{-i \theta}+a_{1} e^{i \theta}+a_{2} e^{2 i \theta} \quad\left(a_{1}, a_{2}, a_{-1}, a_{-2} \in \mathbb{R}\right) \tag{4}
\end{equation*}
$$

then T_{φ} is semi-quasitriangular if and only if

$$
\begin{cases}L=0 \text { or } N \geq 2 P & \text { if } L \geq 4 M \\ P L \geq \frac{(1-\operatorname{sgn} \varphi)}{4} M\left(\sqrt{N^{2}+32 P^{2}}-N\right) & \text { if } L<4 M, N \geq 2 P \\ P L \leq M(2 P+(\operatorname{sgn} \varphi) N) & \text { if } L<4 M, N<2 P\end{cases}
$$

This paper consists of three sections. In $\S 2$, we consider the case that $\left|a_{2}\right|=\left|a_{-2}\right|$. In $\S 3$, we give a proof of Theorem 1.5.

2. The Case that $\left|a_{2}\right|=\left|a_{-2}\right|$

In [2], it is shown that the cases that $\left|a_{2}\right|=\left|a_{-2}\right|$ are extremal among all possibilities for hyponormality of T_{φ}. In this section we consider the semi-quasitriangularity of T_{φ} with symbol φ defined as in (4) when $\left|a_{2}\right|=\left|a_{-2}\right|$.

We begin with:

Lemma 2.1. Let $\varphi(\theta)=(x(\theta), y(\theta))(0 \leq \theta \leq 2 \alpha)$ be a continuous curve with $\varphi(0)=\varphi(2 \alpha)$. Suppose $\varphi(\theta)$ satisfies the following properties:
(i) $x(\theta)$ is strictly increasing (or strictly decreasing) in $(0, \alpha)$ and is symmetric with respect to the line $\theta=\alpha$.
(ii) $y(0)=y(\alpha)=y(2 \alpha)=0$ and $y(\theta)$ is non-constant and anti-symmetric with respect to the line $\theta=\alpha$.

Then we have that φ is pure if and only if $y(\theta)$ is non-negative or non-positive in $(0, \alpha)$.
Proof. Observe that the curve of $\varphi(\theta)$ is symmetric with respect to the line $y=0$. On the other hand, φ is not pure if and only if φ has at least two holes of winding numbers with different signs. But by the conditions (i) and (ii), φ has at least two holes of winding numbers with different signs if and only if $y(\theta)$ has at least two values with different signs in $(0, \alpha)$.

We then have:
Theorem 2.2. Let φ be defined as in (4). Then we have:
(i) If $a_{2}=a_{-2}$, then T_{φ} is semi-quasitriangular.
(ii) If $a_{2}=-a_{-2}$, then T_{φ} is semi-quasitriangular if and only if

$$
\text { either } a_{1}+a_{-1}=0 \quad \text { or } 2\left|a_{2}-a_{-2}\right| \leq\left|a_{1}-a_{-1}\right| \text {. }
$$

(iii) If $a_{1}=-a_{-1}$, then T_{φ} is semi-quasitriangular.

Proof. Suppose that $\varphi(\theta)=a_{-2} e^{-2 i \theta}+a_{-1} e^{-i \theta}+a_{1} e^{i \theta}+a_{2} e^{2 i \theta}$. In view of (3), it suffices to consider the purity of φ.
(i) Let $a_{2}=a_{-2}$. Then

$$
\varphi(\theta)=4 a_{2} \cos ^{2} \theta+\left(a_{1}+a_{-1}\right) \cos \theta-2 a_{2}+i\left(a_{1}-a_{-1}\right) \sin \theta \quad(0 \leq \theta \leq 2 \pi) .
$$

