Multi-Generalized 2-Normed Space

Mahnaz Khanehgir ${ }^{\text {a }}$, Marzieh Moradian Khibary ${ }^{\text {b }}$, Firoozeh Hasanvand ${ }^{\text {a }}$, Ahmad Modabber ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran. ${ }^{b}$ Department of Pure Mathematics, Farhangian University, Mashhad, Iran

Abstract

In this paper, we introduce the concepts of multi-generalized 2-normed space and dual multigeneralized 2-normed space and we then investigate some results related to them. We also prove that, if ($E,\|,\|$,$) is a generalized 2-normed space, \left\{\|., .\|_{k}\right\}_{k \in \mathbb{N}}$ is a sequence of generalized 2-norms on $E^{k}(k \in \mathbb{N})$ such that for each $x, y \in E,\|x, y\|_{1}=\|x, y\|$ and for each $k \in \mathbb{N}$ axioms (MG1), (MG2) and (MG4)((DG4)) of (dual) multi-generalized 2-normed space are true, then $\left\{\left(E^{k},\|, .,\|_{k}\right), k \in \mathbb{N}\right\}$ is a (dual) multi-generalized 2-normed space. Finally we deal with an application of a dual multi-generalized 2-normed space defined on a proper commutative H^{*}-algebra.

1. Introduction and Preliminaries

The notion of (dual) multi-normed spaces which are somewhat similar to the operator sequence spaces, was initiated by H. G. Dales and M. E. Polyakov in [5]. That provides a suitable supply for the study of multi-normed spaces together with many examples. Some results of (dual) multi-normed spaces are stable under generalized 2-normed spaces [12]. In this paper we use these properties to discover new ones for (dual) multi-generalized 2-normed spaces. In [12], Z. Lewandowska introduced a generalization of Gähler 2-normed space [7, 18], under the name of generalized 2-normed space. After that she published some papers on this issue (e.g. [9-11]). In the following lines, we present some definitions and examples which will be utilized in the sequel.

Definition 1.1. (see [12]) Let X and Y be linear spaces over the field $\mathbb{K}(\mathbb{C}$ or $\mathbb{R})$. A function $\|.\|:, X \times Y \rightarrow[0, \infty)$ is called a generalized 2-norm on $X \times Y$ if it satisfies the following conditions,
(i) $\|\alpha x, y\|=\|x, \alpha y\|=|\alpha|\|x, y\|$ for all $\alpha \in \mathbb{K}$ and $x \in X, y \in Y$;
(ii) $\left\|x, y_{1}+y_{2}\right\| \leq\left\|x, y_{1}\right\|+\left\|x, y_{2}\right\|$ for all $x \in X, y_{1}, y_{2} \in Y$;
(iii) $\left\|x_{1}+x_{2}, y\right\| \leq\left\|x_{1}, y\right\|+\left\|x_{2}, y\right\|$ for all $x_{1}, x_{2} \in X, y \in Y$.

The pair $(X \times Y,\|.\|$,$) is called a generalized 2-normed space. If X=Y$, then the generalized 2 -normed space will be denoted by $(X,\|.\|$,$) .$

Example 1.2. (see [11]) Let X be a real linear space having two seminorms $\|.\|_{1}$ and $\|.\|_{2}$. Then $(X,\|.,\|$.$) is a$ generalized 2-normed space with the generalized 2-norm defined by $\|x, y\|=\|x\|_{1}\|y\|_{2}$ where $x, y \in X$.

[^0]A sequence $\left\{x_{n}\right\}_{n}$ in a generalized 2-normed space $(X,\|,\|$,$) is said to be a 2-Cauchy sequence if \lim _{n, m \rightarrow \infty} \| x_{n}-$ $x_{m}, u \|=0$ for all $u \in X$. In addition, $\left\{x_{n}\right\}_{n}$ is called 2-convergent if there exists $x \in X$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}-x, u\right\|=$ 0 for all $u \in X$. A generalized 2-normed space is called generalized 2-Banach space if every 2-Cauchy sequence is 2 -convergent. Since Lewandowska up to now there are many mathematicians worked on generalized 2-normed spaces and developed it in several directions, see $[1,3,16,17]$) and references cited therein.
The notion of (dual) multi-normed space first was introduced in [5]. This concept has some connections with operator spaces and Banach lattices.
Let $(E,\|\|$.$) be a complex normed space. We denote by E^{k}(k \in \mathbb{N})$, the linear space $E \oplus \ldots \oplus E$. The linear operations on E^{k} are defined coordinatewise. The zero element of either E or E^{k} is denoted by 0 . Following notations and terminologies of [5], we denote by \mathbb{N}_{k} the set $\{1, \ldots, k\}$ and by ς_{k} the group of permutations on k symbols. For $\sigma \in \varsigma_{k}, x=\left(x_{1}, \ldots, x_{k}\right) \in E^{k}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{C}^{k}$ define $A_{\sigma}(x)=\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)$ and $M_{\alpha}(x)=\left(\alpha_{1} x_{1}, \ldots, \alpha_{k} x_{k}\right)$. Let $n \in \mathbb{N}$, we set $x^{[n]}=\left(x_{1}, \ldots, x_{k}, x_{1}, \ldots, x_{k}, \ldots, x_{1}, \ldots, x_{k}\right) \in E^{n k}$, where $x^{[n]}$ consists of n copies of each block $\left(x_{1}, \ldots, x_{k}\right)$.
Take $k \in \mathbb{N}$ and let S be a subset of \mathbb{N}_{k}. For $\left(x_{1}, \ldots, x_{k}\right) \in E^{k}$, we set $Q_{S}\left(x_{1}, \ldots, x_{k}\right)=\left(y_{1}, \ldots, y_{k}\right)$, where $y_{i}=x_{i}$ $(i \notin S)$ and $y_{i}=0 \quad(i \in S)$. Thus Q_{S} is the projection onto the complement of S.
Definition 1.3. (see [5]) Let ($E,\|\|$.$) be a complex (respectively, real) normed space, and take n \in \mathbb{N}$. A multi-norm of level n on $\left\{E^{k}, k \in \mathbb{N}_{n}\right\}$ is a sequence $\left\{\|.\|_{k}\right\}=\left\{\|.\|_{k}, k \in \mathbb{N}_{n}\right\}$ such that $\|.\|_{k}$ is a norm on E^{k} for each $k \in \mathbb{N}_{n}$, such that $\|x\|_{1}=\|x\|$ for each $x \in E$ (so that $\|.\|_{1}$ is the initial norm), and such that the following axioms (MN1)-(MN4) are satisfied for each $k \in \mathbb{N}_{n}$ with $k \geq 2$:
(MN1) for each $\sigma \in \varsigma_{k}$ and $x \in E^{k},\left\|A_{\sigma}(x)\right\|_{k}=\|x\|_{k}$;
(MN2) for each $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{C}$ (respectively, each $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$) and $x \in E^{k}$,

$$
\left\|M_{\alpha}(x)\right\|_{k} \leq\left(\max _{i \in \mathbb{N}_{k}}\left|\alpha_{i}\right|\right)\|x\|_{k}
$$

(MN3) for each $x_{1}, \ldots, x_{k-1} \in E,\left\|\left(x_{1}, \ldots, x_{k-1}, 0\right)\right\|_{k}=\left\|\left(x_{1}, \ldots, x_{k-1}\right)\right\|_{k-1}$;
(MN4) for each $x_{1}, \ldots, x_{k-1} \in E,\left\|\left(x_{1}, \ldots, x_{k-1}, x_{k-1}\right)\right\|_{k}=\left\|\left(x_{1}, \ldots, x_{k-1}\right)\right\|_{k-1}$.
In this case, $\left\{\left(E^{k},\|\cdot\| \|_{k}\right), k \in \mathbb{N}_{n}\right\}$ is a multi-normed space of level n. A multi-norm on $\left\{E^{k}, k \in \mathbb{N}\right\}$ is a sequence

$$
\left\{\|\cdot\|_{k}\right\}=\left\{\|\cdot \cdot\|_{k}, k \in \mathbb{N}\right\}
$$

such that $\left\{\|.\|_{k}, k \in \mathbb{N}_{n}\right\}$ is a multi-norm of level n for each $n \in \mathbb{N}$. In this case, $\left\{\left(E^{n},\|\cdot\|_{n}\right), n \in \mathbb{N}\right\}$ is a multinormed space. Moreover, if axiom (MN4) replaced by the following axiom, then it is called a dual multi-norm and $\left\{\left(E^{n},\|.\|_{n}\right), n \in \mathbb{N}\right\}$ is called a dual multi-normed space.
(DM4) for each $x_{1}, \ldots, x_{k-1} \in E,\left\|\left(x_{1}, \ldots, x_{k-1}, x_{k-1}\right)\right\|_{k}=\left\|\left(x_{1}, \ldots, 2 x_{k-1}\right)\right\|_{k-1}$.
Example 1.4. (see [5]) Let ($E,\|\|$.$) be a normed space. For each k \in \mathbb{N}$, put
(i) $\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|_{k}^{1}=\max _{i \in \mathbb{N}_{k}}\left\|x_{i}\right\|$,
(ii) $\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|_{k}^{2}=\sum_{i=1}^{k}\left\|x_{i}\right\|$,
where x_{1}, \ldots, x_{k} are in E. Then $\left\{\left(E^{k},\|.\| \|_{k}^{1}\right), k \in \mathbb{N}\right\}$ is a multi-normed space and $\left\{\left(E^{k},\|.\| \|_{k}^{2}\right), k \in \mathbb{N}\right\}$ is a dual multinormed space.

