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Abstract. In this paper, we consider the problem of inserting semi-continuous function above the (gen-
eralized) real-valued function in a monotone fashion. We provide some characterizations of stratifiable
spaces, semi-stratifiable spaces, and k-monotonically countably metacompact spaces (k-MCM) and so on.
It is established that:

(1) A space X is k-MCM if and only if for each locally bounded real-valued function h : X→ R, there exists a lower
semi-continuous and k-upper semi-continuous function h′ : X → R such that (i) |h| ≤ h′; (ii) h′1 ≤ h′2 whenever
|h1| ≤ |h2|.

(2) A space X is stratifiable if and only if for each function h : X → R∗ (R∗ is the generalized real number set), there
is a lower semi-continuous function h′ : X→ R∗ such that (i) h′ is locally bounded at each x ∈ Uh with respect to
R, where Uh = {x ∈ X : h is locally bounded at x with respect to R}; (ii) |h| ≤ h′; (iii) h′1 ≤ h′2 whenever |h1| ≤ |h2|.

We give a negative answer to the problem posed by K.D. Li [14].

1. Introduction

People have extensively investigated a problem for a given pair of real-valued (non-continuous) func-
tions (1, h) on a space X and 1 ≤ h (1(x) ≤ h(x) for each x ∈ X ) under what conditions there exists a
continuous function f such that 1 ≤ f ≤ h since the 1920’s. H. Hahn [8] first considered the particular case
in which 1 is upper semi-continuous and h is lower-continuous. Many so called insertion results present
some classic characterizations of topological spaces, such as normal spaces, stratifiable spaces and others.

M. Katětov [11] and H. Tong [21] independently proved that a space X is normal if and only if, given
an upper semi-continuous function 1 : X → R and lower semi-continuous h : X → R with 1 ≤ h, there
is a continuous function f : X → R, such that 1 ≤ f ≤ h. C.H. Dowker [3] proved that a space X is
normal and countably paracompact if and only if, for each upper semi-continuous function 1 : X → R
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and lower semi-continuous h : X → R with 1 < h, there is a continuous function f : X → R, such that
1 < f < h. E. Michael [17] gave the necessary and sufficient condition for perfectly normal spaces as follows:
a space X is perfectly normal if and only if, given an upper semi-continuous function 1 : X→ R and lower
semi-continuous h : X → R with 1 ≤ h, there is a continuous function f : X → R, such that 1 ≤ f ≤ h
and 1(x) < f (x) < f (x) whenever 1(x) < h(x). A stratifiable space can be seen as a monotonic version of
a perfectly normal space. P. Nyikos and C. Pan [13] gave a characterization of stratifiable spaces by the
monotonizations of the Michael insertion properties: a space X is stratifiable if and only if, for an upper
semi-continuous function 1 : X→ R and lower semi-continuous h : X→ Rwith 1 ≤ h, there is a continuous
function f : X → R, such that 1 ≤ f ≤ h, 1(x) < f (x) < f (x) whenever 1(x) < h(x) and f1 ≤ f2 whenever
11 ≤ 12 and h1 ≤ h2. C. Good and I. Stares [7] proved that the monotonized version of Dowker’s insertion
property characterized stratifiability.

A space is countably paracompact (countably metacompact) if every countable open cover has a locally
finite (point finite) open refinement. C. Good, R. Knight and I. Stares [6] and C. Pan [18] introduced a
monotone version of countably paracompact spaces closely related to stratifiabilty, called monotonically
countably paracompact spaces (MCP) and monotonically cp-spaces, respectively, and it was proved in [6,
Proposition 14] that both these notions are equivalent.

Definition 1.1. [6] A space X is said to be monotonically countably metacompact (MCM) if there is an operator
U assigning to each decreasing sequence (D j) j∈N of closed sets with empty intersection, a sequence of open sets
U((D j)) = (U(n, (D j)))n∈N such that

(1) Dn ⊆ U(n, (D j)) for each n ∈N;
(2)
⋂

n∈NU(n, (D j)) = ∅;
(3) given two decreasing sequences of closed sets (F j) j∈N and (E j) j∈N such that Fn ⊆ En for each n ∈ N, then

U(n, (F j)) ⊆ U(n, (E j)) for each n ∈N.

X is said to be monotonically countably paracompact (MCP) if, in addition,
(2′)
⋂

n∈NU(n, (D j)) = ∅.

J. Mack [16] characterized countably paracompact spaces with locally bounded real-valued functions as
follows:

Theorem 1.2. [16] A space X is countably paracompact if and only if for each locally bounded function h : X → R
there exists a locally bounded lower semi-continuous function 1 : X→ R such that |h| ≤ 1.

Inspired by those results, C. Good, R. Knight and I. Stares [6] characterized monotonically countably
paracompact spaces by the monotone insertions of semi-continuous functions as follows:

Theorem 1.3. [6] The following are equivalent for a space X:

(1) X is MCP,
(2) for every locally bounded real-valued function h on X, there is a locally bounded, lower semi-continuous,

real-valued 1(h) such that 1(h) ≥ |h| and such that 1(h) ≤ 1(h′) whenever |h| ≤ |h′|.

