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Abstract. A certain subset of the words of length n over the alphabet of non-negative integers satisfying
two restrictions has recently been shown to be enumerated by the Catalan number Cn−1. Members of this
subset, which we will denote by W(n), have been termed Catalan words or sequences and are closely associated
with the 321-avoiding permutations. Here, we consider the problem of enumerating the members of W(n)
satisfying various restrictions concerning the containment of certain prescribed subsequences or patterns.
Among our results, we show that the generating function counting the members of W(n) that avoid certain
patterns is always rational for four general classes of patterns. Our proofs also provide a general method of
computing the generating function for all the patterns in each of the four classes. Closed form expressions
in the case of three-letter patterns follow from our general results in several cases. The remaining cases
for patterns of length three, which we consider in the final section, may be done by various algebraic and
combinatorial methods.

1. Introduction

A Catalan sequence w = w1w2 · · ·wn is a word in the alphabet of non-negative integers satisfying the
following two properties:

(i) wi+1 ≥ wi − 1 for 1 ≤ i < n, and

(ii) if wi = k > 0 with i minimal, then there exist i1 < i < i2 such that wi1 = wi2 = k − 1.

Let W(n) denote the set of Catalan sequences of length n. For example, there are five members of W(4),
namely, 0000, 0100, 0010, 0110 and 0101. The first property states that within members of W(n), there are
no descents of size greater than one (with no restriction on ascent sizes), while the second property states
that the left-most occurrence of each letter k > 0 has k − 1 somewhere to its left and somewhere to its right.
The set was first considered by Albert et al. [1] in conjunction with 321-avoiding permutations and the
question was raised in [12] of finding a one-to-one correspondence between W(n) and any family of objects
enumerated by the Catalan numbers. Stump [11] was successful in finding such a correspondence between
W(n) and the set of Dyck paths of length 2n−2. See also [6] for an algebraic generalization of Stump’s result
as well as the related paper [5].
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If k ≥ 1, then let [k] = {1, 2, . . . , k}, with [0] = ∅. Given w ∈ [k]n, we define the reduction of w, denoted
red(w), to be the word obtained by replacing all occurrences of the i-th smallest letter of w with i for each
i. For example, red(6841846) = 3421423. The words v and w are order-isomorphic if red(v) = red(w), and we
will denote this by v ∼ w. A pattern will refer to a word that contains every letter in [ j] for some j ≥ 1. A
word π = π1π2 · · ·πn contains σ = σ1σ2 · · · σ` as a classical pattern if there exists a subsequence πi1πi2 · · ·πi` for
1 ≤ i1 < i2 < · · · < i` ≤ n such that πi1πi2 · · ·πi` ∼ σ. Otherwise, π is said to avoid σ. For example, the word
w = 521352324565 ∈ [6]12 contains three occurrences of the pattern 1212, as witnessed by the subsequences
2323 and 3535 (twice), but avoids the pattern 4321. Note that equal letters within a pattern must be equal
within an occurrence of the pattern.

In this paper, we consider the problem of pattern avoidance on Catalan sequences and enumerate
members of W(n) avoiding a single classical pattern in several cases. In prior studies of pattern avoidance,
analogous questions have been considered on such structures as permutations, compositions, and set
partitions. We refer the reader to the texts of Kitaev [4] and Heubach and Mansour [3] and the references
contained therein. Given n ≥ 1 and a pattern τ, let Wτ(n) denote the subset of W(n) whose members avoid
τ and let aτ(n) = |Wτ(n)|. In the case when τ is of one of the following four general forms, namely, 11 · · · 1,
12 · · · k, 1 · · · 12 or 2 · · · 21, it is shown that the generating function

∑
n≥1 aτ(n)xn is always rational. We note

that general rationality results of this kind have been found before for particular classes of permutations;
see, for example, [7, Theorem 3.1] and [8, Theorem 2.1].

In the case 12 · · · k, we solve the functional equation satisfied by the generating function by expressing
its solution in terms of Chebyshev polynomials, from which one can deduce its rationality for all k. For the
other three cases, we first find systems of linear equations satisfied by certain generating functions which
refine

∑
n≥1 aτ(n)xn (obtained by considering the statistic on W(n) which records the number of zeros). By

applying Cramer’s rule to these systems, not only is the rationality of
∑

n≥1 aτ(n)xn apparent, but one also
obtains general expressions involving determinants for these generating functions which can be computed
explicitly (with the aid of programming) for a given pattern within one of the classes.

The organization of the paper is as follows. In the next section, we present several general rationality
results and obtain as corollaries explicit expressions for aτ(n) in the case when τ has length three. In the
third section, we determine aτ(n) for the remaining cases when τ has length three. In the particular cases 321
and 211, we provide combinatorial proofs of our results, while for 312 and 213, we make use of generating
function methods. Our results show that the generating function

∑
n≥1 aτ(n)xn is rational for all patterns τ

of length three.
We will make use of the following notation throughout. Given positive integers m and n, let [m,n] =

{m,m+1, . . . ,n} if m ≤ n, with [m,n] = ∅ if m > n. If P is a statement, then χ(P) equals one or zero depending
on the truth or falsity of P. If n ≥ 1 and 1 ≤ m ≤ n, then let Wτ(n,m) denote the subset of Wτ(n) whose
members contain m distinct letters, with aτ(n,m) = |Wτ(n,m)|. Let

aτ(n; y) =
∑

π∈Wτ(n)

yν(π), n ≥ 1,

where ν(π) records the number of distinct letters appearing in π. Finally, if n ≥ 1, then let Fn denote the
Fibonacci number defined by Fn = Fn−1 + Fn−2 if n ≥ 3, with F1 = F2 = 1 (see [10, A000045]).

Table 1 below gives explicit formulas for aτ(n) in all cases when τ has length three.
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τ aτ(n) Reference

111 a111(n) = 2b
n−2

2 c Corollary 2.3
112 Fn Corollary 2.8
121 1 Observation 3.1
122 n − 1 Observation 3.1
123, 132 2n−1

− n + 1 Corollary 2.5

211
∑3

i=1
c2

i −ci−1
2c2

i +2ci−3 cn
i , where c1, c2, c3

are the roots of x3
− 2x2

− x + 1 = 0 Theorem 3.5
212, 221 2n−2 Corollary 2.11

213 (1+
√

2)n
−(1−

√
2)n

4
√

2
−

1
2 n + 1 Theorem 3.8

231, 321 F2n−3 Theorem 3.3
312 3n−2+1

2 Theorem 3.7

Table 1: aτ(n) for n ≥ 2 when τ has length three.