Suppose that $\left\{\left(E^{k},\|\cdot\| k\right), k \in \mathbb{N}\right\}$ is a (dual) multi-normed space. The following property is almost immediate consequence of the axioms.

$$
\max _{i \in \mathbb{N}_{k}}\left\|x_{i}\right\| \leq\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|_{k} \leq \sum_{i=1}^{k}\left\|x_{i}\right\| \leq \max _{i \in \mathbb{N}_{k}}\left\|x_{i}\right\|\left(x_{1}, \ldots, x_{k} \in E\right)
$$

It follows from the above assertion that, if $\left(E,\|.\|_{1}\right)$ is a Banach space, then $\left(E^{k},\|.\| \|_{k}\right)$ is a Banach space for each $k=2,3, \ldots$, in this case, $\left\{\left(E^{k},\|.\| \|_{k}\right), k \in \mathbb{N}\right\}$ is called a (dual) multi-Banach space.

By now, many authors have already contributed to the theoretical development of the theory of multinormed spaces (e.g. see [6, 13-15]). In the present work we demonstrate the concept of (dual) multi-normed space in the framework of generalized 2-normed spaces. We also provide many examples together with an application of a dual multi-generalized 2-normed space defined on a proper commutative H^{*}-algebra [$2,4,8,19]$. We will describe H^{*}-algebras in more details in the section 4 . This paper is organized as follows: In section 2, we introduce the concept of (dual) multi-geneneralized 2-normed spaces and describe some results concerned with these new ones. In section 3 , we show that if $(E,\|,\|$,$) is a generalized 2$-normed space, $\left\{\|., .\|_{k}\right\}_{k \in \mathbb{N}}$ is a sequence of generalized 2-norms on $E^{k}(k \in \mathbb{N})$ such that for each $x, y \in E,\|x, y\|_{1}=\|x, y\|$ and for each $k \in \mathbb{N}$ axioms (MG1), (MG2) and (MG4)((DG4)) of (dual) multi-generalized 2-normed space are true, then $\left\{\left(E^{k},\|., .\|_{k}\right), k \in \mathbb{N}\right\}$ is a (dual) multi-generalized 2-normed space. In section 4 , we give an application of a dual multi-generalized 2-normed space. Throughout this paper, we mean by \mathbb{T} and by \mathbb{S} the unit ball and the closed unit ball of \mathbb{C} respectively, more precisely $\mathbb{T}=\{\alpha \in \mathbb{C},|\alpha|=1\}$ and $\mathbb{S}=\{\alpha \in \mathbb{C},|\alpha| \leq 1\}$.

2. (Dual) Multi-Generalized 2-Normed Space

In this section we introduce a (dual) multi-generalized 2-normed space and investigate some properties of it. For this, we need the following definition.

Definition 2.1. Let $(E,\|.,\|$.$) be a generalized 2-normed space (over the field \mathbb{K}$). A special generalized 2-norm on $\left\{E^{k}, k \in \mathbb{N}\right\}$ is a sequence $\left\{\|., .\| \|_{k}\right\}_{k \in \mathbb{N}}$ such that for each $k \in \mathbb{N},\|., .\|_{k}$ is a generalized 2-norm on $E^{k},\|x, y\|_{1}=\|x, y\|$ for each $x, y \in E$ and the following axioms (MG1)-(MG3) are satisfied for each $k \in \mathbb{N}$ with $k \geq 2$:
(MG1) for each $\sigma \in \varsigma_{k}$ and $x, y \in E^{k},\left\|A_{\sigma}(x), A_{\sigma}(y)\right\|_{k}=\|x, y\|_{k} ;$
(MG2) for each $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{K}$ and $x, y \in E^{k},\left\|M_{\alpha}(x), y\right\|_{k}=\left\|x, M_{\alpha}(y)\right\|_{k} \leq\left(\max _{1 \leq i \leq k}\left|\alpha_{i}\right|\right)\|x, y\|_{k}$;
(MG3) for each $x_{1}, \ldots, x_{k-1}, y_{1}, \ldots, y_{k-1} \in E$,

$$
\left\|\left(x_{1}, \ldots, x_{k-1}, 0\right),\left(y_{1}, \ldots, y_{k-1}, 0\right)\right\|_{k}=\left\|\left(x_{1}, \ldots, x_{k-1}\right),\left(y_{1}, \ldots, y_{k-1}\right)\right\|_{k-1} .
$$

Now consider two following more axioms.
(MG4) for each $x_{1}, \ldots, x_{k-1}, y_{1}, \ldots, y_{k-1} \in E$,

$$
\left\|\left(x_{1}, \ldots, x_{k-1}, x_{k-1}\right),\left(y_{1}, \ldots, y_{k-1}, y_{k-1}\right)\right\|_{k}=\left\|\left(x_{1}, \ldots, x_{k-1}\right),\left(y_{1}, \ldots, y_{k-1}\right)\right\|_{k-1} .
$$

(DG4) for each $x_{1}, \ldots, x_{k-1}, y_{1}, \ldots, y_{k-1} \in E$,

$$
\left\|\left(x_{1}, \ldots, x_{k-1}, x_{k-1}\right),\left(y_{1}, \ldots, y_{k-1}, y_{k-1}\right)\right\|_{k}=\left\|\left(x_{1}, \ldots, 2 x_{k-1}\right),\left(y_{1}, \ldots, y_{k-1}\right)\right\|_{k-1}
$$

A special generalized 2-norm is said to be a (dual) multi-generalized 2-norm if it is equipped with the axiom (MG4) ((DG4)). In this case, $\left\{\left(E^{k},\|,, .\|_{k}\right), k \in \mathbb{N}\right\}$ is called a (dual) multi-generalized 2-normed space.

We give the definition in the case where the index set is \mathbb{N}. If the index set is $\mathbb{N}_{k}(k \in \mathbb{N})$, then special, multiand dual multi-generalized 2-normed spaces are of level k.

Remark 2.2. It is readily verified from the axioms (MG2) and (MG3), that

$$
\left\|\left(x_{1}, \ldots, x_{k}, 0\right),\left(y_{1}, \ldots, y_{k}, y_{k+1}\right)\right\|_{k+1}=\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}
$$

where $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k+1} \in E$. Indeed, we have

$$
\begin{aligned}
\left\|\left(x_{1}, \ldots, x_{k}, 0\right),\left(y_{1}, \ldots, y_{k}, y_{k+1}\right)\right\|_{k+1} & =\left\|M_{(1, \ldots, 1,0)}\left(x_{1}, \ldots, x_{k}, 0\right),\left(y_{1}, \ldots, y_{k}, y_{k+1}\right)\right\|_{k+1} \\
& =\left\|\left(x_{1}, \ldots, x_{k}, 0\right), M_{(1, \ldots, 1,0)}\left(y_{1}, \ldots, y_{k}, y_{k+1}\right)\right\|_{k+1} \\
& =\left\|\left(x_{1}, \ldots, x_{k}, 0\right),\left(y_{1}, \ldots, y_{k}, 0\right)\right\|_{k+1} \\
& =\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k} .
\end{aligned}
$$

Example 2.3. Let $(E,\|.\|$,$) be a non-zero generalized 2$-normed space. For each $k \in \mathbb{N}$, set
(i) $\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}^{1}=\max \left\{\left\|x_{1}, y_{1}\right\|, \ldots,\left\|x_{k}, y_{k}\right\|\right\}$,
(ii) $\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}^{2}=\sum_{i=1}^{k}\left\|x_{i}, y_{i}\right\|$,
where $\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right) \in E^{k}$. Then, $\left\{\left(E^{k},\|., .\|_{k}^{1}\right), k \in \mathbb{N}\right\}$ is a multi-generalized 2 -normed space and $\left\{\left(E^{k},\|., .\|_{k}^{2}\right)\right.$, $k \in \mathbb{N}\}$ is a dual multi-generalized 2-normed space.

Example 2.4. Let $(E,\|\cdot\|)$ be an H^{*}-algebra (for the definition see section 4). Define a generalized 2-norm on E^{k} $(k \in \mathbb{N})$ by setting $\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}=\sum_{i=1}^{k}\left\|x_{i} y_{i}\right\|$, then $\left\{\left(E^{k},\|.,\|_{k}\right), k \in \mathbb{N}\right\}$ is a dual multi-generalized 2-normed space.