If $a_{1}= \pm a_{-1}$ then φ represents a segment or a parabola, so that $\varphi(\mathbb{T})$ has no holes. If $a_{1} \neq \pm a_{-1}$, then a straightforward calculation shows that φ is simple in $(0,2 \pi)$. Thus φ has just one hole. But then this case gives that φ has at most one hole; therefore φ is pure.
(ii) Let $a_{2}=-a_{-2}$. Then $\varphi(\theta)=\left(a_{1}+a_{-1}\right) \cos \theta+i\left(\left(a_{1}-a_{-1}\right) \sin \theta+\left(a_{2}-a_{-2}\right) \sin 2 \theta\right)$. If $a_{1}=a_{-1}$ then by Lemma 2.1, φ is not pure. Thus we assume that $a_{1} \neq a_{-1}$. Now we put

$$
\varphi(\theta)=(x(\theta), y(\theta))=\left(\left(a_{1}+a_{-1}\right) \cos \theta,\left(a_{1}-a_{-1}\right)\left(\sin \theta+\frac{a_{2}-a_{-2}}{a_{1}-a_{-1}} \sin 2 \theta\right)\right)
$$

If $a_{1}+a_{-1}=0$ then evidently, φ is pure. If $a_{1}+a_{-1} \neq 0$ then Lemma 2.1 gives that φ is pure if and only if $y(\theta)=\left(a_{1}-a_{-1}\right) \sin \theta\left(1+\frac{2\left(a_{2}-a_{-2}\right)}{a_{1}-a_{-1}} \cos \theta\right)$ is non-negative or non-positive in $(0, \pi)$. Since $\sin \theta>0$ in $(0, \pi)$, it follows that φ is pure if and only if $|\cos \theta|=\left|\frac{a_{1}-a_{-1}}{2\left(a_{2}-a_{-2}\right)}\right| \geq 1$, and hence $2\left|a_{2}-a_{-2}\right| \leq\left|a_{1}-a_{-1}\right|$.
(iii) Let $a_{1}=-a_{-1}$. Put

$$
\varphi(\theta)=(x(\theta), y(\theta))=\left(\left(a_{2}+a_{-2}\right) \cos 2 \theta,\left(a_{1}-a_{-1}\right) \sin \theta+\left(a_{2}-a_{-2}\right) \sin 2 \theta\right)
$$

If $a_{2}= \pm a_{-2}$ then by (i) and (ii), φ is pure. If instead $a_{2} \neq \pm a_{-2}$, then a straightforward calculation shows that φ is simple in $(0, \pi)$. But since $x(0)=x(\pi), y(0)=y(\pi)=0$ and $y(\theta)$ has at most one zero in $(0, \pi)$, it follows that φ is pure.

Example 2.3. (a) An application of Theorem 2.2 shows that the matrix T_{φ} is semi-quasitriangular, while T_{ψ} is not:

$$
T_{\varphi}=\left(\begin{array}{ccccccc}
0 & -3 & 1 & & & & \\
1 & 0 & -3 & 1 & & & \\
-1 & 1 & 0 & -3 & 1 & & \\
& -1 & 1 & 0 & -3 & 1 & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right), T_{\psi}=\left(\begin{array}{ccccccc}
0 & -2 & 1 & & & & \\
1 & 0 & -2 & 1 & & & \\
-1 & 1 & 0 & -2 & 1 & & \\
& -1 & 1 & 0 & -2 & 1 & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

(b) If U is the unilateral shift on ℓ_{2} then $a U^{2}+b U+c U^{*}+a U^{* 2}$ is semi-quasitriangular for any $a, b, c \in \mathbb{R}$.
(c) If $\left|a_{2}\right|=\left|a_{-2}\right|$ and $\operatorname{det}\left(\begin{array}{cc}a_{1} & a_{2} \\ a_{-1} & a_{-2}\end{array}\right)=0$ then $T_{\varphi}=a_{-2} U^{* 2}+a_{-1} U^{*}+a_{1} U+a_{2} U^{2}$ is semi-quasitriangular because the given condition implies that if $a_{2}=-a_{-2}$ then $a_{1}+a_{-1}=0$. In fact, T_{φ} is hyponormal (cf. [2, Theorem 1.4]).