2. General Results

In this section, we consider four general families of patterns and determine formulas for the generating
function that counts members of the corresponding avoidance classes. In each of the four cases, this
generating function works out to a rational function of x. Explicit formulas for the cardinality of an
avoidance class are determined in several particular cases.

2.1. The Pattern 11 · · · 1
In this subsection, we consider the case of avoiding the pattern 1 · · · 1 of length k ≥ 2. By definition, note

that a1···1(n) counts the Catalan words of length n in which no letter appears k or more times. We have the
following rationality result.

Theorem 2.1. The generating function
∑

n≥1 a1···1(n)xn is always rational.

Proof. To show this, we first refine the numbers a1···1(n) as follows. Let an,m = a(k)
n,m denote the number of

Catalan words of length n containing m zeros and avoiding the pattern 1 · · · 1 of length k. By definition,
an,m = 0 if m ≥ k. Furthermore, assume an,m = 0 if it is not the case that n ≥ m ≥ 1. The numbers an,m satisfy
the recurrence

an,m =

k−1∑
j=1

((
m + j − 1

j

)
− 1

)
an−m, j, 2 ≤ m < k and n > m, (1)

with an,1 = δn,1 and an,n = χ(n < k) for n ≥ 1. To show (1), observe that there are((
m + j − 1

j

)
− 1

)
an−m, j

words of the form enumerated by an,m and containing exactly j ones for 1 ≤ j ≤ k − 1. This follows from
adding a single zero at the beginning of a Catalan word of length n − m, expressed using positive instead
of non-negative letters, and then inserting m − 1 additional zeros across j + 1 possible positions so that not
all of the zeros occur in the first position.

Define Am(x) =
∑

n≥m an,mxn. Then recurrence (1) may be written equivalently as

Am(x) = xm + xm
k−1∑
j=1

((
m + j − 1

j

)
− 1

)
A j(x), 2 ≤ m < k. (2)
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Let αi, j =
(i+ j

i

)
− 1. Then recurrence (2) may be expressed as

1 − xα1,0 −xα2,0 · · · −xαk−1,0
−x2α1,1 1 − x2α2,1 · · · −x2αk−1,1

...
...

. . .
...

−xk−1α1,k−2 −xk−1α2,k−2 · · · 1 − xk−1αk−1,k−2




A1(x)
A2(x)
...

Ak−1(x)

 =


x
x2

...
xk−1

 .
Note that the determinant of the coefficient matrix in the preceding system of linear equations has

determinant 1 when x = 0 and is thus invertible for all x sufficiently close to zero, by continuity. By
Cramer’s rule, it follows that each Ai(x), 1 ≤ i ≤ k− 1, is a rational function of x. Let A(k)(x) =

∑
n≥1 a1···1(n)xn.

Then we have, by definition, A(k)(x) = A1(x) + A2(x) + · · · + Ak−1(x), which implies A(k)(x) is rational.

By the prior proof, we have the following expressions for A(k)(x) where 2 ≤ k ≤ 5.

Corollary 2.2. We have

A(2)(x) = x,

A(3)(x) =
x(1 + x − x2)

1 − 2x2 ,

A(4)(x) =
x(1 + x − 7x3

− 3x4 + x5)
1 − 2x2 − 9x3 + 3x5 ,

A(5)(x) =
x(1 + x − 6x3

− 34x4
− 22x5 + 3x6 + 25x7 + 6x8

− x9)
1 − 2x2 − 9x3 − 34x4 + 3x5 + 32x6 + 40x7 − 4x9 .

In the case k = 3, we have the following further enumerative result, which can also be obtained by
extracting the coefficient of xn in the expression above for A(3)(x).

Corollary 2.3. Let n ≥ 2 and t = b n+1
2 c. Then we have a111(n, i) = 2b

n−2
2 c · δi,t for 1 ≤ i ≤ t.

Proof. We provide a combinatorial proof. If n is even, then all letters within a member of W111(n) must
occur twice, while if n is odd, all letters occur twice, except for the largest, which occurs once. Then we
only need to show a111(n) = 2b

n−2
2 c for n ≥ 2. First assume n = 2m, in which case we show a111(2m) = 2m−1.

Then each letter 0, 1, . . . ,m−1 occurs exactly twice. We first form the word 01 · · · (m−1) and write an × after
the letter m − 1 and some subset of [m − 2], where we are assuming m ≥ 2. After the smallest i after which
an × is placed, we write all letters in {0} ∪ [i − 1] directly following i in a descending block and erase the ×.
For each subsequent i followed by an ×, we write all letters in {0} ∪ [i − 1] that have not yet appeared twice
in a descending block following i. After the descending block of letters that are to follow m − 1 is written,
we write an m − 1 either at the very end of the current sequence or directly following the m − 1 already
appearing in it.

For example, if m = 8 and ×’s are to follow {1, 2, 5} ⊆ [6] in addition to the 7, then we would have
01×2×345×67×, which would give rise to the words

0102134543267657 and 0102134543267765.

Note that within each descending block, one must include all numbers not yet appearing twice, in particular,
the smallest, lest there be an occurrence of 111. Thus, all members of W111(2m) can be formed in this way,
which implies a111(2m) = 2m−2

· 2 = 2m−1. If n = 2m + 1, then write 01 · · ·m and place an × after the m and
some subset of [m− 1]. Then write all letters in {0} ∪ [i− 1] that have not yet appeared twice in a descending
block after i for each i followed by an ×. This implies a111(2m + 1) = 2m−1 and completes the proof.

Remark: While we do not have an explicit expression for a11···1(n) for all k, it is possible to express it in terms
of compositions in the following way. Let d = (d0, d1, . . .) denote a composition of n in which each part di
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satisfies 1 ≤ di < k. Then by [6, Proposition 3.1], we have

a11···1(n) =
∑

d

∏
i≥0

((
di + di+1 − 1

di+1

)
− 1

)
, n ≥ 1, (3)

where the sum is taken over all compositions d = (d0, d1, . . .) of n whose parts are less than k (with no
restriction as to the number of parts).

2.2. The Pattern 12 · · · k
In this subsection, we consider the avoidance of the pattern 12 · · · k, where k ≥ 2. Note that by the second

defining property of a Catalan sequence, a member of W(n) avoids 12 · · · k if and only if it contains fewer
than k distinct letters. Thus, avoiding the pattern 12 · · · k is seen to be logically equivalent to avoiding the
pattern 12 · · · (k − 2)k(k − 1). We have the following result concerning either pattern.