Example 2.5. (see [5]) Let $\left\{\left(E^{k},\|.,\|_{k}^{\alpha}\right), k \in \mathbb{N}\right\}_{\alpha}$ be a family of (dual) multi-generalized 2-normed spaces. For each $k \in \mathbb{N}$ and $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k} \in E$, define

$$
\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}=\sup _{\alpha}\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}^{\alpha} .
$$

Then $\left\{\left(E^{k},\|., .\|_{k}\right), k \in \mathbb{N}\right\}$ is a (dual) multi-generalized 2-normed space, too.
Inspired by the examples of [5] we give some examples show that axioms (MG1)-(MG4) (-(DG4)) are independent of each other.

Example 2.6. Let $(E,\|.\|$,$) be a non-zero generalized 2-normed space. Set \|x, y\|_{1}=\|x, y\|(x, y \in E)$.
(I) For each $k \in \mathbb{N}-\{1\}$, set $\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}=\max \left\{\left\|x_{1}, y_{1}\right\|, \frac{\left\|x_{2}, y_{2}\right\|}{2}, \ldots, \frac{\left\|x_{k}, y_{k}\right\|}{k}\right\}$, where $\left(x_{1}, \ldots, x_{k}\right)$, $\left(y_{1}, \ldots, y_{k}\right) \in E^{k}$. Then it is immediately checked that $\|., .\|_{k}$ is a generalized $2-n o r m$ on E^{k} and that $\left\{\|., .\|_{k}\right\}_{k \in \mathbb{N}}$ satisfies (MG2), (MG3) and (MG4). However, take $x, y \in E$ with $\|x, y\|=1$. Then $\|(2 x, 3 x),(2 y, 4 y)\|_{2}=6$, but $\|(3 x, 2 x),(4 y, 2 y)\|_{2}=12$. Thus $\left\|_{1},\right\|_{2}$ does not satisfy axiom (MG1).
(II) Set $\left\|\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\|_{2}=\max \left\{\left\|x_{1}, y_{1}\right\|, 2\left\|x_{2}, y_{2}\right\|\right\}$, where $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in E^{2}$. Then it is immediately checked that $\|., .\|_{2}$ is a generalized 2-norm on E^{2} and that $\|., .\|_{2}$ satisfies (MG2), (MG3) and (DG4). However, we claim that $\|., .\|_{2}$ does not satisfy axiom (MG1). For this, similar previous part take $x, y \in E$ with $\|x, y\|=1$. Then $\|(2 x, 3 x),(2 y, 4 y)\|_{2}=24$, but $\|(3 x, 2 x),(4 y, 2 y)\|_{2}=12$, and so $\|., .\|_{2}$ does not satisfy axiom (MG1).

Example 2.7. (III) Let $E=\mathbb{R}$ and $k \in \mathbb{N}$. Define $\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}=\max \|\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right) \mid, i, j \in$ $\left.\mathbb{N}_{k} \cup\{0\}, x_{0}, y_{0}=0\right\}$, where $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k} \in E$. We observe that $\left\{\left(E^{k},\|., .\|_{k}\right), k \in \mathbb{N}\right\}$ is a sequence of generalized 2-normed spaces, and (MG1), (MG3) and (MG4) are true. However we claim that (MG2) does not hold, because obviously $\left\|M_{\alpha}(x), y\right\|_{k} \neq\left\|x, M_{\alpha}(y)\right\|_{k}\left(x, y \in E^{k}, \alpha \in \mathbb{R}^{k}\right)$ and moreover, $4=\|(1,-1),(-1,1)\|_{2} \not \leq\|(1,1),(-1,1)\|_{2}=1$ giving the claim.
(IV) Let $(E,\|.\|$,$) be a non-zero complex generalized 2$-normed space. For each $k \in \mathbb{N}, x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k} \in E$, define $\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}=\max \left\{\left\|\eta_{i} x_{i}, \varepsilon_{j} y_{j}\right\|, i, j \in \mathbb{N}_{k}, \eta_{i}, \varepsilon_{j} \in \mathbb{T}\right\}$. Clearly, $\|., .\|_{k}$ is a generalized 2-norm on E^{k} and axioms (MG1), (MG3) and (MG4) hold. Also $\left\|M_{\alpha}(x), y\right\|_{k},\left\|x, M_{\alpha}(y)\right\|_{k} \leq\left(\max _{i \in \mathbb{N}_{k}}\left|\alpha_{i}\right|\right)\|x, y\|_{k}$ for each $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{C}^{k}$ and $x, y \in E^{k}$, but evidently $\left\|M_{\alpha}(x), y\right\|_{k} \neq\left\|x, M_{\alpha}(y)\right\|_{k}$.
$(V) \operatorname{Let}(E,\|.\|$,$) be a non-zero generalized 2$-normed space. For each $k \in \mathbb{N}, x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k} \in E$, define

$$
\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}=\sup \left\{\max _{i \in \mathbb{N}_{k}}\left\|\sum_{j=1}^{k} \eta_{j} x_{j}, y_{i}\right\|, \eta_{1}, \ldots, \eta_{k} \in \mathbb{S}\right\} .
$$

Clearly, $\|., .\|_{k}$ is a generalized 2-norm on E^{k} and (MG1), (MG3) and (DG4) hold. For (DG4), we have

$$
\begin{aligned}
& \left\|\left(x_{1}, \ldots, x_{k-1}, x_{k-1}\right),\left(y_{1}, \ldots, y_{k-1}, y_{k-1}\right)\right\|_{k} \\
& \quad=\sup \left\{\max _{i \in \mathbb{N}_{k-1}}\left\|\eta_{1} x_{1}+\cdots+\eta_{k-1} x_{k-1}+\eta_{k} x_{k-1}, y_{i}\right\|, \eta_{1}, \ldots, \eta_{k-1}, \eta_{k} \in \mathbb{S}\right\} \\
& \quad=\sup \left\{\max _{i \in \mathbb{N}_{k-1}}\left\|\eta_{1} x_{1}+\cdots+\frac{\eta_{k-1}+\eta_{k}}{2}\left(2 x_{k-1}\right), y_{i}\right\|, \eta_{1}, \ldots, \frac{\eta_{k-1}+\eta_{k}}{2} \in \mathbb{S}\right\} \\
& \quad=\left\|\left(x_{1}, \ldots, 2 x_{k-1}\right),\left(y_{1}, \ldots, y_{k-1}\right)\right\|_{k-1} .
\end{aligned}
$$

Further for nonzero $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{C}^{k}$,

$$
\begin{aligned}
\frac{1}{\max _{i \in \mathbb{N}_{k}}\left|\alpha_{i}\right|}\left\|M_{\alpha}\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k} & =\frac{1}{\max _{i \in \mathbb{N}_{k}}\left|\alpha_{i}\right|} \sup \left\{\max _{i \in \mathbb{N}_{k}}\left\|\sum_{j=1}^{k} \alpha_{j} \eta_{j} x_{j}, y_{i}\right\|, \eta_{1}, \ldots, \eta_{k} \in \mathbb{S}\right\} \\
& =\sup \left\{\max _{i \in \mathbb{N}_{k}}\left\|\sum_{j=1}^{k} \eta_{j}^{\prime} x_{j}, y_{i}\right\|, \eta_{j}^{\prime} \in \mathbb{S}, j \in \mathbb{N}_{k}\right\} \\
& =\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k},
\end{aligned}
$$

where $\eta_{j}^{\prime}=\frac{1}{\max _{i \in \mathbb{N}_{k}}\left|\alpha_{i}\right|} \eta_{j} \alpha_{j}\left(j \in \mathbb{N}_{k}\right)$. This equality gives us the second part of (MG2). Similarly one can quickly checked that

$$
\left\|\left(x_{1}, \ldots, x_{k}\right), M_{\alpha}\left(y_{1}, \ldots, y_{k}\right)\right\|_{k} \leq \max _{1 \leq i \leq k} \mid \alpha_{i}\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}
$$

but trivially $\left\|M_{\alpha}\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k} \neq\left\|\left(x_{1}, \ldots, x_{k}\right), M_{\alpha}\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}$ and so (MG2) does not hold in general. (VI) Suppose that $E=\mathbb{C}$ and $\left\|z_{1}, z_{2}\right\|=2\left|z_{1} z_{2}\right|\left(z_{1}, z_{2} \in E\right)$. Then $(E,\|.\|$,$) is a generalized 2$-normed space. Assume that $\left\|\left(z_{1}, z_{2}\right),\left(w_{1}, w_{2}\right)\right\|_{2}=2\left|z_{1} w_{1}+z_{2} w_{2}\right|$, where $\left(z_{1}, z_{2}\right),\left(w_{1}, w_{2}\right) \in E^{2}$. It is a generalized $2-n o r m$ on E^{2} such that satisfies in the axioms (MG1), (MG3), (DG4) and for each $\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{C}^{2},\left\|M_{\alpha}\left(z_{1}, z_{2}\right),\left(w_{1}, w_{2}\right)\right\|_{2}=$ $\left\|\left(z_{1}, z_{2}\right), M_{\alpha}\left(w_{1}, w_{2}\right)\right\|_{2}$. However the second part of axiom (MG2) does not hold. For instance, we have $4=$ $\|(1, i),(1,-i)\|_{2} \not \leq\|(1,1),(1,-i)\|_{2}=2 \sqrt{2}$.

