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Abstract. A multiobjective optimization problem (MOP) with inequality and equality constraints is con-
sidered where the objective and inequality constraint functions are locally Lipschitz and equality constraint
functions are differentiable. Burachik and Rizvi [J. Optim. Theory Appl. 155, 477-491 (2012)] gave Guig-
nard and generalized Abadie regularity conditions for a differentiable programming problem and derived
Karush-Kuhn-Tucker (KKT) type necessary optimality conditions. In this paper, we have defined the nons-
mooth versions of Guignard and generalized Abadie regularity conditions given by Burachik and Rizvi and
obtained KKT necessary optimality conditions for efficient and weak efficient solutions of (MOP). Further
several constraint qualifications sufficient for the above newly defined constraint qualifications are intro-
duced for (MOP) with no equality constraints. Relationships between them are presented and examples
are constructed to support the results.

1. Introduction

In optimization theory KKT conditions are very significant in order to find an optimal solution. These
optimality conditions may fail if the constraint functions do not satisfy certain conditions. These conditions
are known as constraint qualifications. In vector optimization, very frequently conditions are also imposed
on all or some of the components of objective function along with the constraints in order that KKT
conditions hold at an efficient or weak efficient point. These conditions are generally referred to as
regularity conditions in vector optimization but some authors like Maeda [10] and Li [8] have also used the
word constraint qualifications. If the Lagrange multiplier corresponding to a component of an objective
function is positive then it indicates an active role of that component in identifying the solutions of the
problem. When at least one (all) component(s) of the objective function is (are) active in determining the
optimal solution then weak (strong) KKT conditions are said to hold. In literature, researchers introduced
regularity conditions/constraint qualifications in order to get weak (strong) KKT conditions.

In this direction, Maeda [10] was the first to introduce generalized Guignard constraint qualification
(GGCQ) and obtained strong KKT conditions using (GGCQ) for a differentiable programming problem
with only inequality constraints. In addition, several other constraint qualifications are proposed in [10]
and all of them are shown to be sufficient for (GGCQ). Further, Preda and Chitescu [11], Li [8], Chandra
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et al.[3], Giorgi et al.[5, 6] and many others have extended the work of Maeda [10] in different formats of
objective and constraint functions. All the above authors have used the Qi sets given by Maeda [10] to
define different constraint qualifications.

In 2009, Rizvi et al.[12] introduced generalized Guignard constraint qualification (GGCQ) by using
Mi sets which are easily determinable than the sets Qi as they depend only on a single component (i)
of the objective function. Rizvi et al.[12] then derived strong KKT conditions for an efficient solution of
a differentiable programming problem using (GGCQ). Recently Burachik and Rizvi [2] used the Mi sets
introduced by Rizvi et al.[12] to define regularity conditions named as Guignard regularity condition (GRC)
and generalized Abadie regularity condition (GARC). Weak KKT conditions for an efficient solution using
(GRC) and strong KKT conditions for Geoffrion proper efficient solution using (GARC) are obtained in
[2] for a multiobjective programming problem with only inequality constraints where the functions are
assumed to be continuously differentiable.

Motivated by the above research work, in this paper we define nonsmooth versions of (GRC) and (GARC)
introduced by Burachik and Rizvi [2]. These newly defined versions are called generalized Guignard
constraint qualification (GGCQ) and generalized Abadie constraint qualification (GACQ) respectively.
(GACQ) introduced here is easily determinable than (GARC). The results of this paper are more general
than the results existing in literature in the sense that here we use Mi sets which are easily determinable
than the sets Qi and the functions involved are locally Lipschitz.

This paper is organized in 4 sections as follows:
Section 2 includes some notations and definitions which will be used throughout the paper. Section 3
considers a multiobjective optimization problem (MOP) with both inequality and equality constraints. Two
constraint qualifications (GACQ) and (GGCQ) are introduced and weak KKT conditions for weak efficient
and efficient solutions of (MOP) are obtained using these newly defined constraint qualifications. Section
4 considers (MOP) with only inequality constraints and the new problem is called (MP). Several constraint
qualifications are proposed for (MP) and relationship amongst them is investigated.

Examples are constructed to illustrate the results obtained.

2. Notations and Preliminaries

In this section, we provide some definitions and some results that we shall use in the sequel. The
following convention for equalities and inequalities will be used throughout the paper.
For any x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), we define
(1) x = y iff xi = yi ∀i = 1, . . . ,n,
(2) x < y iff xi < yi ∀i = 1, . . . ,n,
(3) x 5 y iff xi ≤ yi ∀i = 1, . . . ,n,
(4) x ≤ y iff x 5 y and x , y.
Note: If x, y ∈ R, then we use x ≤ y to denote x is less than or equal to y.

Let S be a subset of Rn. Then clS, coS, coneS and linS denote the closure, convex hull, cone generated
and subspace generated by S respectively. Let Bδ(x0) be the open ball centered at x0 and radius δ > 0,
R+ = {x ∈ R | x ≥ 0} and R++ = {x ∈ R | x > 0}.

Definition 2.1. Let S be a non empty subset of Rn. The tangent cone to S at x̄ ∈ clS is the set defined by

T(S; x̄) = {d ∈ Rn
| ∃ {dn} → d, {tn} ↓ 0 s.t. x̄ + tndn ∈ S ∀n}.

Two equivalent expressions of tangent cone are given as

T(S; x̄) = {d ∈ Rn
| ∃ {xn} ⊆ S with xn → x̄, {tn} ⊆ R++ s.t. tn(xn − x̄)→ d},

T(S; x̄) = {d ∈ Rn
| ∃ {xn} ⊆ S with xn → x̄, {tn} ↓ 0 s.t. tn

−1(xn − x̄)→ d}.

The set T(S; x̄) is a non empty closed cone but not necessarily convex. If S is convex, then T(S; x̄) is convex.
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Definition 2.2. A function φ : Rn
→ R is said to be locally Lipschitz at a point x0 ∈ Rn if there exist real

numbers k > 0 and δ > 0 such that for all x, y ∈ Bδ(x0), we have

|φ(x) − φ(y)| ≤ k‖x − y‖.

φ is said to be locally Lipschitz on Rn if it is locally Lipschitz at each point of Rn.

Definition 2.3. [4] Let φ : Rn
→ R be a locally Lipschitz function. Then the Clarke’s generalized directional

derivative of φ at x0 ∈ Rn in the direction d ∈ Rn is denoted by φo(x0; d) and is given as

φo(x0; d) = lim sup
x→x0

t↓0

φ(x + td) − φ(x)
t

.