Theorem 2.4. The generating function
∑

n≥1 a12···k(n)xn is always rational.

Proof. To prove this, we again refine the avoidance class in question by considering the statistic that records
the number of zeros. Let a(k)

n,m denote the number of Catalan words of length n containing m zeros and
avoiding the pattern 12 · · · k, where k ≥ 2. Then we have the recurrence

a(k)
n,m =

n−m∑
i=1

((
i + m − 1

i

)
− 1

)
a(k−1)

n−m,i, 2 ≤ m < n and k ≥ 3, (4)

with a(2)
n,m = δn,m for 1 ≤ m ≤ n and a(k)

n,1 = δn,1 and a(k)
n,n = 1 for all n ≥ 1 and k ≥ 3.

To show (4), note that words enumerated by a(k)
n,m may be obtained from words enumerated by a(k−1)

n−m,i
for some i, expressed using positive letters, by inserting zeros at the beginning and after ones. Given any
word of the latter type, there are

(i+m−1
i

)
−1 words of the former type that are obtained from it in the manner

described, with the operation seen to be reversible.
Define A(k)

m (x) =
∑

n≥m a(k)
n,mxn. Then recurrence (4) can be written as

A(k)
m (x) = xm + xm

∑
i≥1

((
m − 1 + i

i

)
− 1

)
A(k−1)

i (x), m ≥ 2, k ≥ 3,

with A(k)
1 (x) = x and A(2)

m (x) = xm.
Define A(k)(x, t) =

∑
m≥1 A(k)

m (x)tm. Then

A(k)(x, t) =
xt

1 − xt
(1 − A(k−1)(x, 1)) +

xt
1 − xt

A(k−1)(x, 1/(1 − xt)), k ≥ 3,

with A(2)(x, t) = xt
1−xt .

Define A(x, t, v) =
∑

k≥2 A(k)(x, t)vk. Then

A(x, t, v) =
xtv

1 − xt

( v
1 − v

− A(x, 1, v)
)

+
xtv

1 − xt
A(x, 1/(1 − xt), v).

Let ρi = 1
1−xρi−1

for i ≥ 1, with ρ0 = t Then

A(x, ρi, v) =
xρiv

1 − xρi

( v
1 − v

− A(x, 1, v)
)

+
xρiv

1 − xρi
A(x, 1/(1 − xρi), v),

which is equivalent to

A(x, ρi, v) = xvρiρi+1

( v
1 − v

− A(x, 1, v)
)

+ xvρiρi+1A(x, ρi+1, v). (5)
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Iteration of (5), assuming x and v are sufficiently small in absolute value, leads to

A(x, t, v) =
∑
j≥1

(xv) jρ0ρ
2
1 · · ·ρ

2
j−1ρ j

( v
1 − v

− A(x, 1, v)
)
. (6)

Recall that the Chebyshev polynomials of the second kind (see [9]) are defined by the recurrence
Ui(y) = 2yUi−1(y) −Ui−2(y) if i ≥ 2, with U0(y) = 1 and U1(y) = 2y. By the recurrence for Ui and induction,
we have

ρi =
2zUi−1(z) − tUi−2(z)
√

x(2zUi(z) − tUi−1(z))
, i ≥ 0,

where z = 1
2
√

x
. Therefore,

ρ0ρ
2
1 · · ·ρ

2
j−1ρ j =

2zt
x j(2zU j−1(z) − tU j−2(z))(2zU j(z) − tU j−1(z))

, j ≥ 1.

Taking t = 1 in (6) then gives

A(x, 1, v) =
∑
j≥1

2zv j

U j(z)U j+1(z)

( v
1 − v

− A(x, 1, v)
)
,

which implies

A(x, 1, v) =
( v

1 − v

) ∑
j≥1

v j
√

xU j(z)U j+1(z)

1 +
∑

j≥1
v j

√
xU j(z)U j+1(z)

.

Let A(k)(x) =
∑

n≥1 a12···k(n)xn. By the definitions, we have that A(k)(x) is the coefficient of vk in the generating
function A(x, 1, v), which implies

A(k)(x) = [vk]

(v + v2 + · · · + vk−1)

∑k
j=1

v j
√

xU j(z)U j+1(z)

1 +
∑k

j=1
v j

√
xU j(z)U j+1(z)

 . (7)

By induction, one can show that if j is odd, then U j(z) is a polynomial in 1
√

x
containing only odd powers

of 1
√

x
, while if j is even, U j(z) is a polynomial in 1

x . This implies that the product
√

xU j(z)U j+1(z) is a

polynomial in 1
x for all j ≥ 1. Hence, by (7), the generating function A(k)(x) is always rational.

Note that the difference A(k+2)(x) − A(k+1)(x) is the generating function for the number of Catalan words
of length n having largest letter k and is thus rational.

We have the following explicit formulas for a12···k(n) when 2 ≤ k ≤ 5.

Corollary 2.5. If n ≥ 1, then a12(n) = 1, a123(n) = a132(n) = 2n−1
− n + 1, a1234(n) = F2n−1 − 2n +

(n
2
)

+ 2, and

a12345(n) = (11 − n)2n−2 + (3n−1
− 1)/2 − (n + 1)(n2

− n + 12)/6 − 2F2n−2.

Proof. These formulas follow from computing A(k)(x) using (7) and then extracting the coefficient of xn. The
k = 2 and k = 3 cases of these formulas also follow directly from the definitions. When k = 3, note that a
Catalan word avoids 123 or 132 if and only if it is binary and that there are 2n−1

− (n − 1) binary Catalan
words of length n, upon taking away from the set of all binary words of length n starting with 0 those
having the form 0i1 j, where 1 ≤ i ≤ n − 1.

Remark: By [6, Proposition 3.1], we have

a12···k(n) =
∑

d

∏
i≥0

((
di + di+1 − 1

di+1

)
− 1

)
, n ≥ 1, (8)

where the sum is taken over all compositions d = (d0, d1, . . .) of n having less than k parts (with no restriction
as to the size of each part).
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2.3. The Pattern 1 · · · 12
We consider avoidance of the pattern 1 · · · 12 of length k + 1, where k ≥ 2 is fixed. Let an,m = a(k)

n,m
denote the number of Catalan words of length n containing m zeros and avoiding the pattern 1 · · · 12. Let
An,m = A(k)

n,m denote the subset of Catalan words enumerated by an,m. Let Bn,m and Cn,m denote the subsets
ofAn,m whose members end in a zero or non-zero letter, respectively. Define bn,m = |Bn,m| and cn,m = |Cn,m|.
Assume all cardinalities are zero if it is not the case that n ≥ m ≥ 1.