Example 2.8. (VII) Let $E=\mathbb{C},\|x, y\|=|x y|$ and $\left\|\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\|_{2}=\frac{1}{2}\left(\left|x_{1} y_{1}\right|+\left|x_{2} y_{2}\right|\right)$, where $x, y, x_{1}, x_{2}, y_{1}, y_{2} \in E$. It is not hard to see that $(E,\|.\|$,$) and \left(E^{2},\|.,\|_{2}\right)$ are generalized 2 -normed spaces and (MG1), (MG2), (MG4) are true but (MG3) is not.
(VIII) Suppose that $E=\mathbb{R}^{2}$ and $\left\|\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\|=\left|x_{1} y_{2}-y_{1} x_{2}\right|$, then $(E,\|.\|$,$) is a generalized 2-normed space$ (see [18]). Define
$\left\|\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right),\left(\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right)\right)\right\|_{2}=2 \max \left\{\left\|\left(x_{1}, y_{1}\right),\left(z_{1}, w_{1}\right)\right\|,\left\|\left(x_{2}, y_{2}\right),\left(z_{2}, w_{2}\right)\right\|\right\}$.
We observe that $\left(E^{2},\|,,\|_{2}\right)$ is a generalized 2-normed space and axioms (MG1), (MG2) are true. The calculation $\left\|\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{1}\right)\right),\left(\left(z_{1}, w_{1}\right),\left(z_{1}, w_{1}\right)\right)\right\|_{2}=2\left\|\left(x_{1}, y_{1}\right),\left(z_{1}, w_{1}\right)\right\|=\left\|2\left(x_{1}, y_{1}\right),\left(z_{1}, w_{1}\right)\right\|$ shows that $(D G 4)$ is also valid. On the other hand (MG3) does not hold, since $\|((1,1),(0,0)),((-1,1),(0,0))\|_{2}=4$ but $\|(1,1),(-1,1)\|=2$.

Example 2.9. (IX) Let $E=\mathbb{C},\|x, y\|=|x y|$ and $\left\|\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\|_{2}=\left|x_{1} y_{1}\right|+\left|x_{2} y_{2}\right|$, where $x, y, x_{1}, x_{2}, y_{1}, y_{2} \in E$. It is immediately verified that $(E,\|.\|$,$) and \left(E^{2},\|.,\|_{2}\right)$ are generalized 2 -normed spaces and (MG1), (MG2), (MG3) are true but (MG4) is not.
(X) Let $E=\mathbb{R}$. For $k \in \mathbb{N}$, and $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k} \in E$, define $\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}=\left(\sum_{i=1}^{k}\left|x_{i} y_{i}\right|^{2}\right)^{\frac{1}{2}}$. Then $\left\{\|., .\|_{k}, k \in \mathbb{N}\right\}$ is a special generalized 2-norm on $\left\{E^{k}, k \in \mathbb{N}\right\}$, but both of axioms (MG4) and (DG4) are not true.

The four presented examples in the above are just in level 2. In the following lemma we assume ($E,\|.,\|$. is a generalized 2-normed space and $\left\{\left(E^{k},\|.,\|_{k}\right), k \in \mathbb{N}\right\}$ is a special generalized 2-normed space with $\|x, y\|_{1}=\|x, y\|$ for all $x, y \in E$. The proof is trivial and so is omitted (see [5, pp. 44-47]).

Lemma 2.10. Let $j, k \in \mathbb{N}, x_{1}, \ldots, x_{j+k}, y_{1}, \ldots, y_{j+k} \in E$ and $\eta_{1}, \ldots, \eta_{k}, \xi_{1}, \ldots, \xi_{k} \in \mathbb{T}$. Then
(i) $\left\|\left(\eta_{1} x_{1}, \ldots, \eta_{k} x_{k}\right),\left(\xi_{1} y_{1}, \ldots, \xi_{k} y_{k}\right)\right\|_{k}=\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}$.
(ii) $\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k} \leq\left\|\left(x_{1}, \ldots, x_{k}, x_{k+1}\right),\left(y_{1}, \ldots, y_{k}, y_{k+1}\right)\right\|_{k+1}$.
(iii) $\left\|\left(x_{1}, \ldots, x_{j}, x_{j+1}, \ldots, x_{j+k}\right),\left(y_{1}, \ldots, y_{j}, y_{j+1}, \ldots, y_{j+k}\right)\right\|_{j+k} \leq\left\|\left(x_{1}, \ldots, x_{j}\right),\left(y_{1}, \ldots, y_{j}\right)\right\|_{j}+$ $\left\|\left(x_{j+1}, \ldots, x_{j+k}\right),\left(y_{j+1}, \ldots, y_{j+k}\right)\right\|_{k}$.
(iv) $\max _{i \in \mathbb{N}_{k}}\left\|x_{i}, y_{i}\right\| \leq\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k} \leq \sum_{i=1}^{k}\left\|x_{i}, y_{i}\right\| \leq \operatorname{kmax}_{i \in \mathbb{N}_{k}}\left\|x_{i}, y_{i}\right\|$.

The last part of the above lemma guides us to the the following result.
Corollary 2.11. Suppose that $\left\{\|., .\|_{k}\right\}_{k \in \mathbb{N}}$ is a family of (dual) multi-generalized 2-norms on $\left\{E^{k}, k \in \mathbb{N}\right\}$, and $\left(E,\|., .\|_{1}\right)$ is a generalized 2-Banach space. Then for each $k \in \mathbb{N},\left(E^{k},\|., .\|_{k}\right)$ is a generalized 2-Banach space, too. In this case, $\left\{\left(E^{k},\|., .\|_{k}\right), k \in \mathbb{N}\right\}$ is called a (dual) multi-generalized 2-Banach space.

Lemma 2.12. Let $\left\{\left(E^{k},\|.,\|_{k}\right), k \in \mathbb{N}\right\}$ be a multi-generalized 2 -normed space and x_{1}, \ldots, x_{k-2}, $x^{\prime}, x^{\prime \prime}, y_{1}, \ldots, y_{k-2}, y^{\prime}, y^{\prime \prime}$ be in E. Then

$$
\left\|\left(X, x^{\prime}, x^{\prime \prime}\right),\left(Y, y^{\prime}, y^{\prime \prime}\right)\right\|_{k} \leq\left\|\left(X, x^{\prime}, x^{\prime \prime}\right),\left(Y, y^{\prime}, y^{\prime}\right)\right\|_{k}+\left\|\left(X, x^{\prime}, x^{\prime \prime}\right),\left(Y, y^{\prime \prime}, y^{\prime \prime}\right)\right\|_{k}
$$

where $X=x_{1}, \ldots, x_{k-2}, Y=y_{1}, \ldots, y_{k-2}$.
Proof. Applying Lemma 2.10 and axiom (MG1), we deduce that

$$
\begin{aligned}
\left\|\left(X, x^{\prime}, x^{\prime \prime}\right),\left(Y, y^{\prime}, y^{\prime \prime}\right)\right\|_{k} & \leq\left\|\left(X, x^{\prime}\right),\left(Y, y^{\prime}\right)\right\|_{k-1}+\left\|x^{\prime \prime}, y^{\prime \prime}\right\| \\
& \leq\left\|\left(X, x^{\prime}, x^{\prime \prime}\right),\left(Y, y^{\prime}, y^{\prime}\right)\right\|_{k}+\left\|\left(x^{\prime \prime}, X, x^{\prime}\right),\left(y^{\prime \prime}, Y, y^{\prime \prime}\right)\right\|_{k} \\
& =\left\|\left(X, x^{\prime}, x^{\prime \prime}\right),\left(Y, y^{\prime}, y^{\prime}\right)\right\|_{k}+\left\|\left(X, x^{\prime}, x^{\prime \prime}\right),\left(Y, y^{\prime \prime}, y^{\prime \prime}\right)\right\|_{k}
\end{aligned}
$$