It is well known that v→ φo(x0; v) is a continuous sublinear function on Rn.
The Clarke’s generalized subdifferential of a locally Lipschitz function φ : Rn

→ R at x0 ∈ Rn is given by

∂cφ(x0) = {ξ ∈ Rn : φo(x0; d) ≥ 〈ξ, d〉 ∀ d ∈ Rn
}.

Let f : Rn
→ Rp be a vector valued function. Then f is said to be locally Lipschitz on Rn if each

fi, i = 1, 2, . . . , p is locally Lipschitz onRn. Let f : Rn
→ Rp be a locally Lipschitz function. Then the Clarke’s

generalized directional derivative of f at x0 ∈ Rn in the direction d is given by

f o(x0; d) = ( f1o(x0; d), f2o(x0; d), . . . , fpo(x0; d)).

The Clarke’s generalized subdifferential of f at x0 ∈ Rn is the set

∂c f (x0) = ∂c f1(x0) × ∂c f2(x0) × . . . × ∂c fp(x0).

Now we recall the definitions of ∂c-pseudoconvex and ∂c-quasiconvex functions which are the non-
smooth generalizations of usual notions of pseudoconvex and quasiconvex functions for differentiable
functions.

Definition 2.4. Let φ : Rn
→ R be a locally Lipschitz function. Then φ is said to be ∂c-quasiconvex at x0 ∈ Rn

if for all x ∈ Rn, we have
φ(x) ≤ φ(x0) ⇒ φo(x0; x − x0) ≤ 0

or φo(x0; x − x0) > 0 ⇒ φ(x) > φ(x0).

φ is said to be ∂c-quasiconvex on Rn if it is ∂c-quasiconvex at each element of Rn. The function φ is said to
be ∂c-quasiconcave at x0 if −φ is ∂c-quasiconvex at x0.

Definition 2.5. Let φ : Rn
→ R be a locally Lipschitz function. Then φ is said to be ∂c-pseudoconvex at

x0 ∈ Rn if for all x ∈ Rn, we have

φ(x) < φ(x0) ⇒ φo(x0; x − x0) < 0.

The function φ is said to be ∂c-pseudoconcave at x0 if −φ is ∂c-pseudoconvex at x0.

Definition 2.6. A function h : Rn
→ R is said to be quasilinear if it is both quasiconvex and quasiconcave.

Now from [1], we have the following lemma:

Lemma 2.1. Let φ : Rn
→ R be ∂c-quasiconvex. Then φ is quasiconvex.

It is well known that a function f : Rn
→ R is quasiconvex iff α-lower level set Lα( f ) = {x ∈ Rn : f (x) ≤ α}

is a convex set for each α ∈ R. Therefore lower level sets of a ∂c-quasiconvex function are also convex.
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3. Constraint Qualification and Kuhn Tucker Conditions

We consider the following multiobjective optimization problem:

(MOP) Minimize f (x)
subject to 1(x) 5 0,

h(x) = 0,

where f : Rn
→ Rp, 1 : Rn

→ Rm are locally Lipschitz functions on Rn and h : Rn
→ Rr is differentiable

function on Rn. Let I = {1, 2, . . . , p}, J = {1, 2, . . . ,m}, K = {1, 2, . . . , r}, S = {x ∈ Rn : 1(x) 5 0, h(x) = 0} be the
feasible set of (MOP) and J(x) = { j ∈ J : 1 j(x) = 0} be the set of active indices of g at x.

Definition 3.1. A point x̄ ∈ S is said to be an efficient solution of (MOP) if there exists no y ∈ S such that

f (y) ≤ f (x̄).

Definition 3.2. A point x̄ ∈ S is said to be a weak efficient solution of (MOP) if there exists no y ∈ S such
that

f (y) < f (x̄).

Now we discuss the Karush-Kuhn-Tucker necessary optimality conditions for the problem (MOP). To
obtain these KKT conditions for a multiobjective programming problem, one may need to impose some
conditions not only on the constraints but also on some or all of the objective function components. In
literature these conditions are referred to as constraint qualifications or regularity conditions. There are
several types of constraint qualifications which are imposed on the constraints like Abadie, Guignard,
Slater, Mangasarian-Fromovitz, etc.

T.Maeda [10] first generalized the Guignard constraint qualification and called it generalized Guignard
constraint qualification (GGCQ). For a fixed x̄ ∈ S, Maeda [10] considered the sets of following type:

Qi(x̄) = {x ∈ Rn : fs(x) ≤ fs(x̄), s = 1, 2, . . . , p, s , i, 1(x) 5 0, h(x) = 0}, i = 1, . . . , p.

Q(x̄) = {x ∈ Rn : f (x) 5 f (x̄), 1(x) 5 0, h(x) = 0}.

In Maeda [10], (GGCQ) was dependent on the sets Qi. Later on sets Mi were introduced which depend
only on a single component of objective function. For a fixed x̄ ∈ S, Rizvi et al.[12] defined Mi as the set

Mi(x̄) = {x ∈ Rn : fi(x) ≤ fi(x̄), 1(x) 5 0, h(x) = 0}, i = 1, . . . , p

and
M(x̄) = {x ∈ Rn : f (x) 5 f (x̄), 1(x) 5 0, h(x) = 0}.

Now we give the definitions of following linearizing cones given in relation to (MOP).

L(Mi(x̄); x̄) = {d ∈ Rn : f o
i (x̄; d) ≤ 0, 1o

j(x̄; d) ≤ 0 ∀ j ∈ J(x̄),Ohk(x̄)d = 0 ∀k ∈ K}, i = 1, . . . , p.

L(M(x̄); x̄) = {d ∈ Rn : f o
i (x̄; d) ≤ 0 ∀i ∈ I, 1o

j(x̄; d) ≤ 0 ∀ j ∈ J(x̄),Ohk(x̄)d = 0 ∀k ∈ K}.

Lemma 3.1. Let x̄ ∈ S. Then L(M(x̄); x̄) is a closed convex cone.

Proof. The lemma can easily be proved by using the fact that v → f o
i (x̄; v) ∀i ∈ I, v → 1o

j(x̄; v) ∀ j ∈ J(x̄) are
continuous sublinear functions and Ohk(x̄)(· ) ∀k ∈ K are linear functions.

Lemma 3.2. Let x̄ be a feasible solution of (MOP) and that fi, 1 j, i ∈ I and j ∈ J(x̄) be ∂c-quasiconvex functions
respectively at x̄. Then p⋂

i=1

cl co T(Mi(x̄); x̄) ⊆ L(M(x̄); x̄).
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Proof. We know that

L(M(x̄); x̄) =

p⋂
i=1

L(Mi(x̄); x̄).