The arrays bn,m and cn,m are determined recursively as follows.

Lemma 2.6. If n ≥ 3 and 2 ≤ m < n, then

bn,m =

n−m∑
i=1

(
i + k − 2

i

)
bn−m,i, m ≥ k, (9)

and

bn,m =

n−m∑
i=1

(
i + m − 2

i

)
bn−m,i, m < k, (10)

with bn,1 = δn,1 and bn,n = 1 for all n ≥ 1. If 2 ≤ m < n, then

cn,m =

n−m∑
i=1

((
i + m − 2

i − 1

)
− 1

)
bn−m,i +

n−m∑
i=1

((
i + m − 1

i

)
− 1

)
cn−m,i, m < k, (11)

with cn,m = 0 if m ≥ k and cn,1 = cn,n = 0 for all n ≥ 1.

Proof. The initial values follow easily from the definitions. Note also that cn,m = 0 if m ≥ k since a word
not ending in zero and containing k or more zeros would have a subsequence of 1 · · · 12 in which the 2
corresponds to the final letter of the word. To show the recurrences for bn,m, we insert m zeros into π ∈ Bn−m,i
for some i, expressed using positive letters. Once the first zero is written at the beginning of π, we have for
m ≥ k that there are

(i+k−2
i

)
ways in which to distribute the next k − 2 zeros within the word 0π. The final

m − k + 1 zeros are then written at the end of the present word which yields a member of Bn,m. Note that
members of Bn,m where m ≥ k must end in at least m− k + 1 zeros in order to avoid an occurrence of 1 · · · 12.
If m < k, then there are

(i+m−2
i

)
ways to insert m − 2 zeros into the word 0π0. In either case, the operation of

inserting zeros is seen to be reversible. Summing over all possible i then gives (9) and (10).
To show (11), we insert m zeros into π ∈ An−m,i expressed using positive letters to obtain members of

Cn,m. If π ends in a 1, then there are
(i+m−2

i−1
)
− 1 ways to distribute m − 1 zeros across i possible positions

within 0π since no zero can follow the final 1 and since it cannot be the case that all of the zeros precede the
first 1. Thus, the first sum on the right-hand side of (11) counts all members of Cn,m ending in 1. If π does
not end in 1, then there are

(i+m−1
i

)
−1 ways of distributing the zeros within 0π. This implies the second sum

on the right-hand side of (11) counts all members of Cn,m ending in a letter greater than 1, which completes
the proof.

We can now establish the following result.

Theorem 2.7. The generating function
∑

n≥1 a1···12(n)xn is always rational.

Proof. Let Bm(x) =
∑

n≥m bn,mxn. Then recurrences (9) and (10) imply

Bm(x) = xm + xm
∑
i≥1

(
i + k − 2

i

)
Bi(x) = xm−kBk(x), m > k, (12)

Bm(x) = xm + xm
∑
i≥1

(
i + m − 2

i

)
Bi(x), 2 ≤ m ≤ k, (13)
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with B1(x) = x. Define

αm,k =
∑
i≥k

(
i + m − 2

i

)
Bi(x)/Bk(x) =

∑
i≥k

(
i + m − 2

i

)
xi−k

=
1
xk

∑
i≥0

(
i + m − 2

i

)
xi
−

k−1∑
i=0

(
i + m − 2

i

)
xi


=

1
xk

 1
(1 − x)m−1 −

k−1∑
i=0

(
i + m − 2

i

)
xi

 .
Then the recurrences in (12) and (13) can be expressed in matrix form as

1 − x2(2
0
)

−x2(3
0
)

· · · −x2(k−1
0
)

−x2α2,k

−x3(3
1
)

1 − x3(4
1
)
· · · −x3(k

1
)

−x3α3,k
...

...
. . .

...
...

−xk−1(k−1
k−3

)
−xk−1( k

k−3
)
· · · 1 − xk−1(2k−4

k−3
)
−xk−1αk−1,k

−xk( k
k−2

)
−xk(k+1

k−2
)
· · · −xk(2k−3

k−2
)

1 − xkαk,k




B2(x)
B3(x)
...

Bk−1(x)
Bk(x)


=


12
13
...
1k−1
1k


,

where 1i = xi(1 + (i − 1)x) for 2 ≤ i ≤ k. Since the αm,k are rational functions, it follows from Cramer’s rule
that Bm(x) is rational for any m = 2, 3, . . . , k.

Let Cm(x) =
∑

n≥m cn,mxn. By (11), we have

Cm(x) = xm
k−1∑
i=1

((
i + m − 2

i − 1

)
− 1

)
Bi(x) + xm

k−1∑
i=1

((
i + m − 1

i

)
− 1

)
Ci(x)

+ xm−k+1Bk(x)

 1
(1 − x)m −

k−2∑
i=0

(
i + m − 1

i

)
xi
−

xk−1

1 − x

 , 1 < m < k, (14)

with Cm(x) = C1(x) = 0 if m ≥ k. Since the Bi(x), 1 ≤ i ≤ k, are rational functions, it follows that Cm(x) is also
rational for m = 2, 3, . . . , k − 1. From the definitions and (12), we have

∑
n≥1

a1···12(n)xn =
∑
m≥1

(Bm(x) + Cm(x)) =
Bk(x)
1 − x

+

k−1∑
m=1

(Bm(x) + Cm(x)),

which gives the desired result.

Taking k = 2 in the prior proof implies

B2(x) =
x2(1 + x)
1 − x2α2,2

=
x2(1 − x2)
1 − x − x2 .

We then have ∑
n≥1

a112(n)xn = x +
B2(x)
1 − x

=
x

1 − x − x2 =
∑
n≥1

Fnxn.

Thus we have the following apparently new combinatorial interpretation of the Fibonacci sequence.