Therefore we get the desired result.
The following lemma is a version of [5, Lemma 2.16] in the framework of multi-generalized 2-normed spaces.
Lemma 2.13. Let $\left\{\left(E^{k},\|.,\|_{k}\right), k \in \mathbb{N}\right\}$ be a multi-generalized 2-normed space, $x=\left(x_{1}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, \ldots, y_{k}\right)$ be in $E^{k}, x_{k+1}, x_{k+2}, y_{k+1}, y_{k+2}$ be in E and $a, b, p, q \in[0,1]$ with $a+b=1, p+q=1$. Then

$$
\begin{aligned}
& \left\|\left(x, a x_{k+1}+b x_{k+2}, a x_{k+1}+b x_{k+2}\right),\left(y, p y_{k+1}+q y_{k+2}, p y_{k+1}+q y_{k+2}\right)\right\|_{k+2} \\
& \leq\left\|X,\left(y, y_{k+1}, y_{k+1}\right)\right\|_{k+2}+\left\|X,\left(y, y_{k+2}, y_{k+2}\right)\right\|_{k+2}
\end{aligned}
$$

where $X=\left(x_{1}, \ldots, x_{k+2}\right)$.
Proof. We have $\left(x, a x_{k+1}+b x_{k+2}, a x_{k+1}+b x_{k+2}\right)=a^{2}\left(x, x_{k+1}, x_{k+1}\right)+a b\left(x, x_{k+1}, x_{k+2}\right)+a b\left(x, x_{k+2}, x_{k+1}\right)+b^{2}\left(x, x_{k+2}, x_{k+2}\right)$. Similar relation holds when $x, x_{k+1}, x_{k+2}, a, b$ substitute with $y, y_{k+1}, y_{k+2}, p, q$, respectively. Applying Lemmata 2.10 and 2.12 and also axiom (MG1), it follows that

$$
\begin{aligned}
& \left\|\left(x, a x_{k+1}+b x_{k+2}, a x_{k+1}+b x_{k+2}\right),\left(y, p y_{k+1}+q y_{k+2}, p y_{k+1}+q y_{k+2}\right)\right\|_{k+2} \\
& \leq(a+b)^{2}\left\|\left(x, x_{k+1}, x_{k+2}\right),\left(y, p y_{k+1}+q y_{k+2}, p y_{k+1}+q y_{k+2}\right)\right\|_{k+2} \\
& =\left\|X, p^{2}\left(y, y_{k+1}, y_{k+1}\right)+p q\left(y, y_{k+1}, y_{k+2}\right)+p q\left(y, y_{k+2}, y_{k+1}\right)+q^{2}\left(y, y_{k+2}, y_{k+2}\right)\right\|_{k+2} \\
& \leq p^{2}\left\|X,\left(y, y_{k+1}, y_{k+1}\right)\right\|_{k+2}+2 p q\left\|X,\left(y, y_{k+1}, y_{k+1}\right)\right\|_{k+2} \\
& +2 p q\left\|X,\left(y, y_{k+2}, y_{k+2}\right)\right\|_{k+2}+q^{2}\left\|X,\left(y, y_{k+2}, y_{k+2}\right)\right\|_{k+2} \\
& =\left(p^{2}+2 p q\right)\left\|X,\left(y, y_{k+1}, y_{k+1}\right)\right\|_{k+2}+\left(q^{2}+2 p q\right)\left\|X,\left(y, y_{k+2}, y_{k+2}\right)\right\|_{k+2} \\
& \leq(p+q)^{2}\left(\left\|X,\left(y, y_{k+1}, y_{k+1}\right)\right\|_{k+2}+\left\|X,\left(y, y_{k+2}, y_{k+2}\right)\right\|_{k+2}\right) \\
& =\left\|X,\left(y, y_{k+1}, y_{k+1}\right)\right\|_{k+2}+\left\|X,\left(y, y_{k+2}, y_{k+2}\right)\right\|_{k+2} .
\end{aligned}
$$

Note that the the second inequality in the above relation holds by Lemma 2.12. So the proof is complete.

By slightly modification in the proof of [5, Lemmata 2.19, 2.22], and using Lemma 2.10, one gets the following proposition.
Proposition 2.14. Let $\left\{\left(E^{k},\|.,\|_{k}\right), k \in \mathbb{N}\right\}$ be a dual multi-generalized 2-normed space and k^{\prime} and n be arbitrary fixed elements in \mathbb{N}. Then for each $x_{1}, \ldots, x_{k^{\prime}+n}, y_{1}, \ldots, y_{k^{\prime}+1} \in E$, we have
(i) $\left\|\left(x_{1}, \ldots, x_{k^{\prime}}, x_{k^{\prime}+1}+x_{k^{\prime}+2}+\ldots+x_{k^{\prime}+n}\right),\left(y_{1}, \ldots, y_{k^{\prime}}, y_{k^{\prime}+1}\right)\right\|_{k^{\prime}+1}$

$$
\leq\left\|\left(x_{1}, \ldots, x_{k^{\prime}}, x_{k^{\prime}+1}, \ldots, x_{k^{\prime}+n}\right),\left(y_{1}, \ldots, y_{k^{\prime}}, y_{k^{\prime}+1}, \ldots, y_{k^{\prime}+1}\right)\right\|_{k^{\prime}+n} .
$$

(ii) $\left\|\left(x_{1}, \ldots, x_{k^{\prime}-2}, x_{k^{\prime}-1}+x_{k^{\prime}}\right),\left(y_{1}, \ldots, y_{k^{\prime}-2}, y_{k^{\prime}-1}+y_{k^{\prime}}\right)\right\|_{k^{\prime}-1}$

$$
\begin{aligned}
\leq & \left\|\left(x_{1}, \ldots, x_{k^{\prime}-2}, x_{k^{\prime}-1}, x_{k^{\prime}}\right),\left(\alpha_{1} y_{1}, \ldots, \alpha_{k^{\prime}-2} y_{k^{\prime}-2}, y_{k^{\prime}-1}, y_{k^{\prime}-1}\right)\right\|_{k^{\prime}} \\
& +\left\|\left(x_{1}, \ldots, x_{k^{\prime}-2}, x_{k^{\prime}-1}, x_{k^{\prime}}\right),\left(\beta_{1} y_{1}, \ldots, \beta_{k^{\prime}-2} y_{k^{\prime}-2}, y_{k^{\prime}}, y_{k^{\prime}}\right)\right\|_{k^{\prime}},
\end{aligned}
$$

where $\alpha_{i}, \beta_{i} \geq 0$ and $\alpha_{i}+\beta_{i}=1$, for each $i \in \mathbb{N}_{k^{\prime}-2}$.
(iii) $\sup \left\{\left\|\left(\xi_{1} x_{1}+\xi_{2} x_{2}+\ldots+\xi_{k^{\prime}} x_{k^{\prime}}\right),\left(\eta_{1} y_{1}+\ldots+\eta_{k^{\prime}} y_{k^{\prime}}\right)\right\|, \xi_{1}, \ldots, \xi_{k^{\prime}}, \eta_{1}, \ldots, \eta_{k^{\prime}} \in \mathbb{T}\right\}$

$$
\leq\left\|\left(x_{1}, \ldots, x_{k^{\prime}}\right),\left(y_{1}, \ldots, y_{1}\right)\right\|_{k^{\prime}}+\left\|\left(x_{1}, \ldots, x_{k^{\prime}}\right),\left(y_{2}, \ldots, y_{2}\right)\right\|_{k^{\prime}}+\ldots+\left\|\left(x_{1}, \ldots, x_{k^{\prime}}\right),\left(y_{k^{\prime}}, \ldots, y_{k^{\prime}}\right)\right\|_{k^{\prime}}
$$

(iv) $\left\|\left(\alpha_{1} x, \ldots, \alpha_{k} x\right),(y, \ldots, y)\right\|_{k}=\sum_{i=1}^{k} \mid \alpha_{i}\|x, y\|$, where $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{C}$ and $x, y \in E$.

3. Main Result

We are now in a position to state the main result of this note which is a version of [5, Proposition 2.7] in the framework of (dual) multi-generalized 2-normed spaces. We bring this result in two cases multi- and dual multi-generalized 2-normed spaces separately, because of avoiding long proof.
Theorem 3.1. Let $(E,\|.,\|$.$) be a generalized 2-normed space. Let \left\{\|., .\|_{k}\right\}_{k \in \mathbb{N}}$ be a sequence such that $\|., .\|_{k}$ is a generalized 2 -norm on E^{k} for each $k \in \mathbb{N}$ and $\|x, y\|_{1}=\|x, y\|$ for all $x, y \in E$. Also axioms (MG1), (MG2) and (MG4) are satisfied for each $k \in \mathbb{N}$. Then $\left\{\|., .\|_{k}\right\}_{k \in \mathbb{N}}$ is a multi-generalized 2 -norm on $\left\{E^{k}, k \in \mathbb{N}\right\}$.
Proof. By Definition 2.1, it is enough to show that axiom (MG3) holds. For, let $k \in \mathbb{N}, x=\left(x_{1}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, \ldots, y_{k}\right)$ be in E^{k} such that $\|x, y\|_{k}=1$. Set $\alpha=\left\|\left(x_{1}, \ldots, x_{k}, 0\right),\left(y_{1}, \ldots, y_{k}, 0\right)\right\|_{k+1}$, so that $\alpha \leq 1$. Indeed, by axioms (MG2) and (MG4), we have

$$
\begin{aligned}
\alpha & =\left\|M_{(1, \ldots, 1,0)}\left(x_{1}, \ldots, x_{k}, x_{k}\right), M_{(1, \ldots, 1,0)}\left(y_{1}, \ldots, y_{k}, y_{k}\right)\right\|_{k+1} \\
& \leq\left\|\left(x_{1}, \ldots, x_{k}, x_{k}\right),\left(y_{1}, \ldots, y_{k}, y_{k}\right)\right\|_{k+1} \\
& =\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k} \\
& =1 .
\end{aligned}
$$