Now we first show that for each i = 1, . . . , p,

T(Mi(x̄); x̄) ⊆ L(Mi(x̄); x̄).

Let d ∈ T(Mi(x̄); x̄). Then there exist sequences {xn} ⊆Mi(x̄) and {tn} ⊆ R++ such that

xn → x̄ and tn(xn − x̄)→ d.

Assume that tn(xn − x̄) = dn for each n. Then for all j ∈ J(x̄) and n ∈N, we get

1 j(xn) = 1 j

(
x̄ +

dn

tn

)
≤ 0 = 1 j(x̄)

and fi(xn) = fi

(
x̄ +

dn

tn

)
≤ fi(x̄).

Using above two inequalities and ∂c-quasiconvexity of fi, 1 j, j ∈ J(x̄), we get

1o
j(x̄; d) ≤ 0 ∀ j ∈ J(x̄), (3.1)

f o
i (x̄; d) ≤ 0 (3.2)

as f o
i (x̄; · ) and 1o

j(x̄; · ), j ∈ J(x̄) are positively homogenous and continuous functions. Now for k ∈ K, we
have

hk(xn) = hk

(
x̄ +

dn

tn

)
= 0 = hk(x̄).

Because hk is differentiable for each k ∈ K, therefore we have

hk

(
x̄ +

dn

tn

)
= hk(x̄) + Ohk(x̄)

(
dn

tn

)
+ o

(
‖dn‖

tn

)
, where lim

n→∞

o
(
‖dn‖

tn

)(
‖dn‖

tn

) = 0

⇒ Ohk(x̄)
(

dn

tn

)
+

o
(
‖dn‖

tn

)
‖dn‖

tn

‖dn‖

tn
= 0.

Multiplying by tn and taking limit as n→∞, we get

Ohk(x̄)d = 0 ∀ k ∈ K, (3.3)

because {dn} is bounded.
Using (3.1), (3.2) and (3.3), we get

d ∈ L(Mi(x̄); x̄).

Therefore, T(Mi(x̄); x̄) ⊆ L(Mi(x̄); x̄) (3.4)

⇒ cl co T(Mi(x̄); x̄) ⊆ cl co L(Mi(x̄); x̄).
Now as L(Mi(x̄); x̄) is closed and convex, we get

cl co T(Mi(x̄); x̄) ⊆ L(Mi(x̄); x̄). (3.5)

Since we have proved (3.5) for arbitrary i ∈ I, we get⋂p
i=1 cl co T(Mi(x̄); x̄) ⊆

⋂p
i=1 L(Mi(x̄); x̄) = L(M(x̄); x̄).

Hence the result is proved.
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In general the reverse inclusions in (3.4) and (3.5) of above lemma do not hold as can be seen from the
following example.

Example 3.1. Consider the problem

(MOP) Minimize f (x) = ( f1(x), f2(x))
s.t. 1(x) ≤ 0,

h(x) = 0,

where f1, f2, 1, h : R→ R are given by

f1(x) =

{
x2, x < 1
1, x ≥ 1 , f2(x) =

{
−1, x < −1
x3, x ≥ −1 , 1(x) =

{
−x, x < 0
−x3, x ≥ 0 , h(x) =

{
−x2, x < 0

0, x ≥ 0.

Here feasible set S = [0,∞). So, let us take x̄ = 0. Now M1(0) = M2(0) = {0}. Therefore,

T(Mi(0); 0) = {0} = cl co T(Mi(0); 0), i = 1, 2.

Since f o
1 (0; d) = f o

2 (0; d) = 0 ∀d ∈ R, 1o(0; d) ≤ 0 ∀d ≥ 0 and Oh(0) = 0, therefore

L(Mi(0); 0) = R+, i = 1, 2.

Hence it is easy to see that the reverse inclusions in (3.4) and (3.5) are not satisfied at x̄ = 0 for any of the
indices 1 or 2.

Therefore on the lines of Burachik and Rizvi [2], in order to obtain necessary conditions for a feasible
solution of (MOP) to be an efficient/weak efficient solution, we assume the following:

L(Mi(x̄); x̄) ⊆ cl co T(Mi(x̄); x̄) for at least one i ∈ I (3.6)

and L(Mi(x̄); x̄) ⊆ T(Mi(x̄); x̄) for at least one i ∈ I. (3.7)

(3.6) and (3.7) are called (GGCQ) and (GACQ) respectively. These constraint qualifications are nonsmooth
analogues of Guignard and generalized Abadie regularity conditions given in Burachik and Rizvi [2].
If K = ∅, then (GGCQ) reduces to Guignard regularity condition given by Burachik and Rizvi [2] in
continuously differentiable case. It is easy to see that

(GACQ) ⇒ (GGCQ).

First we prove the following theorem in order to prove the necessary conditions for efficient solution of
(MOP).

Theorem 3.1. Let x̄ be an efficient solution of (MOP). Suppose that (GACQ) holds at x̄ and for each i ∈ I, fi is ∂c-
quasiconcave at x̄, then the system

f o(x̄; d) < 0, (3.8)

1o
j(x̄; d) ≤ 0 ∀ j ∈ J(x̄), (3.9)

Oh(x̄)d = 0, (3.10)

has no solution d ∈ Rn.

Proof. Let us suppose that the system given by (3.8)-(3.10) has a solution d ∈ Rn. Then we have

f o
i (x̄; d) < 0 ∀ i ∈ I, (3.11)

1o
j(x̄; d) ≤ 0 ∀ j ∈ J(x̄),

Ohk(x̄)d = 0 ∀ k ∈ K.

By the definition of linearizing cone to Mi(x̄) at the point x̄, we get that
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d ∈ L(Mi(x̄); x̄) ∀ i ∈ I.

As (GACQ) holds at x̄, we have
d ∈ T(Mî(x̄); x̄) say for some î ∈ I.

By the definition of tangent cone, there exist sequences {xn} ⊆Mî(x̄) and {tn} ⊆ R++ such that

xn → x̄ and tn(xn − x̄)→ d.

Let tn(xn − x̄) = dn ∀ n. Then dn → d. Since {xn} ⊆Mî(x̄) therefore for each n ∈N we have

fî(xn) ≤ fî(x̄).

We now claim that for each n ∈N, ∃r , î such that

fr(xn) ≥ fr(x̄). (3.12)

If the claim is not true, then there exists at least one n0 ∈N for which we have

fr(xn0 ) < fr(x̄) ∀ r , î,

which contradicts the efficiency of x̄. Hence for each n ∈N, we have at least one index r , î such that (3.12)
is true. Let for each n ∈ N, In denotes the set of all such indices. Then In , ∅ and In ⊆ I \ {î} for each n ∈ N.
Consider the mapping ψ : N → P, where P denotes the power set of the finite set I \ {î} and is defined as
ψ(n) = In. Now the set N is infinite whereas P is finite, so there exists a subset A in the range of ψ at which
infinite number of elements of N are mapped. Let this infinite set be N0, then for each j ∈ A, we have

f j(xn) ≥ f j(x̄) ∀ n ∈N0.