3. Proof of Theorem 1.5

To prove the main theorem we need the following:
Lemma 3.1. The curve of $\varphi(\theta)=(L \cos \theta+M \cos 2 \theta, N \sin \theta \pm P \sin 2 \theta)(0<\theta<\pi)$ with $L, M, P>0$ and $N \geq 0$ has at most one crossing point.

Proof. Write

$$
x(\theta):=L \cos \theta+M \cos 2 \theta \quad \text { and } \quad y(\theta):=N \sin \theta \pm P \sin 2 \theta
$$

and suppose that, for $0<\theta_{1}<\theta_{2}<\pi, x\left(\theta_{1}\right)=x\left(\theta_{2}\right)$ and $y\left(\theta_{1}\right)=y\left(\theta_{2}\right)$. Then we have $\cos \theta_{1}+\cos \theta_{2}=-\frac{L}{2 M}$, so that

$$
\cos \left(\frac{\theta_{1}+\theta_{2}}{2}\right) \cos \left(\frac{\theta_{1}-\theta_{2}}{2}\right)=-\frac{L}{4 M}
$$

Thus noting that $\frac{\theta_{1}+\theta_{2}}{2}>\frac{\pi}{2}$, we get

$$
\left(\sin \theta_{1}-\sin \theta_{2}\right)\left(N \pm 2 P\left(\cos \theta_{1}+\cos \theta_{2}\right)\right)= \pm 2 P \sin \left(\theta_{1}-\theta_{2}\right)
$$

which gives

$$
\begin{aligned}
& \theta_{1}=\cos ^{-1}\left(-\sqrt{\frac{P L}{2(P L \mp M N)}}\right)-\cos ^{-1}\left(\sqrt{\frac{L(P L \mp M N)}{8 M^{2} P}}\right) \\
& \theta_{2}=\cos ^{-1}\left(-\sqrt{\frac{P L}{2(P L \mp M N)}}\right)+\cos ^{-1}\left(\sqrt{\frac{L(P L \mp M N)}{8 M^{2} P}}\right)
\end{aligned}
$$

We can now prove Theorem 1.5.
Proof of Theorem 1.5. Suppose that $\varphi(\theta)=a_{-2} e^{-2 i \theta}+a_{-1} e^{-i \theta}+a_{1} e^{i \theta}+a_{2} e^{2 i \theta}$. In view of (3), it suffices to consider the purity of φ. We write

$$
\varphi(\theta)=(x(\theta), y(\theta))=\left(\left(a_{1}+a_{-1}\right) \cos \theta+\left(a_{2}+a_{-2}\right) \cos 2 \theta,\left(a_{1}-a_{-1}\right) \sin \theta+\left(a_{2}-a_{-2}\right) \sin 2 \theta\right)
$$

Note that since replacing $x(\theta)($ resp. $y(\theta))$ with $-x(\theta)$ (resp. $-y(\theta))$ does not influence the purity of φ, it is sufficient to consider the following four cases for purity of φ :

Case 1: $\quad x(\theta)=L \cos \theta+M \cos 2 \theta, \quad y(\theta)=N \sin \theta-P \sin 2 \theta$
Case 2: $\quad x(\theta)=L \cos \theta+M \cos 2 \theta, \quad y(\theta)=N \sin \theta+P \sin 2 \theta$
Case 3: $x(\theta)=L \cos \theta-M \cos 2 \theta, \quad y(\theta)=N \sin \theta+P \sin 2 \theta$
Case 4: $\quad x(\theta)=L \cos \theta-M \cos 2 \theta, \quad y(\theta)=N \sin \theta-P \sin 2 \theta$.