Corollary 2.8. If n ≥ 1, then a112(n) = Fn. Furthermore, we have a112(n,m) =
(n−m

m−1
)

for 1 ≤ m ≤ b n+1
2 c.
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Proof. We provide a combinatorial proof of the first statement which will also imply the second. Suppose
λ ∈W112(n). Then we have for some m ≥ 1,

λ = 01 · · · (m − 2)(m − 1)am−1 · · · 0a0 ,

where
∑m−1

i=0 ai = n − m + 1 and each ai is a positive integer. Recall that Fn counts the number of linear
square-and-domino tilings [2, Chapter 1] of length n − 1, the set of which we will denote by Tn−1. Define a
mapping f : W112(n)→ Tn−1 by letting

f (λ) = sa0−1(dsa1−1)(dsa2−1) · · · (dsam−1−1),

where s and d denote square and domino, respectively. Note that the tiling f (λ) has length given by∑m−1
i=0 ai −m + 2(m− 1) = n− 1, and one may verify that f is a bijection. Furthermore, the number of distinct

letters of λ is one more than the number of dominos in f (λ) for all λ, whence the second statement follows
from the fact that there are

(n−m
m−1

)
members of Tn−1 containing m − 1 dominos.

2.4. The Pattern 2 · · · 21
We consider the avoidance of the pattern 2 · · · 21 of length k + 1, where k ≥ 2. Let an,m = a(k)

n,m denote the
number of Catalan words of length n containing m zeros and avoiding the pattern 2 · · · 21. The sequence
an,m is determined recursively as follows.

Lemma 2.9. If n ≥ 3, then

an,m =

k−1∑
i=1

((
i + m − 1

i

)
− 1

)
an−m,i +

n−m∑
i=k

((
k + m − 2

k − 1

)
− 1

)
an−m,i, 2 ≤ m < n, (15)

with an,1 = δn,1 and an,n = 1 for all n ≥ 1. Furthermore, any pattern of the same length of the form 2 · · · 212 · · · 2
is equivalent to 2 · · · 21 in terms of avoidance by Catalan sequences, with this equivalence respecting the number of
occurrences of each letter.

Proof. Let ρ = 2 · · · 21 and let An,m denote the subset of Wρ(n) whose members are enumerated by an,m.
Then members ofAn,m may be obtained by writing zeros at the beginning and after any of the ones within
members ofAn−m,i, expressed using positive letters, if i < k, and after only the first k − 1 ones if i ≥ k. There
are thus

(i+m−1
i

)
− 1 possible ways to insert zeros if i < k and

(k+m−2
k−1

)
− 1 ways if i ≥ k. Furthermore, note that

no occurrences of ρ are created in which the role of the 2 is played by some number ` > 1 when zeros are
inserted as described, for otherwise the member ofAn−m,i would have already contained an occurrence of
ρ, which is impossible. Summing over all i then gives (15).

Now let τ = 2r12s, where r + s = k and r, s ≥ 1. We argue that the corresponding enumerating sequence
for τ satisfies (15) as well, from which the second statement will follow (as the initial conditions are the
same). Clearly, the first sum on the right-hand side of (15) is the same since there must be at least k ones
to produce an occurrence of τ when the zeros are inserted. If i ≥ k, then one can insert zeros either at the
beginning or after the first r − 1 ones or after the final s ones. Thus, there are a total of r − 1 + s = k − 1 ones
after which one may insert zeros, which implies the second sum in (15).

We have the following rationality result which thus applies to each of the patterns in the previous
lemma.

Theorem 2.10. The generating function
∑

n≥1 a2···21(n)xn is always rational.

Proof. Let Am(x) =
∑

n≥m an,mxn. Then recurrence (15) may be written as

Am(x) = xm + xm
k−1∑
i=1

((
i + m − 1

i

)
− 1

)
Ai(x) + xm

((
k + m − 2

k − 1

)
− 1

)∑
i≥k

Ai(x), m ≥ 2, (16)
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with A1(x) = x. Let A(x) =
∑

m≥1 Am(x). Then summing both sides of (16) over m implies

A(x) =
x

1 − x
+

k−1∑
i=1

x
(

1
(1 − x)i+1

−
1

1 − x

)
Ai(x) + x

(
1

(1 − x)k
−

1
1 − x

)∑
i≥k

Ai(x).

Since A(x) =
∑k−1

i=1 Ai(x) +
∑

i≥k Ai(x), this last equation may be rewritten as

k−1∑
i=1

(
1 − x

(
1

(1 − x)i+1
−

1
1 − x

))
Ai(x) +

(
1 − x

(
1

(1 − x)k
−

1
1 − x

))∑
i≥k

Ai(x) =
x

1 − x
. (17)

Let αi, j =
(i+ j

i

)
− 1, βi(x) = 1 − x

(
1

(1−x)i+1 −
1

1−x

)
, 1i(x) = xi(1 + (i − 1)x), 1(x) = x2

(1−x)2 and A∗(x) =
∑

i≥k Ai(x).
Taking 2 ≤ m ≤ k − 1 in (16), together with (17), yields the linear system of equations AX = Y, where

A =


1 − x2α2,1 −x2α3,1 · · · −x2αk−1,1 −x2αk−1,1
−x3α2,2 1 − x3α3,2 · · · −x3αk−1,2 −x3αk−1,2

...
...

. . .
...

...
−xk−1α2,k−2 −xk−1α3,k−2 · · · 1 − xk−1αk−1,k−2 −xk−1αk−1,k−2
β2(x) β3(x) · · · βk−1(x) βk−1(x)


and

X =


A2(x)
A3(x)
...

Ak−1(x)
A∗(x)


and Y =


12(x)
13(x)
...

1k−1(x)
1(x)


.

By Cramer’s rule, the Ai(x), 2 ≤ i ≤ k − 1, and A∗(x) are rational. This implies that

∑
n≥1

a2···21(n)xn = A(x) =

k−1∑
i=1

Ai(x) + A∗(x)

is rational, which completes the proof.

Taking k = 2 in the prior proof implies(
1 − x

(
1

(1 − x)2 −
1

1 − x

))
A∗(x) =

x2

(1 − x)2 ,

and thus ∑
n≥1

a221(n)xn = A(x) = x + A∗(x) = x +
x2

1 − 2x
=

x(1 − x)
1 − 2x

.

Extracting the coefficient of xn gives the first part of the following result.

Corollary 2.11. If n ≥ 2, then a221(n) = a212(n) = 2n−2. Furthermore, if an = a221(n; y) = a212(n; y), then

an = 2an−1 − (1 − y)an−2, n ≥ 3, (18)

with a1 = a2 = y.
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Proof. Taking y = 1 in (18) gives the first statement. We prove (18) in the case 212. To do so, note that the
weight of those members of W212(n) ending in two or more zeros is an−1, upon removing the terminal zero.
The weight of those members ending in a single zero and starting with two or more zeros is an−1 − an−2,
by subtraction, upon removing the initial zero. Finally, the weight of all words in W212(n) beginning and
ending in a single zero is yan−2, upon removing both zeros from each word and reducing the remaining
letters by one. Adding the contributions from the three previous cases gives (18). By Lemma 2.9, the
recurrence (18) also holds for the pattern 221.