For a particular j0 ∈ A, we have
f j0 (xn) ≥ f j0 (x̄) ∀ n ∈N0 ⊆N.

Since f j0 is ∂c-quasiconcave at x̄, therefore we obtain

f o
j0 (x̄; d) ≥ 0,

as f o
j0

(x̄; · ) is positively homogenous and continuous. This contradicts (3.11). Hence given system has no
solution.

Theorem 3.2. Let x̄ be an efficient solution of (MOP) at which (GACQ) holds and for each i ∈ I, fi be ∂c- quasiconcave
at x̄. Assume that

D = cone co


⋃
j∈J(x̄)

∂c1 j(x̄)

 + lin{Ohk(x̄) : k ∈ K} (3.13)

is closed. Then there exist (λ, µ, ν) ∈ Rp
×Rm

×Rr, λ ≥ 0, µ = 0 such that
p∑

i=1

λi f o
i (x̄; v) +

m∑
j=1

µ j1
o
j(x̄; v) +

r∑
k=1

νkOhk(x̄)v ≥ 0 ∀ v ∈ Rn, (3.14)

µ j1 j(x̄) = 0 ∀ j ∈ J. (3.15)

Proof. Since x̄ is an efficient solution of (MOP) at which all the conditions of Theorem 3.1 hold, therefore by
Theorem 3.1, the system given by (3.8) - (3.10) has no solution d ∈ Rn.
As f o

i (x̄; · ), i ∈ I and 1o
j(x̄; · ), j ∈ J(x̄) are sublinear functions, Ohk(x̄)(· ), k ∈ K are linear functions and D is

closed, therefore by Theorem 3.13 in Jimenez and Novo [7], there exist λ ≥ 0, µ = 0 such that
p∑

i=1

λi f o
i (x̄; v) +

∑
j∈J(x̄)

µ j1
o
j(x̄; v) +

r∑
k=1

νkOhk(x̄)v ≥ 0 ∀ v ∈ Rn.

Taking µ j = 0 for j < J(x̄), we get the desired result.
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Now the next two theorems give necessary optimality conditions for weak efficient solution of problem
(MOP) by using (GGCQ).

Theorem 3.3. Let x̄ be a weak efficient solution of (MOP) at which (GGCQ) holds. Suppose that for each i ∈ I, fi is
∂c- quasiconcave at x̄ and feasible set S is convex, then the system given by (3.8) - (3.10) has no solution d ∈ Rn.

Proof. Let us suppose that the system given by (3.8)-(3.10) has a solution d ∈ Rn. Then

d ∈ L(Mi(x̄); x̄) ∀ i ∈ I.

Since (GGCQ) holds at x̄, therefore

d ∈ cl co T(Mî(x̄); x̄) say for some î ∈ I. (3.16)

Now we know that for each i ∈ I, Mi(x̄) ⊆ S. Therefore in particular for î ∈ I,

Mî(x̄) ⊆ S

⇒ cl co T(Mî(x̄); x̄) ⊆ cl co T(S; x̄). (3.17)

Since S is convex, therefore T(S; x̄) is convex. Also as the tangent cone is a closed cone, we have

cl co T(S; x̄) = T(S; x̄).

Using (3.16), (3.17) and above equality, we obtain d ∈ T(S; x̄). By definition of tangent cone, there exist
sequences {xk} ⊆ S and {tk} ⊆ R++ such that

xk → x̄ and tk(xk − x̄)→ d.

Let dk = tk(xk − x̄) ∀k ∈N, then dk → d.
From (3.8), we have that

f o
i (x̄; d) < 0 ∀ i ∈ I.

As f o
i (x̄; · ) is continuous and sublinear for each i ∈ I, therefore for sufficiently large values of k, we get

f o
i (x̄;

dk

tk
) < 0 ∀ i ∈ I.

Since f ′i s, for all i ∈ I are ∂c-quasiconcave, therefore we obtain that for sufficiently large values of k,

fi(xk) < fi(x̄) ∀ i ∈ I,

which contradicts the fact that x̄ is a weak efficient solution of (MOP). Hence system given by (3.8)-(3.10)
has no solution.

Theorem 3.4. Let x̄ be a weak efficient solution of (MOP) at which all the conditions of Theorem 3.3 are satisfied.
Also assume that the cone given by (3.13) is closed. Then there exist (λ, µ, ν) ∈ Rp

× Rm
× Rr, λ ≥ 0, µ = 0 such

that (3.14) and (3.15) hold.

Proof. Using Theorem 3.3, proof follows on the lines of Theorem 3.2.

Now we give the following example to illustrate Theorems 3.3 and 3.4.

Example 3.2. Consider the problem

(MOP) Minimize f (x) = ( f1(x), f2(x))
s.t. 1(x) ≤ 0,

h(x) = 0,

where f1, f2, 1, h : R→ R are given by

f1(x) =

{
−x, x ≤ 0
−3x, x > 0 , f2(x) = min{−|x|,−x2

} , 1(x) =

{
x3, x ≤ 0
−2x, x > 0 , h(x) =

{
0, x ≤ 0
−x2, x > 0.
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Here feasible set S = (−∞, 0] which is a convex set and each feasible point is a weak efficient solution. So,
let us take x̄ = 0. It is easy to check by using definitions that f1, f2 are ∂c-quasiconcave functions at x̄. Also
as f o

2 (0; d) ≤ 0 for d = 0, 1o(0; d) ≤ 0 ∀d ≥ 0, Oh(0) = 0 and M2(0) = (−∞, 0], therefore

L(M2(0); 0) = {0} and cl co T(M2(0); 0) = R−

showing that (GGCQ) is satisfied at x̄. Thus, all the conditions of Theorem 3.3 are satisfied at x̄ = 0 and it
can be seen that the system given by (3.8)-(3.10) has no solution d ∈ R as f o

2 (0; d) ≮ 0 for any d ∈ R. Therefore
the conclusion of Theorem 3.3 holds.
Now the cone D given by (3.13) is R− here which is obviously closed and there exist multipliers λ1 = 1,
λ2 = 2, µ = 1, ν ∈ R such that (3.14) and (3.15) hold. Therefore necessary optimality conditions are satisfied.