Let n be any arbitrary fixed element in \mathbb{N}, take $x^{[n+2]}, y^{[n+2]} \in E^{(n+2) k}$, by (MG1), (MG4), $\left\|x^{[n+2]}, y^{[n+2]}\right\|_{(n+2) k}=$ $\|x, y\|_{k}=1(1)$. For $1 \leq i \leq n+2$, let B_{i} be the subset $\{(i-1) k+1, \ldots, i k\}$ of $\mathbb{N}_{(n+2) k}$, and let $Q_{B_{i}}$, be a projection onto the complement of B_{i}. We thus find that $\left\|Q_{B_{i}}\left(x^{[n+2]}\right), Q_{B_{j}}\left(y^{[n+2]}\right)\right\|_{(n+2) k}=\left\|Q_{B_{i} \cup B_{j}}\left(x^{[n+2]}\right), Q_{B_{i} \cup B_{j}}\left(y^{[n+2]}\right)\right\|_{(n+2) k}$ (2), by (MG2). Applying again axioms (MG1) and (MG4) we deduce that (2) is equal to α. Further, $\sum_{i=1}^{n+2} Q_{B_{i}}\left(x^{[n+2]}\right)=(n+1) x^{[n+2]}$ and $\sum_{j=1}^{n+2} Q_{B_{j}}\left(y^{[n+2]}\right)=(n+1) y^{[n+2]}$ and it follows from (1) that

$$
(n+1)^{2}=(n+1)^{2}\left\|x^{[n+2]}, y^{[n+2]}\right\|_{(n+2) k}
$$

$$
=\left\|(n+1) x^{[n+2]},(n+1) y^{[n+2]}\right\|_{(n+2) k}
$$

$$
\leq \sum_{i, j=1}^{n+2}\left\|Q_{B_{i}}\left(x^{[n+2]}\right), Q_{B_{j}}\left(y^{[n+2]}\right)\right\|_{(n+2) k}
$$

$$
=(n+2)^{2} \alpha
$$

Therefore $\alpha \geq \frac{(n+1)^{2}}{(n+2)^{2}}$. Letting n tends to infinity, we obtain that $\alpha=1$ and our goal is achieved.
Theorem 3.2. Let $(E,\|.,\|$.$) be a generalized 2$-normed space, $\left\{\|., .\|_{k}\right\}_{k \in \mathbb{N}}$ be a sequence such that $\|., .\|_{k}$ be a generalized 2 -norm on E^{k} for each $k \in \mathbb{N}$ and $\|x, y\|_{1}=\|x, y\|$ for each $x, y \in E$. Also (MG1), (MG2) and (DG4) are satisfied for each $k \in \mathbb{N}$. Then $\left\{\|., .\|_{k}\right\}_{k \in \mathbb{N}}$ is a dual multi-generalized 2 -norm on $\left\{E^{k}, k \in \mathbb{N}\right\}$.

Proof. Let $k \in \mathbb{N}$, and $x=\left(x_{1}, \ldots, x_{k}\right), y=\left(y_{1}, \ldots, y_{k}\right)$ be in E^{k}. For convenience, by β we denote the real number $\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}$ and by α the real number $\left\|\left(x_{1}, \ldots, x_{k}, 0\right),\left(y_{1}, \ldots, y_{k}, 0\right)\right\|_{k+1}$. If $\beta=0$, then

$$
\begin{aligned}
0 \leq \alpha & =\left\|\left(x_{1}, \ldots, x_{k}, 0\right),\left(y_{1}, \ldots, y_{k}, 0\right)\right\|_{k+1} \\
& =\left\|M_{(1, \ldots, 1,0)}\left(x_{1}, \ldots, x_{k}, x_{k}\right), M_{(1, \ldots, 1,0)}\left(y_{1}, \ldots, y_{k}, y_{k}\right)\right\|_{k+1} \\
& \leq\left\|\left(x_{1}, \ldots, x_{k}, x_{k}\right),\left(y_{1}, \ldots, y_{k}, y_{k}\right)\right\|_{k+1}(M G 2) \\
& =\left\|\left(x_{1}, \ldots, 2 x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}(D G 4) \\
& \leq 2\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}(M G 2) \\
& =2 \beta=0 .
\end{aligned}
$$

It forces that $\alpha=0$ too. Now assume that β is nonzero and n is an arbitrary fixed element of \mathbb{N}, then $x^{\left[2^{n}\right]}, y^{\left[2^{n}\right]}$ are in $E^{\left(2^{n}\right) k}$ and so by axioms (MG1) and (DG4), $\left\|x^{\left[2^{n}\right]}, y^{\left[2^{n}\right]}\right\|_{\left(2^{n}\right) k}=2^{n} \beta$ (3). For $i=1, \ldots, 2^{n}$, let B_{i} be the subset $\{(i-1) k+1, \ldots, i k\}$ of $\mathbb{N}_{\left(2^{n}\right) k}$, and let $Q_{B_{i}}$ be a projection onto the complement of B_{i}. From (MG2), it yields that $\left\|Q_{B_{i}}\left(x^{\left[2^{n}\right]}\right), Q_{B_{j}}\left(y^{\left[2^{n}\right]}\right)\right\|_{\left(2^{n}\right) k}=\left\|Q_{B_{i} \cup B_{j}}\left(x^{\left[2^{n}\right]}\right), Q_{B_{i} \cup B_{j}}\left(y^{\left[2^{n}\right]}\right)\right\|_{\left(2^{n}\right) k}$ (4).
Using (MG1), (MG2) and (DG4) we deduce that the equality (4) is less than or equal to $2^{n} \alpha$. Further, $\sum_{i=1}^{2^{n}} Q_{B_{i}}\left(x^{\left[2^{2^{n}}\right]}\right)=\left(2^{n}-1\right) x^{\left[2^{2^{n}}\right]}$ and $\sum_{j=1}^{2^{n}} Q_{B_{j}}\left(y^{\left[2^{n}\right]}\right)=\left(2^{n}-1\right) y^{\left[2^{n}\right]}$ and it follows from (3) that

$$
\begin{aligned}
\left(2^{n}-1\right)^{2} & =\frac{\left(2^{n}-1\right)^{2}\left\|x^{\left[2^{n}\right]}, y^{\left[2^{n}\right]}\right\|_{\left(2^{n}\right) k}^{2^{n} \beta}}{} \\
& =\frac{\left\|\left(2^{n}-1\right) x^{\left[2^{n}\right]},\left(2^{n}-1\right) y^{\left[2^{n}\right]}\right\|_{\left(2^{n}\right) k}}{2^{n} \beta} \\
& =\frac{\left\|\sum_{i=1}^{2^{n}} Q_{B_{i}}\left(x^{\left[2^{n}\right]}\right), \sum_{j=1}^{2^{n}} Q_{B_{j}}\left(y^{\left[2^{n}\right]}\right)\right\|_{\left(2^{n}\right) k}}{2^{n} \beta} \\
& \leq \frac{\sum_{i, j=1}^{2^{n}}\left\|Q_{B_{i}}\left(x^{\left[2^{n}\right]}\right), Q_{B_{j}}\left(y^{\left[2^{\left.n^{n}\right]}\right)}\right)\right\|_{\left(2^{n}\right) k}}{2^{n} \beta} \\
& \leq \frac{\left(2^{n}\right)^{2} 2^{n} \alpha}{2^{n} \beta} \\
& =\frac{\left(2^{n}\right)^{2} \alpha}{\beta}
\end{aligned}
$$