Alternatively, to complete the proof, one can define a bijection f between W212(n) and W221(n) that
preserves the number of distinct letters. Suppose w ∈W212(n). Then we can write for some m ≥ 0,

w = 0a0 1a1 · · ·mam (m − 1)bm−1 · · · 1b1 0b0 , ai, bi ≥ 1 for all i,

where am +
∑m−1

i=0 (ai + bi) = n. Define f by setting

f (w) = 0a0 (10b0 1a1−1)(21b1 2a2−1) · · · (m(m − 1)bm−1 mam−1).

One may verify that f is the desired bijection.

3. Three Letter Patterns

In this section, we consider the remaining patterns of length three that do not follow from the results of
the previous section. Our work is reduced by noting the following.

Observation 3.1. The only 121 avoiding Catalan word of length n is the sequence 0n, while the only members of
W122(n) are of the form 0n or 0i10 j, where 1 ≤ i ≤ n − 2, whence a122(n) = n − 1 if n ≥ 2.

In the first subsection that follows, we consider the cases 321 and 211 and provide combinatorial
arguments of our results. In the second, we enumerate the avoidance classes in the cases of 312 and 213.
These cases are more readily established by algebraic arguments and we make use of generating function
techniques in our proofs.

3.1. The Cases 321 and 211

In this subsection, we consider avoidance of the patterns 321 and 211. We first consider the case 321.
Avoiding 321 is equivalent to avoiding 231 as a consequence of the following result.

Proposition 3.2. If k ≥ 3 and 1 < i < k, then avoiding the pattern i · · · (k − 1)k(i − 1) · · · 21 by Catalan sequences is
logically equivalent to avoiding k · · · 21.

Proof. Let ρ = k · · · 21 and τ = i · · · (k − 1)k(i − 1) · · · 21. First suppose that a Catalan word w contains
an occurrence x of ρ. By the second defining property of Catalan words, the subsequence y of initial
occurrences of letters is increasing. The part of y corresponding to the letters represented by i, i + 1, . . . , k
in x, taken together with the last i − 1 letters in x, then constitutes an occurrence of τ. Now suppose w
contains and occurrence z of τ. By the first property of Catalan words, all drops are of size 1. Thus, between
any occurrence of the letter playing the role of k in z and any occurrence of the letter playing the role of
i − 1 to the right of it, all of the letters corresponding to those in [i, k − 1] within z must occur within some
decreasing subsequence, which implies that w contains an occurrence of ρ.

We are able to enumerate the avoidance class for the patterns in Proposition 3.2 in the case when k = 3.

Theorem 3.3. If n ≥ 1, then a321(n) = a231(n) = F2n−3.
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Proof. By Proposition 3.2, avoiding 231 is logically equivalent to avoiding 321, so we only consider the
latter. Let Wn = W321(n) and an = |Wn|. We will show that

an = 3an−1 − an−2, n ≥ 3, (19)

with a1 = a2 = 1. We will assume n ≥ 5, since (19) clearly holds for n = 3, 4. Let R denote the subset of
Wn whose members start with at least two zeros. Then |R| = an−1, upon adding a zero to the beginning of
each member of Wn−1. Let S denote the subset of Wn whose members w are of one of the following forms:
(i) w = 010a1b0cα, where a, b, c ≥ 1 and α is either empty or is non-empty and starts with 1 or 2, or (ii)
w = 01a+10bα, where a, b ≥ 1 and α is as in (i). Then writing a 1 directly after the first zero of each member of
Wn−1 defines a bijection between Wn−1 and the set S∪ {010n−2

}. Thus it remains to show that the cardinality
of the set

T := Wn − R − (S ∪ {010n−2
})

is an−1 − an−2.
Note that w ∈ T implies that it must be of the form w = 010i1 jβ, where either β is empty and i, j ≥ 1 or β

is non-empty starting with 2 and i ≥ 1, j ≥ 0. Note that j ≥ 1 in the first case since we have already excluded
the word 010n−2. Furthermore, if β is non-empty, then it must contain at least two letters (in particular, a 2
and a 1). Moreover, β can contain no 0’s, lest there be an occurrence of the pattern 321 in w.

We now define a mapping f from T to Wn−1. Suppose w ∈ T. By the preceding observations, we have
that w is of one of the following three forms: (a) w = 010i1 j, where i, j ≥ 1, (b) w = 010i1 j2γ, where i ≥ 1, j ≥ 0
and γ is non-empty and starts with 1, or (c) w = 010i1 j2γ, where i ≥ 1, j ≥ 0 and γ starts with 2. Note that γ
contains no zeros in forms (b) and (c). Define f by letting

f (w) =


010i1 j−1, if w is of form (a);
0 j+11i+1red(γ), if w is of form (b);
0 j+110ired(γ), if w is of form (c),

where red(γ) is obtained by reducing each letter of γ by one. One may verify that f is one-to-one, and thus
|T| = | f (T)|.

Note that f (T) comprises all members x of Wn−1 in which either (I) x is binary and starts 010 and contains
only two runs of 0’s, (II) the first run of 1’s in x has length at least two, or (III) the first run of 1’s has
length one, with at least three runs of 0’s in x. To complete the proof, it suffices to show |U| = an−2, where
U := Wn−1 − f (T). Observe that U consists of all words u having one of the following three forms, where
i ≥ 1 and k ≥ 0:

(i) u = 0 j+110i1kδ, where j ≥ 0 and δ , ∅ starts with 2,
(ii) u = 0 j+110i1k, where j ≥ 1, or
(iii) u = 0n−1.
Given u ∈ U − {0n−1

}, let u′ = 0 j+11k+10iδ if u is of the form (i) above and let u′ = 0 j+11k+10i if u is of form
(ii). Then the mapping u 7→ u′ is a bijection. Let V denote the subset of words in Wn−1 of the form

v = 0 j+11k+10iδ, i ≥ 1, k ≥ 0, (20)

together with 0n−1, where δ is either empty or is non-empty and starts with 2 and j ≥ 1 if δ is empty and
j ≥ 0 if δ is non-empty. Then |V| = |U|, so to complete the proof, we define a bijection between V and Wn−2.