Remark 3.1. Since x̄ = 0 is an efficient solution of (MOP) at which (GACQ) is satisfied, therefore above
example supports Theorems 3.1 and 3.2 also.

Remark 3.2. In Theorems 3.3 and 3.4, necessary optimality conditions are proved for a weak efficient
solution of problem (MOP) under (GGCQ). Since every efficient solution is a weak efficient solution,
therefore conditions (3.14) and (3.15) hold true for efficient solution as well under (GGCQ).

Remark 3.3. If x̄ is a weak efficient solution of (MOP) at which (GACQ) is satisfied and also fi, i ∈ I are
∂c-quasiconcave at x̄, then moving on the same lines as in Theorem 3.3, it can be proved that the system
given by (3.8)-(3.10) has no solution d ∈ Rn. Further if we assume that cone D given by (3.13) is closed, then
moving on the lines of Theorem 3.2, we get that (3.14) and (3.15) hold. Hence KKT conditions are satisfied
at a weak efficient solution of (MOP) under (GACQ).

Remark 3.4. If in (MOP), hk is quasilinear for each k ∈ K and 1 j is ∂c-quasiconvex for each j ∈ J, then by
using Lemma 2.1 and the fact that lower level sets of a quasiconvex function are convex sets, we get that
feasible set S is convex.

We now give the following example to illustrate the importance of Theorem 3.3 as the more relaxed
constraint qualification (GGCQ) is used here. We will show in this example that there are cases where only
(GGCQ) is satisfied but not (GACQ).

Example 3.3. Consider the problem

(MOP) Minimize f (x, y) = ( f1(x, y), f2(x, y))
s.t. 1(x, y) ≤ 0,

where f1, f2, 1 : R2
→ R are given by

f1(x, y) = (|y| − x)(|y| − 2x), f2(x, y) =
(
|y| −

x
2

) (
|y| −

x
4

)
and 1(x, y) = |y| − 2x.

Here feasible set S = {(x, y) ∈ R2 : |y| − 2x ≤ 0} which is a convex set and x̄ = (0, 0) is an efficient as well as
weak efficient solution of (MOP). Now from the definition of 1, we can see that ∂c1(x̄) = co{(−2,−1), (−2, 1)}
and hence

1o(x̄; (d1, d2)) =

{
−2d1 + d2, d2 ≥ 0, d1 ∈ R
−2d1 − d2, d2 < 0, d1 ∈ R.

Similarly, as ∂c fi(x̄) = {(0, 0)} for i = 1, 2, therefore

f o
i (x̄; (d1, d2)) = 0 ∀ (d1, d2) ∈ R2.

Hence, for i = 1, 2
L(Mi(x̄); x̄) = {(d1, d2) ∈ R2 : f o

i (x̄; (d1, d2)) ≤ 0, 1o(x̄; (d1, d2)) ≤ 0}

= {(d1, d2) ∈ R2 : d2 ≤ 2d1 and d2 ≥ −2d1}

and it is shown in Fig.1.
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Fig.1 Shaded region represents L(Mi(x̄); x̄), i =
1, 2

Fig.2 Shaded region represents cl co T(M2(x̄); x̄)

Now,

M1(x̄) = {(x, y) ∈ S : (|y| − x)(|y| − 2x) ≤ 0},

M2(x̄) = {(x, y) ∈ S :
(
|y| − x

2

) (
|y| − x

4

)
≤ 0}

and the corresponding regions have been shown in Fig.3 and Fig.4 respectively.

Fig.3 Shaded region represents M1(x̄) Fig.4 Shaded region represents M2(x̄)

It is easy to see from Fig.3 and Fig.4 that T(M1(x̄); x̄) = M1(x̄) and T(M2(x̄); x̄) = M2(x̄) and both are non
convex sets. So, cl co T(M2(x̄); x̄) is shown in Fig.2 and obviously from figures Fig.1, Fig.2 and Fig.4, we can
see that

L(M2(x̄); x̄) * T(M2(x̄); x̄) and L(M2(x̄); x̄) * cl co T(M2(x̄); x̄).

From Fig.3, it can be seen that cl co T(M1(x̄); x̄) is as shown in Fig.1. Therefore

L(M1(x̄); x̄) = cl co T(M1(x̄); x̄) but L(M1(x̄); x̄) * T(M1(x̄); x̄).

Hence (GGCQ) is satisfied at x̄ but (GACQ) does not hold at x̄. Also using Definition 2.4, it is easy to check
that f1, f2 are ∂c-quasiconcave at x̄. Therefore, all the conditions of Theorem 3.3 are satisfied and the system
given by (3.8)-(3.10) has no solution d ∈ R2. Now as the cone D given by (3.13) is

D =
{
(d1, d2) ∈ R2 : d2 ≥

1
2

d1 and d2 ≤ −
1
2

d1

}
,
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which is obviously a closed cone, therefore by Theorem 3.4, there exist multipliers λ1 = 1, λ2 = 2 and µ = 0
for which (3.14) and (3.15) hold. Hence KKT conditions are satisfied at x̄.

There may exist a multiobjective programming problem where all the conditions of Theorem 3.1 are
satisfied but feasible set is not convex. In such cases Theorem 3.1 can only be applied to get KKT conditions
as shown in the next example.

Example 3.4. Consider the problem

(MOP) Minimize f (x) = ( f1(x), f2(x))
s.t. 1(x) = (11(x), 12(x)) 5 0,

where f1, f2, 11, 12 : R→ R are given by

f1(x) =


x2, x < 0
x, 0 ≤ x ≤ 1
1, x > 1

, f2(x) =

{
−x, x < 0
−2x, x ≥ 0 , 11(x) =


x, x < 0

2x2, 0 ≤ x ≤ 1
3 − x, x > 1

, 12(x) = −|x| − 1.

Here feasible set S = (−∞, 0]
⋃

[3,∞) which is obviously a non convex set. It is easy to see that x̄ = 0 is an
efficient solution of (MOP) and f1, f2 are ∂c-quasiconcave at x̄. Also

L(M2(0); 0) = {0} and T(M2(0); 0) = cl co T(M2(0); 0) = {0},

showing that (GACQ) and (GGCQ) are satisfied at x̄. Hence Theorem 3.3 can’t be applied here as feasible set
is not convex but Theorem 3.1 can be applied and we get that system given by (3.8)-(3.10) has no solution.
Now the cone D given by (3.13) isR+ which is a closed set, therefore by Theorem 3.2, there exist multipliers
λ1 = 2, λ2 = 1, µ1 = 1 and µ2 = 0 such that (3.14) and (3.15) hold. Hence KKT conditions are satisfied at x̄.