Therefore $\alpha \geq \frac{\left(2^{n}-1\right)^{2} \beta}{\left(2^{n}\right)^{2}}$. Since this is true for any n, so letting $n \rightarrow \infty$, then $\alpha \geq \beta$.
For the reverse direction assume that $x=\left(x_{1}, \ldots, x_{k}, 0\right)$ and $y=\left(y_{1}, \ldots, y_{k}, 0\right)$. Then $\left\|x^{\left[2^{n}\right]}, y^{\left[2^{n}\right]}\right\|_{2^{n}(k+1)}=2^{n} \alpha$. For $i=1, \ldots, 2^{n}$, let $C_{i}=\{i(k+1)-k, \ldots, i(k+1)\}$ and let $Q_{C_{i}}$ be a projection onto the complement of C_{i}. Next, put
$X_{1}=\left(x_{1}, \ldots, x_{k}, \ldots, x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)$,
$Y_{1}=\left(y_{1}, \ldots, y_{k}, \ldots, y_{1}, \ldots, y_{k}, 0, \ldots, 0\right)$,
where the number of repetitions of each item x_{i} and $y_{i}, i=1, \ldots, k$ is $2^{n}-2$ and also zero has repeated $\left(2^{n}-2\right)+2(k+1)$ times in each of X_{1} and Y_{1}.
$X_{2}=\left(x_{1}, \ldots, x_{k}, \ldots, x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)$,
$Y_{2}=\left(y_{1}, \ldots, y_{k}, \ldots, y_{1}, \ldots, y_{k}, 0, \ldots, 0\right)$,
where the number of repetitions of each item x_{i} and $y_{i}, i=1, \ldots, k$ is $2^{n}-2$ and also zero has repeated $2 k$ times in each of X_{2} and Y_{2}.
Finally, set $\gamma=(1, \ldots, 1,0, \ldots, 0)$, where 1 has repeated $\left(2^{n}-2\right) k$ times and zero has repeated $2 k$ times. Then

$$
\begin{aligned}
\left\|Q_{C_{i}}\left(x^{\left[2^{n}\right]}\right), Q_{C_{j}}\left(y^{\left[2^{n}\right]}\right)\right\|_{2^{n}(k+1)} & =\left\|Q_{C_{i} \cup C_{j}}\left(x^{\left[2^{n}\right]}\right), Q_{C_{i} \cup C_{j}}\left(y^{\left[2^{n}\right]}\right)\right\|_{2^{n}(k+1)} \\
& =\left\|X_{1}, Y_{1}\right\|_{2^{n}(k+1)} \\
& =\left\|X_{2}, Y_{2}\right\|_{2^{n} k} \\
& =\left\|M_{\gamma} x^{\left[2^{n}\right]}, M_{\gamma} y^{\left[2^{n}\right]}\right\|_{2^{n} k} \\
& \leq 2^{n} \beta . \quad(\text { by }(\mathrm{MG} 2))
\end{aligned}
$$

It is easily verified that $\sum_{i=1}^{2^{n}} Q_{C_{i}}\left(x^{\left[2^{n}\right]}\right)=\left(2^{n}-1\right) x^{\left[2^{n}\right]}$ and $\sum_{j=1}^{2^{n}} Q_{C_{j}}\left(y^{\left[2^{n}\right]}\right)=\left(2^{n}-1\right) y^{\left[2^{n}\right]}$. It follows that

$$
\begin{aligned}
\left(2^{n}-1\right)^{2} & =\frac{\left\|\left(2^{n}-1\right) x^{\left[2^{n}\right]},\left(2^{n}-1\right) y^{\left[2^{n}\right]}\right\|_{2^{n}(k+1)}}{2^{n} \alpha} \\
& =\frac{\left\|\sum_{i=1}^{2^{n}} Q_{C_{i}}\left(x^{\left[2^{n}\right]}\right), \sum_{j=1}^{2^{n}} Q_{C_{j}}\left(y^{\left[2^{n}\right]}\right)\right\|_{2^{n}(k+1)}}{2^{n} \alpha} \\
& \leq \frac{\sum_{i, j=1}^{2^{n}}\left\|Q_{C_{i}}\left(x^{\left[2^{n}\right]}\right), Q_{C_{j}}\left(y^{\left[2^{n}\right]}\right)\right\|_{2^{n}(k+1)}}{2^{n} \alpha} \\
& \leq \frac{\left(2^{n}\right)^{2} 2^{n} \beta}{2^{n} \alpha} .
\end{aligned}
$$

Hence, $\alpha \leq \frac{2^{2 n}}{\left(2^{n}-1\right)^{2}} \beta$. Letting $n \rightarrow \infty$, we conclude that $\alpha \leq \beta$. Therefore $\alpha=\beta$ and so we get our desired result.

4. Application

In this section we give an application of multi-generalized 2-normed spaces. For this purpose, it is convenient to make a few observation about H^{*}-algebras (see [2]).
Definition 4.1. An H^{*}-algebra, introduced by W. Ambrose [2] in the associative case, is a Banach algebra A, satisfying the following conditions:
(i) A is itself a Hilbert space under an inner product $\langle.,$.$\rangle ;$
(ii) For each a in A there is an element a^{*} in A, the so-called adjoint of a, such that we have both $\langle a b, c\rangle=\left\langle b, a^{*} c\right\rangle$ and $\langle a b, c\rangle=\left\langle a, c b^{*}\right\rangle$ for all $b, c \in A$. Recall that $A_{0}=\{a \in A, a A=\{0\}\}=\{a \in A: A a=\{0\}\}$ is called the annihilator ideal of A. A proper H^{*}-algebra is an H^{*}-algebra with zero annihilator ideal. Ambrose proved that an H^{*}-algebra is proper if and only if every element has a unique adjoint. The trace-class $\tau(A)$ of A is defined by the set $\tau(A)=\{a b, a, b \in A\}$. The trace functional tr on $\tau(A)$ is defined by $\operatorname{tr}(a b)=\left\langle a, b^{*}\right\rangle=\left\langle b, a^{*}\right\rangle=\operatorname{tr}(b a)$ for each $a, b \in A$, in particular $\operatorname{tr}\left(a a^{*}\right)=\langle a, a\rangle=\|a\|^{2}$, for all $a \in A$. A nonzero element $e \in A$ is called a projection, if it is self-adjoint and idempotent. In addition, if e $A e=\mathbb{C}$ e, then it is called a minimal projection. For example each simple H^{*}-algebra (an H^{*}-algebra without nontrivial closed two-sided ideals) contains minimal projections. Two idempotents e and e^{\prime} are doubly orthogonal if $\left\langle e, e^{\prime}\right\rangle=0$ and $e e^{\prime}=e^{\prime} e=0$. Suppose that e is a minimal projection in a commutative, proper H^{*}-algebra A, then $A e=e A e=\mathbb{C} e$. Recall that if $\left\{e_{i}\right\}_{i \in I}$ is a maximal family of doubly orthogonal minimal projections in a proper H^{*}-algebra A, then A is the direct sum of the minimal left ideals $A e_{i}$ or the minimal right ideals $e_{i} A[2$, Theorem 4.1]. If M is a subset of an H^{*}-algebra A, then we mean by M^{\perp} the orthogonal complement of M. For more details on H^{*}-algebras, see $[4,19]$ and references cited therein.

Example 4.2. Let $(E,\|\|$.$) be an H^{*}$-algebra. We know that $E^{k}(k \in \mathbb{N})$ is an H^{*}-algebra where the linear operations are considered componentwise and moreover $\left\langle\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\rangle=\sum_{i=1}^{k}\left\langle x_{i}, y_{i}\right\rangle,\left(x_{1}, \ldots, x_{k}\right)^{*}=\left(x_{1}^{*}, \ldots, x_{k}^{*}\right)$. Define a generalized 2-norm on E^{k} by setting
$\left\|\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}=\sum_{i=1}^{k}\left|\left\langle x_{i}, y_{i}\right\rangle\right|$. Then $\left\{\left(E^{k},\|., .\|_{k}\right), k \in \mathbb{N}\right\}$ is a dual multi-generalized 2 -normed space. Furthermore we can improve the axiom (MG3) as follow:
$\left(M G^{\prime} 3\right)$ Let $(E,\|\cdot\|)$ be a proper commutative H^{*}-algebra, $\left\{e_{i}\right\}_{i \in I}$ be a maximal family of doubly orthogonal minimal projections in E, and $\left\{\left(E^{k},\|,, .\|_{k}\right), k \in \mathbb{N}\right\}$ be the dual multi-generalized 2 -normed space as the above example. For each $x=\left(x_{1}, \ldots, x_{k-1}, x_{k}\right)$ and $y=\left(y_{1}, \ldots, y_{k-1}, y_{k}\right)$ in E^{k}, if $x_{k} y_{k}=0$, then

$$
\left\|\left(x_{1}, \ldots, x_{k-1}, x_{k}\right),\left(y_{1}, \ldots, y_{k-1}, y_{k}\right)\right\|_{k}=\left\|\left(x_{1}, \ldots, x_{k-1}\right),\left(y_{1}, \ldots, y_{k-1}\right)\right\|_{k-1}
$$

The last equality is true by the definition of $\|., .\|_{k}$ and the equality $\left|\left\langle x_{k}, y_{k}\right\rangle\right|=\operatorname{tr}\left(x_{k} y_{k}^{*}\right)=0$. Note that if $y_{k}=\sum_{i} \lambda_{i} e_{i}$ $\left(\lambda_{i} \in \mathbb{C}\right)$, then $y_{k}^{*}=\sum_{i} \bar{\lambda}_{i} e_{i}$. By virtue of this fact one can see that $x_{k} y_{k}^{*}=0$ too.