Furthermore, since $x(\theta)$ is symmetric with respect to $\theta=\pi$ and $y(\theta)$ is anti-symmetric with respect to $\theta=\pi$, considering the above cases only for $0 \leq \theta \leq \pi$ gives the desired information. If at least one of L, M and P is zero then the result follows from Theorem 2.2. Thus we assume that L, M and P are all non-zero. Now we split the proof of the theorem into the four cases in (5).
(i) Case 1: $\varphi(\theta)=(x(\theta), y(\theta))=(L \cos \theta+M \cos 2 \theta, N \sin \theta-P \sin 2 \theta)$

Write

$$
\left\{\begin{array}{l}
\theta_{x}:=\text { the local minimizer of } x(\theta) \text { if } L<4 M \\
\theta_{y_{1}}:=\text { the local maximizer of } y(\theta) \\
\theta_{y_{2}}:=\text { the local minimizer of } y(\theta) \text { if } N<2 P \\
\theta_{0}:=\text { the zero point of } y(\theta) \text { if } N<2 P
\end{array}\right.
$$

Then a straightforward calculation shows

$$
\begin{cases}\frac{\pi}{2}<\theta_{x}<\pi, & \cos \left(\theta_{x}\right)=-\frac{L}{4 M}, \\ \frac{\pi}{2}<\theta_{y_{1}} \leq \frac{3 \pi}{4}, & \cos \left(\theta_{y_{1}}\right)=\frac{N-\sqrt{N^{2}+32 P^{2}}}{8 P} \\ 0<\theta_{y_{2}} \leq \frac{\pi}{4}, & \cos \left(\theta_{y_{2}}\right)=\frac{N+\sqrt{N^{2}+32 P^{2}}}{8 P} \\ 0<\theta_{0} \leq \frac{\pi}{2}, & \cos \left(\theta_{0}\right)=\frac{N}{2 P}\end{cases}
$$

Now, in view of Lemma 3.1, the curve tracing in rough of $\varphi(\theta)$ can be classified in terms of $L \geq 4 M(L<4 M)$, $N \geq 2 P(N<2 P), \theta_{x}, \theta_{y_{1}}, \theta_{0}$ into several cases and three cases can be chosen for φ to be pure. We then have

$$
\varphi \text { is pure } \Longleftrightarrow\left\{\begin{array}{l}
(\text { i) } L \geq 4 M, N \geq 2 P \\
\text { (ii) } L<4 M, N \geq 2 P, P L \geq \frac{M}{2}\left(\sqrt{N^{2}+32 P^{2}}-N\right) \\
\text { (iii) } L<4 M, N<2 P, P L \leq M(2 P-N) .
\end{array}\right.
$$

(ii) Case 2: $\varphi(\theta)=(x(\theta), y(\theta))=(L \cos \theta+M \cos 2 \theta, N \sin \theta-P \sin 2 \theta)$

With the notations of Case 1, a straightforward calculation also shows

$$
\begin{cases}\frac{\pi}{2}<\theta_{x}<\pi, & \cos \left(\theta_{x}\right)=-\frac{L}{4 M} \\ \frac{\pi}{4} \leq \theta_{y_{1}}<\frac{\pi}{2}, & \cos \left(\theta_{y_{1}}\right)=\frac{-N+\sqrt{N^{2}+32 P^{2}}}{8 P} \\ \frac{3 \pi}{4} \leq \theta_{y_{2}}<\pi, & \cos \left(\theta_{y_{2}}\right)=\frac{-N-\sqrt{N^{2}+32 P^{2}}}{8 P} \\ \frac{\pi}{2} \leq \theta_{0}<\pi, & \cos \left(\theta_{0}\right)=-\frac{N}{2 P}\end{cases}
$$

Now after classifying the curve tracing in rough of $\varphi(\theta)$ into several cases in the same manner as Case 1, we can choose three cases for φ to be pure. We then have

$$
\varphi \text { is pure } \Longleftrightarrow\left\{\begin{array}{l}
\text { (i) } L \geq 4 M, N \geq 2 P \\
\text { (ii) } L<4 M, N \geq 2 P \\
\text { (iii) } L<4 M, N<2 P, P L \leq M(2 P+N)
\end{array}\right.
$$

(iii) Case 3: $\varphi(\theta)=(x(\theta), y(\theta))=(L \cos \theta-M \cos 2 \theta, N \sin \theta+P \sin 2 \theta)$