Remark 3.5. Since tangent cone always contain the origin 0, therefore if for any x̄ ∈ S, L(Mi(x̄); x̄) = {0} for
at least one i ∈ I, then (GACQ) and (GGCQ) are automatically satisfied at x̄.

Now we give conditions that allow us to make sure that the cone given by (3.13) is closed.

Proposition 3.1. Consider the following:

(a) If

0 < co

 ⋃
j∈J(x̄)

∂c1 j(x̄)

 + lin{Ohk(x̄) : k ∈ K} (3.18)

then the cone D is closed.

(b) If C(S; x̄) = {d ∈ Rn : 1o
j(x̄; d) < 0 ∀ j ∈ J(x̄),Ohk(x̄)d = 0 ∀k ∈ K} , ∅, then the cone D is closed.

Proof. Part (a) follows from proposition 3.6 in [7] by using the fact that 1o
j(x̄; · ), j ∈ J(x̄) are sublinear functions,

Ohk(x̄)(· ), k ∈ K are linear functions and for each j ∈ J(x̄), ∂1o
j(x̄; · )(0) = ∂c1 j(x̄) where ∂1o

j(x̄; · )(0) denotes the
convex subdifferential of a convex function 1o

j(x̄; · ) at 0.
If (b) holds, then (3.18) is also satisfied. To prove it let us suppose that (b) holds but (3.18) does not hold.
So, let d ∈ C(S; x̄). Then

1o
j(x̄; d) < 0 ∀ j ∈ J(x̄), (3.19)

Ohk(x̄)d = 0 ∀ k ∈ K. (3.20)

Since (3.18) does not hold, therefore

0 =

n+1∑
i=1

µiζi +
∑
k∈K

νkOhk(x̄), (3.21)
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where µi ≥ 0,
n+1∑
i=1

µi = 1, ζi ∈ ∪ j∈J(x̄)∂c1 j(x̄), i = 1, . . . ,n + 1 and νk ∈ R ∀k ∈ K. Now (3.21) implies that

0 =

n+1∑
i=1

µi 〈ζi, d〉 +
∑
k∈K

νk 〈Ohk(x̄), d〉 . (3.22)

Since ζi ∈ ∪ j∈J(x̄)∂c1 j(x̄) for each i = 1, . . . ,n + 1, therefore for each i, ζi ∈ ∂c1 j(x̄) for at least one j ∈ J(x̄) say
∂c1 ji (x̄). Then using (3.19) and (3.20), (3.22) gives

0 ≤
n+1∑
i=1

µi1
o
ji (x̄; d) +

∑
k∈K

νk 〈Ohk(x̄), d〉

< 0,

which is absurd. Therefore, if (b) holds then (3.18) is true and hence conclusion follows from part(a).

We now give the following example to illustrate Remark 3.5 and Proposition 3.1.

Example 3.5. Consider the problem

(MOP) Minimize f (x) = ( f1(x), f2(x))
s.t. 1(x) = (11(x), 12(x)) 5 0,

h(x) = 0,

where f1, f2, 11, 12, h : R→ R are given by f1(x) = −|x|,

f2(x) =

{
−x3, x < 1
−1, x ≥ 1 , 11(x) =

{
x − x2, x < 0

2x, x ≥ 0, , 12(x) =

{
−x − 1, x < 0
−2x − 1, x ≥ 0 , h(x) =

{
0, x < 0
−x3, x ≥ 0.

Here feasible set S = [−1, 0]. Let us consider x̄ = 0, then it can be seen that

L(M1(0); 0) = {0}, T(M1(0); 0) = cl co T(M1(0); 0) = R−.

Hence both (GACQ) and (GGCQ) are satisfied at x̄ = 0 as L(M1(0); 0) = {0} showing that Remark 3.5 holds.
It can be verified here that L(M2(0); 0) , {0}.
Since ∂c11(0) = [1, 2] and Oh(0) = 0, therefore cone D = R+ which is obviously closed and we can see that
both the conditions (a) and (b) given in Proposition 3.1 are satisfied at x̄ as right hand side of (3.18) is [1, 2]
and every d < 0 is an element of C(S; x̄).

4. Constraint Qualifications Sufficient for (GACQ) and hence for (GGCQ)

In this section, we consider the problem (MOP) with K = ∅ and call it as a problem (MP) which is defined
as

(MP) Minimize f (x)

subject to 1(x) 5 0.

Let X = {x ∈ Rn : 1(x) 5 0} be the feasible set of problem (MP) and x ∈ X.
On the lines of Li and Zhang [9], we propose some constraint qualifications for the problem (MP) which

need less computation than the constraint qualifications given in [9] and show that these qualifications
are sufficient for (GACQ) and hence (GGCQ) considered in this paper with K = ∅. Consequently, they
validate also the Kuhn-Tucker necessary optimality conditions for efficient and weak efficient solutions of
the problem (MP).

(GACQ) Generalized Abadie Constraint Qualification
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L(Mi(x̄); x̄) ⊆ T(Mi(x̄); x̄) for at least one i ∈ I.

(GGCQ) Generalized Guignard Constraint Qualification

L(Mi(x̄); x̄) ⊆ cl co T(Mi(x̄); x̄) for at least one i ∈ I.

(GCCQ) Generalized Cottle Constraint Qualification
For at least one i ∈ I, the system

f o
i (x; di) < 0, (4.1)

1o
j(x; di) < 0, j ∈ J(x) (4.2)

has a solution di
∈ Rn.

(GSCQ) Generalized Slater Constraint Qualification
For at least one i ∈ I, the system

fi(yi) < fi(x),

1 j(yi) < 1 j(x), j ∈ J(x)

has a solution yi
∈ Rn. Also for each i ∈ I and j ∈ J(x), fi, 1 j are ∂c-pseudoconvex at x

respectively.
(GLCQ) Generalized Linear Constraint Qualification

The functions fi, for at least one i ∈ I and 1 j, for all j ∈ J(x) are ∂c-pseudoconcave at x.
(GLOCQ) Generalized Linear Objective Constraint Qualification

For each i ∈ I, fi is ∂c-pseudoconcave at x and for at least one k ∈ I, the system

f o
k (x; dk) ≤ 0,

1o
j(x; dk) < 0, j ∈ J(x)

has a solution dk
∈ Rn.

(GMFCQ) Generalized Mangasarian Fromovitz Constraint Qualification
For at least one i ∈ I, the system

f o
i (x; vi) ≤ 0, (4.3)

1o
j(x; vi) < 0, j ∈ J(x) (4.4)

has a solution vi
∈ Rn and f o

i (x; ui) < 0 for some ui
∈ Rn.

Remark 4.1. By definition, it follows that (GACQ)⇒ (GGCQ).