Definition 4.3. Let $(E,\|\cdot\|)$ be a proper commutative H^{*}-algebra, $\left\{e_{i}\right\}_{i \in I}$ be a maximal family of doubly orthogonal minimal projections in E, and x be an arbitrary element in E. The least ideal of E containing x, is called x-ideal of E and it is denoted by I_{x}. Now if $x=\sum_{i} \lambda_{i} e_{i}$ for some $\lambda_{i} \in \mathbb{C}$, then clearly I_{x} generated by $e_{i} s^{\prime}$ with nonzero coefficient which appear in the expansion of x in terms of $\left\{e_{i}\right\}_{i \in I}$.

Theorem 4.4. Suppose that $(E,\|\cdot\|)$ is a commutative proper H^{*}-algebra, $\left\{\left(E^{k},\|,,\|_{k}\right), k \in \mathbb{N}\right\}$ is the dual multigeneralized 2-normed space as Example 4.2, and $k \in \mathbb{N}$. Let $x=\left(x_{1}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, \ldots, y_{k}\right)$ be in E^{k}.
(i) If there is at least $i \in \mathbb{N}_{k}$ in which $x_{i} y_{i} \neq 0$ and $I_{x_{i}}$ or $I_{y_{i}}$ is not the whole of E, then there exists $k_{0} \in \mathbb{N}_{k}$ and a nonzero element $z=\left(z_{1}, \ldots, z_{k_{0}}\right) \in E^{k_{0}}$ with $z_{i} \neq x_{i}, y_{i},\left(i=1, \ldots, k_{0}\right)$ and $\left\|\left(x_{1} z_{1}, \ldots, x_{k} z_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right\|_{k}=$ $\left\|\left(x_{1} z_{1}, \ldots, x_{k_{0}} z_{k_{0}}\right),\left(y_{1}, \ldots, y_{k_{0}}\right)\right\|_{k_{0}}=0$ (5).
(ii) If $\sum_{\sum_{i=1}^{k} x_{i}}$ or $I_{\sum_{i=1}^{k} y_{i}}$ are not equal whole of E, then we can select equal components for z in the preceding part.

Proof. (i) By (MG1) and (MG'3), there exists $k_{0} \in \mathbb{N}_{k}$ such that $\|\left(x_{1}, \ldots, x_{k_{0}}, \ldots, x_{k}\right)$,
$\left(y_{1}, \ldots, y_{k_{0}}, \ldots, y_{k}\right)\left\|_{k}=\right\|\left(x_{1}, \ldots, x_{k_{0}}\right),\left(y_{1}, \ldots, y_{k_{0}}\right) \|_{k_{0}}$ and $x_{i} y_{i} \neq 0\left(i=1, \ldots k_{0}\right)$. Now if by assumption $I_{x_{i}}{ }^{\perp} \cup I_{y_{i}}{ }^{\perp} \neq$ $\{0\}$ for some $i=1, \ldots k_{0}$, then it suffices to take z_{i} any nonzero element of this set, otherwise get $z_{i}=0$. Clearly in the first case $\left|\left\langle x_{i} z_{i}, y_{i}\right\rangle\right|=0$, since if $z_{i} \in I_{x_{i}}{ }^{\perp}$, then $z_{i} x_{i} \in I_{x_{i}} \cap I_{x_{i}}{ }^{\perp}=\{0\}$ and if $z_{i} \in I_{y_{i}}{ }^{\perp}$ then $\left\langle x_{i} z_{i}, y_{i}\right\rangle=\left\langle x_{i}, y_{i} z_{i}^{*}\right\rangle=0$, the last equality holds by virtue of the fact that $I_{y_{i}}{ }^{\perp}$ is a self adjoint ideal and $y_{i} z_{i}^{*} \in I_{y_{i}} \cap I_{y_{i}}{ }^{\perp}=\{0\}$. Take $z=\left(z_{1}, \ldots, z_{k_{0}}\right) \in E^{k_{0}}$, by the above results z is nonzero and also fulfills condition (5). Next we are going to show the $z_{i} \neq x_{i}, y_{i}$ for $i=1, \ldots, k_{0}$. This is obvious if $z_{i}=0$ (note that x_{i} and y_{i} are nonzero for each $i=1, \ldots k_{0}$). In the case that z_{i} is nonzero, first let $z_{i} \in I_{x_{i}}{ }^{\perp}$. Then $z_{i} \neq x_{i}$ and $x_{i} y_{i} \neq 0$ implies that y_{i} does not belong to $I_{x_{i}}{ }^{\perp}$, so $z_{i} \neq y_{i}$. A similar argument shows that $z_{i} \neq x_{i}, y_{i}$, if $z_{i} \in I_{y_{i}}{ }^{\perp}$.
(ii) It is enough to get $z_{i}^{\prime} s\left(i=1, \ldots, k_{0}\right)$ equal to an arbitrary element of $\left(I_{\sum_{i=1}^{k} x_{i}}\right)^{\perp} \cup\left(I_{\sum_{i=1}^{k} y_{i}}\right)^{\perp}$. Evidently $I_{\sum_{i=1}^{k} x_{i}}$ is the ideal generated by all minimal projections e_{i} 's that appear in the expansion $x_{i} s^{\prime}(i=1, \ldots, k)$ with nonzero coefficients. This fact causes that $I_{x_{i}} \subseteq I_{\sum_{i=1}^{k} x_{i}}$. Thus the result follows by the preceding part.

References

[1] M. Abrishami Moghaddam, T. Sistani, Best approximation in quotient generalized 2-normed spaces, Journal of Applied Sciences 11(16) (2011) 3039-3043.
[2] W. Ambrose, Structure theorems for a special class of Banach algebras, Transactions of the American Mathematical Society 57 (1945) 364-386.
[3] M. Açikgöz, ε-Approximation in generalized 2-normed spaces, Matematički Vesnik 61 (2009) 159-163.
[4] V. K. Balachandran, N. Swaminathan, Real H^{*} - algebras, Journal of Functional Analysis 65, no. 1 (1986) 64-75.
[5] H. G. Dales, M. E. Polyakov, Multi-normed space, Preprint 2012.
[6] H. G. Dales, M. S. Moslehian, Stability of mappings on multi-normed spaces, Glasgow Mathematical Journal 49 (2007) 321-332.
[7] S. Gähler, Linear 2-normierte Räume, Mathematische Nachrichten 28 (1964) 1-43.
[8] M. Khanehgir, M. Amyari, M. Moradian Khibary, Pullback diagram of H^{*}-algebras, Turkish Journal of Mathematics 38 (2014) 318-324.
[9] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Glasnik Matematicki 39(59) (2004) 303-314.
[10] Z. Lewandowska, Generalized 2-normed spaces, Slupskie Prace Matematyczno-Fizyczne 1 (2001) 33-40.
[11] Z. Lewandowska, M. S. Moslehian, Hahn-Banach theorem in generalized 2-normed spaces, Communications in Mathematical Analysis 1, no. 2 (2006) 109-113.
[12] Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bulletin mathímatiques de la Socit́des sciences mathmatiques de Roumanie 42(90), no. 4 (1999) 353-368.
[13] M. S. Moslehian, K. Nikodem, D. Popa, Asymptotic aspect of the quadratic functional equation in multi-normed spaces, Journal of Mathematical Analysis and Applications 355 (2009) 717-724.
[14] M. S. Moslehian, Superstability of higher derivations in multi-Banach algebras, Tamsui Oxford Journal of Information and Mathematical Sciences 24(4) (2008) 417-427.
[15] M. S. Moslehian, H. M. Srivastava, Jensen's functional equation in multi-normed spaces, Taiwanese Journal of Mathematics 14, no. 2 (2010) 453-462.
[16] Sh. Rezapour, Quasi-Chebyshew subspaces in generalized 2-normed spaces, International journal of pure and applied mathematical sciences 2, no. 1 (2005) 53-61.
[17] Sh. Rezapour, I. Kupka, 1-Type Lipschitz selections in generalized 2-normed spaces, Analysis in Theory and Applications 24 no. 3 (2008) 205-210.
[18] A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese Journal of Mathematics 11, no. 5 (2007) 1477-1484.
[19] P. P. Saworotnow, J. C. Friedell, Trace-class for an arbitrary H*-algebra, Proceedings of the American Mathematical Society 26 (1970) 95-100.

[^0]: 2010 Mathematics Subject Classification. Primary 43A10; Secondary 43A20, 46A32
 Keywords. Generalized 2-normed space, (dual) multi-normed space, (dual) multi-generalized 2-norm, special generalized 2-norm.
 Received: 15 January 2015; Accepted: 28 August 2016
 Communicated by Dragan S. Djordjević
 Email addresses: khanehgir@mshdiau. ac.ir (Mahnaz Khanehgir), MMkh926@gmail.com (Marzieh Moradian Khibary), firozehasanvand@yahoo.com (Firoozeh Hasanvand), modabber@iauqeshm. ac.ir (Ahmad Modabber)