Replacing $\varphi(\theta)$ with $-\varphi(\theta-\pi)$ reduces this case to Case 1 . Furthermore, since such a replacement represents a reflection and translation, it does not influence the purity of φ; therefore this case has the same result as Case 1.
(iv) Case 4: $\varphi(\theta)=(x(\theta), y(\theta))=(L \cos \theta-M \cos 2 \theta, N \sin \theta-P \sin 2 \theta)$

Replacing $\varphi(\theta)$ with $-\varphi(\theta-\pi)$ reduces this case to Case 2 , and thus this case has the same result as Case 2 . This completes the proof.

Remark 3.2. By generalized circulant we mean a (finite Toeplitz) matrix of the form

$$
\left(\begin{array}{ccccc}
a_{0} & e^{i \omega} a_{N} & \ldots & \ldots & e^{i \omega} a_{1} \\
a_{1} & a_{0} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & a_{0} & e^{i \omega} a_{N} \\
a_{N} & \ldots & \ldots & a_{1} & a_{0}
\end{array}\right)
$$

for some fixed $\omega \in[0,2 \pi)$. In [1], it was shown that a finite Toeplitz matrix is normal if and only if it is either a generalized circulant or a translation and rotation of a hermitian Toeplitz matrix. But this is not the case for a Toeplitz operator. In fact, if $\varphi(\theta)=\sum_{n=-N}^{N} a_{n} e^{i n \theta}$ is a generalized circulant polynomial (i.e., $a_{-k}=e^{i \omega} a_{N-k+1}$ for every $1 \leq k \leq N$), then a Toeplitz operator with symbol φ need not be even hyponormal (cf. [3]). But our Theorem 1.5 shows that a 2×2 real Toeplitz operator with generalized circulant polynomial symbol, i.e.,

$$
\left(\begin{array}{ccccccc}
a_{0} & e^{i \omega} a_{2} & e^{i \omega} a_{1} & & & & \\
a_{1} & a_{0} & e^{i \omega} a_{2} & e^{i \omega} a_{1} & & & \\
a_{2} & a_{1} & a_{0} & e^{i \omega} a_{2} & e^{i \omega} a_{1} & & \\
& a_{2} & a_{1} & a_{0} & e^{i \omega} a_{2} & e^{i \omega} a_{1} & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right) \quad\left(\omega=0, \pi ; a_{0}, a_{1}, a_{2} \in \mathbb{R}\right)
$$

is semi-quasitriangular because this case implies that $L=M$ and $N=P$.

Acknowledgement. The author is thankful to Prof. Woo Young Lee for valuable discussion on this topic.

References

[1] D. R. Farenick, M. Krupnik, N. Krupnik, W. Y. Lee, Normal Toeplitz matrices, SIAM J. Matrix Anal. Appl. 17 (1996) 1037-1043.
[2] D. R. Farenick, W. Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996) 4153-4174.
[3] D. R. Farenick, W. Y. Lee, On hyponormal Toeplitz operator with polynomial and circulant-type symbols, Integral Equations Operator Theory 29(2) (1997) 202-210.
[4] R. E. Harte, W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349(5) (1997) 2115-2124.
[5] I. H. Kim, W. Y. Lee, On the semi-quasitriangularity of Toeplitz operators with quasicontinuous symbols, Commun. Korean Math. Soc. 13(1) (1998) 77-84.
[6] W. Y. Lee, private communication.
[7] N. K. Nikolskii, Treatise on the shift operator, Springer, New York, 1986.
[8] C. M. Pearcy, Some recent developments in operator theory, CBMS 36, Providence:AMS, 1978.

[^0]: 2010 Mathematics Subject Classification. Primary 47A53, 47B35
 Keywords. Toeplitz operators; semi-quasitriangular; pure
 Received: 27 December 2014; Accepted: 25 March 2015
 Communicated by Dragan S. Djordjević
 The author was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)(No. 2010-0022158).

 Email address: ahkim@changwon.ac.kr (An Hyun Kim)