Suppose v ∈ V, with v , 0n−1. Note that if δ , ∅ in (20), then it may be decomposed as δ = δ1δ2, where
δ1 starts with 2 and contains letters in {1, 2} and δ2 is either empty or is non-empty and starts with 3. Note
that δ1 must contain at least one letter 1 and that δ2, if non-empty, must contain at least one 2. Given a
non-empty word w, let w̃ denote the reverse of w and let w∗ be obtained from w by deleting the final letter.
We define a mapping 1 : V →Wn−2 by letting

1(v) =


0i1k+1red(δ̃1)0 jred(δ2), if δ , ∅ and δ1 ends in a 1;
0 j+11k+10iδ∗1δ2, if δ , ∅ and δ1 ends in a 2;
0 j1k+10i, if δ = ∅;
0n−2, if v = 0n−1.
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One may verify that 1 is a bijection between V and Wn−2 and thus |U| = an−2, as desired.

Remark 3.4. If an = a321(n; y), then the preceding combinatorial argument can be generalized to show

an = (2 + y)an−1 − yan−2 − y(1 − y) + y2(1 − y)(n − 3 +

n−5∑
i=1

n−4−i∑
j=1

(2 j
− 1)an−3−i− j), n ≥ 3,

with a1 = a2 = y. One can show (using generating functions, for example) that this is equivalent to the recurrence

an = 3an−1 − (2 − y)an−2, n ≥ 3, (21)

with the same initial conditions. It would be interesting to have a direct combinatorial proof of (21).

We now consider the case of avoiding 211.

Theorem 3.5. The sequence an = a211(n; y) satisfies the recurrence

an = 2an−1 + (2y − 1)an−2 − yan−3, n ≥ 4, (22)

with a1 = a2 = y and a3 = y + y2.

Proof. Let Wn = W211(n). To show (22), first note that the weight of all members of Wn starting with two or
more 0’s is an−1, upon writing a 0 directly before each member of Wn−1. Given a word w = w1w2 · · · whose
letters are integers, let inc(w) denote the word obtained by increasing each letter of w by one. Then writing
a 0 before the initial 1 and after the right-most 1 of inc(w) for each w ∈ Wn−2 implies that the weight of
all members of Wn starting with a single zero and containing a zero after the right-most 1 is yan−2. Now
observe that within a member of Wn, not all zeros, that there is a single zero either after the first run of ones
or the last, with no other zeros outside of the initial run of zeros. Furthermore, there are at most three runs
of ones altogether, with three runs possible only when there is a (single) zero after the first run.

Let W′
n denote the subset of Wn whose members start with a single zero, with a zero following the first

run of ones, excluding the case 01n−20. To complete the proof of (22), we must show that the weight of W′
n

is given by

w(W′

n) = an−1 + (y − 1)an−2 − yan−3, n ≥ 4. (23)

First note that the weight of all binary members of W′
n is given by (n−3)y2, since they are of the form 01a01b,

where a, b ≥ 1 and a + b = n−2. Next observe that the weight of all members of W′
n in which there is a single

0 after the first run of 1’s and containing only two runs of 1’s is y(an−2 − y). To see this, write a single zero
at the beginning and after the first run of 1’s within inc(w) for each w ∈Wn−2 − {0n−2

}. To finish the proof of
(23), we must then show that the total weight of all members of W′

n of the form

w = 01a01bα1β, a, b ≥ 1, (24)

where α is non-empty and contains no letters less than two and β is possibly empty, is given by an−1 − an−2 −

yan−3 − (n − 4)y2. (Note that any letters of β are greater than or equal max(α), lest there be an occurrence of
211.)

To do so, we remove a 1 from the second run of 1’s and count members of Wn−1 of the form in (24) except
now b ≥ 0. Note that members v ∈Wn−1 not of this form can be divided into three disjoint classes:

(i) those starting with two or more 0’s,
(ii) those starting with one zero and containing a (single) zero after the right-most 1, or
(iii) those of the form 01c01d, where c, d ≥ 1.

The weight of the words in classes (i), (ii) and (iii) is seen to be an−2, yan−3 and (n − 4)y2, respectively.
Subtracting from an−1 then gives a weight of an−1 − an−2 − yan−3 − (n − 4)y2 for all words in W′

n of the form
(24), which completes the proof.



T. Mansour, M. Shattuck / Filomat 31:3 (2017), 543–558 556

3.2. The Cases 312 and 213
Here, we consider avoidance of the patterns 312 and 213. We first consider the case 312. By a primitive

Catalan word, we will mean one having no two consecutive letters the same. It will be more convenient at
first to study the primitive members of W312(n,m), the subset of which we will denote byBn,m. If m ≥ 2, then
let Cn,m ⊆ Bn,m consist of the members ending in zero. Let bn,m = |Bn,m| if m ≥ 1 and cn,m = |Cn,m| if m ≥ 2,
with cn,1 = 0 for all n. Note that bn,m and cn,m can assume non-zero values only when n ≥ 1 and 1 ≤ m ≤ t,
where t = b n+1

2 c. The arrays bn,m and cn,m are determined by the following intertwined recurrences.

Lemma 3.6. If n ≥ 3 and 2 ≤ m ≤ t, then

bn,m = cn,m +

m∑
i=2

n−1∑
j=2i−1

c j,i(bn− j+1,m−i+1 + bn− j,m−i+1), (25)

where bn,1 = δn,1 for all n ≥ 1, with

cn,m =

n−5∑
i=0

cn−2−i,m−1, n ≥ 5 and 3 ≤ m ≤ t, (26)

where cn,1 = 0 for all n ≥ 1 and cn,2 = χ(n is odd) for n ≥ 3.

Proof. The boundary conditions follow easily from the definitions. If m = 2, note that Cn,2 consists of only
the word (01)(n−1)/20 if n is odd and is empty if n is even. To show (26), we argue that there are cn−2−i,m−1
members of Cn,m in which there are exactly i + 2 letters coming prior to the occurrence of the first 2, whence
the result follows from summing over i. Note that i ≤ n − 5 since m ≥ 3. We define a bijection between
Cn−2−i,m−1 and the subset of Cn,m whose members have i + 2 letters prior to the first 2. Let ρ ∈ Cn−2−i,m−1.
We consider inserting i + 2 letters into inc(ρ) = p1p2 · · · pn−2−i so as to produce a member of Cn,m. Note that
p1 = pn−2−i = 1 and p2 = 2. We insert a sequence of the form 0101 · · · of length i + 1 directly before p1 and
a single zero directly after pn−2−i if i is even and insert a sequence of the form 0101 · · · of length i directly
before p1 and single zeros directly after p1 and pn−2−i if i is odd. Observe that no zeros can be inserted
in any other positions within inc(ρ) without introducing an occurrence of 312 and, conversely, given any
member of Cn,m, the positions of the zeros relative to the other letters are as described. Since this operation
is reversible, it is the requested bijection, which completes the proof of (26).