C. Good, R. Knight and I. Stares proved in [6] that the MCM spaces are equivalent to β spaces. L.S. Wu
[22] introduced a subclass of β spaces, i.e., kβ spaces. L.X.Peng and S.Lin [19] proved that a MCM space
added another condition (for every compact subsets K of X, there exists m ∈ N such that U(m,F j) ∩ K = ∅)
is kβ spaces, and they renamed kβ spaces as k-MCM. D.L. Lutzer [15] introduced a subclass of stratifiable
spaces, i.e., k-semistratifiable spaces with the additional condition that for every compact set K of X, if
K∩ F = ∅, there exists n ∈N such that K∩U(n,F) = ∅. P.F. Yan and E.G. Yang ([28] Theorem 3.4) have given
the characterizations of k-semistratifiable spaces by the monotone insertion of semi-continuous functions.

Question 1.4. Do the k-MCM spaces have the properties similar to Theorem 1.3?
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In this paper, we give the characterization of k-MCM spaces by inserting semi-continuous functions
above the locally bounded real-valued functions in a monotone fashion.

C. Good and L. Haynes [5] gave a definition that a space X is said to be δ-stratifiable, if there is an operator
U assigning to each regular Gδ-set F in X, a sequence of open sets U(F) = (U(n,F))n∈N such that (i) F ⊆ U(n,F)
for each n ∈N; (ii) if D ⊆ F, then U(n,D) ⊆ U(n,F) for each n ∈N; (iii)

⋂
n∈NU(n,F) =

⋂
n∈NU(n,F) = F. It is

a generalization of stratifiable spaces. Characterizations of semistratifiable spaces by monotone insertions
of semi-continuous functions are also given in [28]. This inspires K.D. Li [14] asked whether the δ-stratifiable
spaces have the similar properties.

Question 1.5. [14] If a space X is δ-stratifiable, is there an order-preserving map ϕ : USC(X)→ LSC(X) such that
for any h ∈ USC(X), 0 ≤ ϕ(h) ≤ h and 0 < ϕ(h)(x) < h(x) whenever h(x) > 0 ?

One of the purposes of this paper is to attempt to give a negative answer to this question and construct
a counter example.

The MCM (MCP) spaces can be seen as the real generalizations of semistratifiable (stratifiable) spaces.
The semistratifiable (stratifiable) spaces are monotone versions of perfect (perfectly normal) spaces. Study-
ing of Theorem 1.3 leads to the following question:

Question 1.6. Do the stratifiable spaces, semistratifiable spaces and k-semistratifiable spaces have the properties
similar to Theorem 1.3?

In this article, we present some conditions similar to Theorem 1.3 and characterize the semistratifiable
spaces and stratifiable spaces by means of inserting the semi-continuous functions and locally bounded
functions with respect to R∗ above the generalize real-valued functions in a monotone fashion.

2. Basic Facts and Definitions

In this section, we recall some basic concepts and theorems about the semistratifiable spaces, stratifiable
spaces, k-MCM spaces and k-semistratifiable spaces, which needed in the main results of this paper.

Definition 2.1. [2] A space X is said to be semistratifiable, if there is an operator U assigning to each closed set F a
sequence of open sets U(F) = (U(n,F))n∈N such that

(1) F ⊆ (U(n,F)) for each n ∈N;
(2) if D ⊆ F, then U(n,D) ⊆ U(n,F) for each n ∈N;
(3)
⋂

n∈NU(n,F) = F.

X is said to be stratifiable, if, in addition,
(3′)
⋂

n∈NU(n,F) = F.

Definition 2.2. [19] A space X is said to be k-MCM, if there is a function 1 on X, assigning to each sequence {xn},
a sequence of open sets 1(n, xn) such that if 1(n, xn) ∩ C , ∅ for each n ∈ N and every compact set C on X, then the
sequence {xn} has a cluster point on X.

Definition 2.3. [19] A space X is said to be k-semistratifiable, if there is an operator U assigning to each closed set F
a sequence of open sets U(F) = (U(n,F))n∈N such that

(1) F =
⋂

n∈NU(n,F);
(2) if D ⊆ F, then U(n,D) ⊆ U(n,F) for each n ∈N;
(3) for any compact subset K in X, if F ∩ K = ∅, there is n0 ∈N such that U(n0,F) ∩ K = ∅.
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There are many so called insertion results turning out to provide characterizations of important topo-
logical properties as theorems in [17], [28], and [23]. P.F. Yan and E.G. Yang [28] investigated the relations
between the insertion of semi-continuous functions and perfect structure of spaces. Enlightened by these
theorems, L.H. Xie and P.F. Yan [23] studied the relations between decreasing sequences of sets and inser-
tion of semi-continuous functions, and present some characterizations of countably paracompact spaces
and countably metacompact spaces. They also investigated the sequence of sets with some monotonicity
properties which is equivalent to monotone version of the insertion properties, and obtained some known
topological properties.