Proposition 4.1. (GCCQ) implies (GACQ).

Proof. Let (GCCQ) holds at x ∈ X. Then, for at least one j ∈ I, (4.1) and (4.2) have a solution d j. Now let
d ∈ L(M j(x); x). Then we show that

d ∈ T(M j(x); x).

Since d j is a solution to the jth system given in (GCCQ), therefore we have

f o
j (x; d j) < 0,

1o
i (x; d j) < 0, i ∈ J(x).

Since f o
j (x; · ) and 1o

i (x; · ), i ∈ J(x) are sublinear and d ∈ L(M j(x); x), therefore for any fixed real number t̄ > 0,
we have

f o
j (x; d + t̄d j) ≤ f o

j (x; d) + t̄ f o
j (x; d j) < 0, (4.5)
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1o
i (x; d + t̄d j) ≤ 1o

i (x; d) + t̄1o
i (x; d j) < 0, i ∈ J(x). (4.6)

Using the definition of Clarke’s generalized directional derivative, we have from inequalities (4.5) and (4.6)
that there exists a sequence {tn}with tn ↓ 0 such that for all sufficiently large n

f j(x + tn(d + t̄d j)) < f j(x), (4.7)

1i(x + tn(d + t̄d j)) < 1i(x) = 0, i ∈ J(x). (4.8)

Now as 1i(x) < 0 for i < J(x) and 1i, i ∈ J are locally Lipschitz continuous, therefore for sufficiently large
values of n, we get that

1i(x + tn(d + t̄d j)) < 0, i < J(x). (4.9)

On using the definition of M j(x), inequalities (4.7)-(4.9) give that for all n sufficiently large

x + tn(d + t̄d j) ∈M j(x),

which by definition of tangent cone implies that

d + t̄d j
∈ T(M j(x); x).

Since t̄ > 0 is arbitrary, therefore

{d + td j : t > 0, t ∈ R} ⊆ T(M j(x); x).

As the set T(M j(x); x) is closed and d ∈ cl {d + td j : t > 0, t ∈ R}, we get that

d ∈ T(M j(x); x).

Hence L(M j(x); x) ⊆ T(M j(x); x) for a particular j ∈ I. Thus (GACQ) holds at x.

Proposition 4.2. (GSCQ) implies (GCCQ).

Proof. Let (GSCQ) holds at x ∈ X, so that the ith system given in (GSCQ) has a solution yi. Then

fi(yi) < fi(x),
1 j(yi) < 1 j(x), j ∈ J(x).

Since for each i ∈ I and j ∈ J(x), fi and 1 j are ∂c-pseudoconvex at x respectively, therefore we have

f o
i (x; yi

− x) < 0,

1o
j(x; yi

− x) < 0, j ∈ J(x)

showing that di = yi
− x is a solution to the ith system given by (4.1) and (4.2) in (GCCQ). Hence the result

is proved.

Proposition 4.3. (GLCQ) implies (GACQ).

Proof. Let (GLCQ) holds at x ∈ X. Suppose that i0 ∈ I for which fi0 is ∂c-pseudoconcave at x and d ∈
L(Mi0 (x); x). Then it is sufficient to prove that d ∈ T(Mi0 (x); x). Since d ∈ L(Mi0 (x); x), therefore we have

f o
i0 (x; d) ≤ 0,

1o
j(x; d) ≤ 0, j ∈ J(x).

Now for any sequence {tn}with tn ↓ 0, we get

f o
i0 (x; x + tnd − x) = f o

i0 (x; tnd) ≤ 0,
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1o
j(x; x + tnd − x) = 1o

j(x; tnd) ≤ 0, j ∈ J(x)

as f o
i0

(x; · ) and 1o
j(x; · ), j ∈ J(x) are sublinear on Rn. Since (GLCQ) holds at x, therefore fi0 and 1 j, j ∈ J(x) are

∂c-pseudoconcave at x which implies that

fi0 (x + tnd) ≤ fi0 (x), (4.10)

1 j(x + tnd) ≤ 1 j(x) = 0, j ∈ J(x). (4.11)

Also as 1 j(x) < 0 for all j ∈ J \ J(x) and 1 j’s are locally Lipschitz continuous for all j ∈ J, therefore for all n
sufficiently large, we get that

1 j(x + tnd) < 0, j ∈ J \ J(x). (4.12)

By using the definition of Mi0 (x), we obtain from (4.10)-(4.12) that for sufficiently large values of n

x + tnd ∈Mi0 (x)

which gives that d ∈ T(Mi0 (x); x).

Proposition 4.4. (GLOCQ) implies (GACQ).

Proof. Let (GLOCQ) holds at x ∈ X. Suppose that k ∈ I for which the system given in (GLOCQ) has a
solution dk. First we prove that dk

∈ T(Mk(x); x).
Since dk is a solution to the system given in (GLOCQ), therefore by definition of Clarke’s generalized
directional derivative, there is a sequence {tn}with tn ↓ 0 such that for all n sufficiently large

1 j(x + tndk) < 1 j(x) = 0, j ∈ J(x). (4.13)

Again since dk is a solution to the system in (GLOCQ) and f o
k (x; · ) is sublinear, therefore

f o
k (x; x + tndk

− x) = f o
k (x; tndk) ≤ 0.

As fi for each i ∈ I is ∂c-pseudoconcave at x, we get

fk(x + tndk) ≤ fk(x). (4.14)

Since 1 j(x) < 0 for all j ∈ J \ J(x) and as 1 j’s are locally Lipschitz continuous for all j ∈ J, therefore for all n
sufficiently large, we have,

1 j(x + tndk) < 0, j ∈ J \ J(x). (4.15)

From (4.13)-(4.15), we get that for sufficiently large values of n

x + tndk
∈Mk(x)

which yields that dk
∈ T(Mk(x); x). As dk is an arbitrary solution to the kth system, therefore every solution

of that system is an element of T(Mk(x); x).
Now let us suppose that some d̄ ∈ L(Mk(x); x). Since d̄ ∈ L(Mk(x); x) and dk is a solution to the system given
in (GLOCQ), d̄ + tndk also solves that system as

f o
k (x; d̄ + tndk) ≤ f o

k (x; d̄) + tn f o
k (x; dk) ≤ 0,

1o
j(x; d̄ + tndk) ≤ 1o

j(x; d̄) + tn1
o
j(x; dk) < 0, j ∈ J(x)

and hence d̄ + tndk
∈ T(Mk(x); x). Since T(Mk(x); x) is closed and d̄ is the limit point of the sequence {d̄ + tndk

},
we get that

d̄ ∈ T(Mk(x); x).