For (25), we argue that the sum on the right-hand side gives the cardinality of Bn,m − Cn,m. Given
2 ≤ i ≤ m and 2i − 1 ≤ j ≤ n − 1, we show that there are c j,i(bn− j,m−i+1 + bn− j+1,m−i+1) members λ ∈ Bn,m − Cn,m
in which the right-most 0 of λ occurs at position j, where i−1 is the largest letter occurring between the first
and last 0. Note that such members are of the form λ = αβ, where α ∈ C j,i and β is non-empty and contains
no letters less than i − 1 (for otherwise, there would be an occurrence of 312 if i ≥ 3 or the maximality of j
would be contradicted if i = 2). Furthermore, if β starts with i− 1, then it constitutes a member of Bn− j,m−i+1
on the letters {i − 1, i, . . . ,m − 1}, while if β starts with i, then (i − 1)β constitutes a member of Bn− j+1,m−i+1
on the same letters. Thus, there are c j,i(bn− j,m−i+1 + bn− j+1,m−i+1) members λ, as claimed. Summing over all
possible i and j gives (25).

We can now find explicit formulas for the number of 312-avoiding Catalan words of a given length.

Theorem 3.7. If n ≥ 3, then

a312(n,m) =

n−2m+1∑
i=0

(
n −m − i

m − 1

)(
i + m − 2

m − 2

)
2i+m−2, 2 ≤ m ≤ t, (27)

and

a312(n) =
3n−2 + 1

2
. (28)
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Proof. Define C(x, y) =
∑

m≥1 Cm(x)ym =
∑

m≥1
∑

n≥2m−1 cn,mxnym. Multiplying both sides of (26) by xn, and
summing over n ≥ 2m − 1, gives

Cm(x) =
∑
i≥0

xi+2
∑

n≥i+5

cn−2−i,m−1xn−2−i =
∑
i≥0

xi+2
∑
n≥3

cn,m−1xn

=
x2

1 − x
Cm−1(x), m ≥ 3,

with C1(x) = 0 and C2(x) = x3

1−x2 . Multiplying the last recurrence by ym and summing over m ≥ 3, we obtain

C(x, y) =
x3y2

(1 + x)(1 − x − x2y)
.

Define B(x, y) =
∑

m≥1 Bm(x)ym =
∑

m≥1
∑

n≥2m−1 bn,mxnym. Multiplying (25) by xn and summing over
n ≥ 2m − 1, we find

Bm(x) = (1 + x)Cm(x) +
1 + x

x

m−1∑
i=2

Ci(x)Bm+1−i(x) =
1 + x

x

m∑
i=2

Ci(x)Bm+1−i(x), m ≥ 2,

where we have used B1(x) = x. Multiplying the last recurrence by ym and summing over m ≥ 2, we obtain

B(x, y) − xy =
1 + x

xy
C(x, y)B(x, y),

which gives

B(x, y) =
xy(1 − x − x2y)

1 − x − 2x2y
.

Now define A(x, y) =
∑

m≥1 Am(x)ym =
∑

m≥1
∑

n≥2m−1 a312(n,m)xnym. Then the generating function A(x, y)
is given by

A(x, y) = B
( x

1 − x
, y

)
=

xy(1 − 3x + 2x2
− x2y)

(1 − x)(1 − 3x + 2x2 − 2x2y)

=
xy

1 − x
+

x3y2

(1 − x)2(1 − 2x)
(
1 − 2x2 y

(1−x)(1−2x)

)
=

xy
1 − x

+
x3y2

(1 − x)2(1 − 2x)

∑
j≥0

(
2x2y

(1 − x)(1 − 2x)

) j

.

Extracting the coefficient of ym yields

[ym]A(x, y) =
2m−2x2m−1

(1 − x)m(1 − 2x)m−1 , m ≥ 2,

and extracting the coefficient of xn in this last expression implies (27). Formula (28) follows from the fact
that A(x, 1) =

x(1−3x+x2)
(1−x)(1−3x) .

We now enumerate members of the avoidance class for the final three letter pattern, namely, 213.

Theorem 3.8. We have

f (x, y) :=
∑
n≥1

b
n+1

2 c∑
m=1

a213(n,m)xnym =
xy(1 − 3x + 2x2 + x3y)
(1 − x)2(1 − 2x − x2y)

. (29)
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Thus, if an = a213(n), we have

an = 4an−1 − 4an−2 + an−4, n ≥ 5, (30)

with a1 = a2 = 1, a3 = 2, a4 = 5.

Proof. Note that λ ∈W213(n) − {0n
} if and only if it is of the form for some i ≥ 1,

λ = 0a0 1a1 · · · iaiαiαi−1 · · ·α1,

where α j, j ≥ 2, is either the single letter j − 1 or has length at least two and is binary in the letters j − 1 and
j, with both the first and last letters j − 1, and α1 is a non-empty binary word in 0 and 1 starting with 0.
Considering whether or not a member of W213(n) contains at least two distinct letters implies

f (x, y) =
xy

1 − x
+

∑
i≥1

( xy
1 − x

)i+1
(
x +

x2

1 − 2x

)i−1

·
x

1 − 2x

=
xy

1 − x
+

∑
i≥1

xi+2yi+1

(1 − x)i+1(1 − 2x)i [x(1 − x)]i−1 =
xy

1 − x
+

xy
(1 − x)2

∑
i≥1

(
x2y

1 − 2x

)i

=
xy

1 − x
+

x3y2

(1 − x)2(1 − 2x − x2y)
=

xy(1 − 3x + 2x2 + x3y)
(1 − x)2(1 − 2x − x2y)

.

Recurrence (30) follows from the y = 1 case of formula (29) since

f (x, 1) =
x(1 − 3x + 2x2 + x3)

(1 − 2x + x2)(1 − 2x − x2)
=

x(1 − 3x + 2x2 + x3)
1 − 4x + 4x2 − x4 .
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