Thus L(Mk(x); x) ⊆ T(Mk(x); x) for a particular k ∈ I and hence (GACQ) holds at x.
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Proposition 4.5. (GMFCQ) holds iff (GCCQ) holds.

Proof. It is easy to see by definition that if (GCCQ) holds then (GMFCQ) holds. Now let (GMFCQ) holds at
x ∈ X. Then, we may assume that the solution exists for the ith system. So, suppose that, f o

i (x; ui) < 0 and
the system given by (4.3) and (4.4) has a solution vi.
Since f o

i (x; · ) is sublinear and 1o
j(x; · ), j ∈ J(x) is continuous, we get that for sufficiently small real number

t > 0
f o
i (x; vi + tui) < 0,

1o
j(x; vi + tui) < 0, j ∈ J(x).

Hence, vi + tui solves the ith system in (GCCQ) which shows that (GCCQ) holds at x. Thus

(GMFCQ) ⇔ (GCCQ).

Now the following examples illustrate the implications shown between the different constraint qualifi-
cations given above.

Example 4.1. Consider the problem

(MP) Minimize f (x) = ( f1(x), f2(x))
s.t. 1(x) = (11(x), 12(x)) 5 0,

where f1, f2, 11, 12 : R→ R are given by

f1(x) =

{
x, x < 1
1, x ≥ 1 , f2(x) =

{
0, x < 1

−x + 1, x ≥ 1 , 11(x) =

{
−x2, x < 1
−x, x ≥ 1 , 12(x) =

{
−x3, x < 1
−x, x ≥ 1.

Now for the above problem (MP), feasible set X = [0,∞). Let x̄ = 1. Then

M1(1) = {x ∈ X : f1(x) ≤ f1(1)} = [0,∞), T(M1(1); 1) = R.

L(M1(1); 1) = {d ∈ R : f o
1 (1; d) ≤ 0} = R−

as none of the constraint functions is active at x̄ = 1. It can be easily seen that
1. (GACQ) and hence (GGCQ) is satisfied here for i = 1 and it can be verified that both of them are

satisfied for i = 2 also.

2. (GCCQ) is not satisfied at x̄ = 1 as neither f o
1 (1; d) < 0 nor f o

2 (1; d) < 0 for any d ∈ R showing that
(GACQ) ; (GCCQ)

3. (GSCQ) is not satisfied at x̄ = 1 as by Proposition (4.2), (GSCQ)⇒ (GCCQ). It is also due to the fact
that f1, f2 are not ∂c-pseudoconvex at x̄ = 1.

4. (GLCQ) holds as f1 is ∂c-pseudoconcave at x̄ = 1.

5. (GLOCQ) is satisfied at x̄ = 1 as fi, i = 1, 2 are ∂c-pseudoconcave at x̄ = 1 and both the systems given
in (GLOCQ) have a solution, although we need it only for one system.

6. (GMFCQ) does not hold at x̄ = 1 because of the reason given in (2) and also as (GCCQ) does not hold
at x̄ = 1, therefore by Proposition 4.5, (GMFCQ) does not hold at x̄ = 1.

Example 4.2. Consider the problem

(MP) Minimize f (x) = ( f1(x), f2(x))
s.t. 1(x) = (11(x), 12(x)) 5 0,

where f1, f2, 11, 12 : R→ R are given by

f1(x) =


2, x < −1

−x + 1, −1 ≤ x ≤ 1
(x − 1)2, x > 1

, f2(x) = −|x| , 11(x) =

{
−x3, x < 1
−x, x ≥ 1 , 12(x) =

{
1
3 (1 − x), x < 1

1 − x, x ≥ 1.
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Now for the above problem (MP), feasible set X = [1,∞). Let us take x̄ = 1. Then moving on the same lines
as in Example 4.1, we can see that (GACQ),(GGCQ),(GCCQ),(GLCQ) and (GMFCQ) are satisfied at x̄ = 1
but (GSCQ) and (GLOCQ) do not hold at x̄ = 1 as f2 is not ∂c-pseudoconvex and f1 is not ∂c-pseudoconcave
respectively at x̄ = 1 which shows that

(GCCQ) ; (GSCQ) and (GACQ) ; (GLOCQ)

Remark 4.2. In Example 4.2, (GACQ),(GGCQ),(GCCQ),(GLCQ) and (GMFCQ) are satisfied at x̄ = 1 for the
index i = 2.

We summarize the relationship between above constraint qualifications in Fig.5.

Fig.5 Relations between the constraint qualifications

References

[1] C. R. Bector, S. Chandra, J. Dutta, Principles of optimization theory, Narosa Publishing House, New Delhi, 2005.
[2] R. S. Burachik, M. M. Rizvi, On weak and strong Kuhn Tucker conditions for smooth multiobjective optimization, J. Optim.

Theory Appl. 155 (2012) 477–491.
[3] S. Chandra, J. Dutta, C. S. Lalitha, Regularity conditions and optimality in vector optimization, Numer. Func. Anal. Optim. 25

(2004) 1–23.
[4] F. H. Clarke, Optimization and nonsmooth analysis, Wiley, New York, 1983.
[5] G. Giorgi, B. Jimenez, V. Novo, On constraint qualifications in directionally differentiable multiobjective optimization problems,

RAIRO Oper. Res. 38 (2004) 255–274.
[6] G. Giorgi, B. Jimenez, V. Novo, Strong Kuhn-Tucker conditions and constraint qualifications in locally Lipschitz multiobjective

optimization problems, TOP. 17 (2009) 288–304.
[7] B. Jimenez, V. Novo, Alternative theorems and necessary optimality conditions for directionally differentiable multiobjective

programs, Journal of Convex Analysis. 9(1) (2002) 97–116.
[8] X. F. Li, Constraint qualifications in nonsmooth multiobjective optimization, J. Optim. Theory. Appl. 106(2) (2000) 373–398.
[9] X. F. Li, J. Z. Zhang, Stronger Kuhn-Tucker type conditions in nonsmooth multiobjective optimization: locally Lipschitz case, J.

Optim. Theory. Appl. 127(2) (2005) 367–388.
[10] T. Maeda, Constraint qualifications in multiobjective optimization problems: differentiable case, J. Optim. Theory Appl. 80(3)

(1994) 483–500.
[11] V. Preda, I. Chitescu, On constraint qualifications in multiobjective optimization problems: semidifferentiable case, J. Optim.

Theory Appl. 100(2) (1999) 417–433.
[12] M. M. Rizvi, M. Hanif, G. M. Waliullah, First order optimality conditions in multiobjective optimization problems: differentiable

case, GANIT J. Bangladesh Math. Soc. 29 (2009) 99–105.