Theorem 2.4. [23] For a space X, the following statements are equivalent:

(1) X is semistratifiable (resp. stratifiable);
(2) there is an operator U assigning to each decreasing sequence of closed sets (F j) j∈N, a decreasing sequence of

open sets (U(n, (F j)))n∈N such that
(a) Fn ⊆ U(n, (F j)) for each n ∈N;

(b)
⋂

n∈NU(n, (F j)) =
⋂

n∈N Fn (resp.
⋂

n∈NU(n, (F j)) =
⋂

n∈N Fn);
(c) given two decreasing sequences of closed sets (F j) j∈N and (E j) j∈N such that Fn ⊆ En for each n ∈N, then

U(n, (F j)) ⊆ U(n, (E j)) for each n ∈N.

Theorem 2.5. [28] For a topological space X, the following statements are equivalent:1)

(1) the space X is k-semistratifiable;
(2) there is an operator U assigning to each decreasing sequence of closed sets (F j) j∈N, a decreasing sequence of

open sets (U(n, (F j)))n∈N such that
(i) Fn ⊆ U(n, (F j)) for each n ∈N;

(ii) for any compact subset K in X, if
⋂

n∈ω Fn
⋂

K = ∅, there is n0 ∈ ω such that U(n0, (F j))
⋂

K = ∅;
(iii) given two decreasing sequences of closed sets (F j) and (E j) such that Fn ⊆ En for each n ∈ N, then

U(n, (F j)) ⊆ U(n, (E j)) for each n ∈N.

L.X. Peng and S. Lin [19] have given the characterization of k-MCM space by investigating the decreasing
sequences of closed sets.

Theorem 2.6. [19] For any topological space X, the following statements are equivalent:

(1) X is k-MCM;
(2) there is an operator U assigning to each decreasing sequence of closed sets (F j) j∈N with

⋂
j∈N F j = ∅, a decreasing

sequence of open sets (U(n, (F j)))n∈N such that
(i) Fn ⊆ U(n, (F j)) for each n ∈N;

(ii) given two decreasing sequences of closed sets (F j) j∈N and (E j) j∈N such that Fn ⊆ En for each n ∈ N and
that
⋂

j∈N F j =
⋂

j∈N E j = ∅, then U(n, (F j)) ⊆ U(n, (E j)), for each n ∈N;
(iii) for any compact subset K in X, there is n0 ∈N such that U(n0, (F j)) ∩ K = ∅.

Before stating the main results of this paper, we shall introduce some notions. Throughout this paper,
a space X means a topological space and all spaces in this paper are assumed to be T1. R(X) represents
the set of all real-valued functions on X. A real-valued function f defined on a space X is lower (upper)
semi-continuous if for any real number r, the set {x ∈ X : f (x) > r} (the set {x ∈ X : f (x) < r}) is open. We write
LSC(X) (USC(X)) for the set of all real-valued lower (upper) semi-continuous functions on X into R.

1)E.G. Yang also independently proved this result in [29].
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3. The Characterization of k-MCM Spaces

P.F. Yan and E.G. Yang [28] introduced a concept of k-semi-continuous function to give the characteriza-
tion of k-semistratifiable spaces as follows:

Definition 3.1. [28] A real-valued function f defined on a space X is k-lower (k-upper) semi-continuous if for every
compact set K, f has a minimum (maximum) value on K.

Theorem 3.2. A space X is k-MCM if and only if for each locally bounded real-valued function h : X → R, there
exists a lower semi-continuous and k-upper semi-continuous function h′ : X → R such that (i) |h| ≤ h′; (ii) h′1 ≤ h′2
whenever |h1| ≤ |h2|.

Proof. Suppose that X is k-MCM. Take any locally bounded real-valued function h : X → R. Let Fh
j =

{x ∈ X : |h(x)| ≥ j} for each j ∈ N. Then one can easily verify that (Fh
j ) j∈N is a decreasing sequence of closed

sets such that
⋂

j∈N Fh
j = ∅ by h being locally bounded. By hypothesis, there is an operator U defined

by U(Fh
j ) = (U(n, (Fh

j )))n∈N satisfying (i)-(iii) in Theorem 2.6. Thus we can define a lower semi-countious
function h′ : X→ R as follows:

h′(x) =

 1 x ∈ X \U(1, (Fh
j ))

j + 1 x ∈ U( j, (Fh
j )) \U( j + 1, (Fh

j ))
(3.2.1)

We assert that |h| < h′ for each locally bounded real-valued function h. Take any x ∈ X, since⋂
j∈NU( j, (Fh

j )) = ∅, there exists n ∈N such that x ∈ U(n, (Fh
j )) \ U(n + 1, (Fh

j )). Then h′(x) = n + 1 > |h(x)| by

x < U(n + 1, (Fh
j )) ⊃ Fh

n+1 = {x ∈ X : |h(x)| ≥ n + 1} ⊇ {x ∈ X : |h(x)| ≥ n + 1}.
We shall show that if |h1| ≤ |h2|, then h′1 ≤ h′2. Take two locally bounded real-valued functions h1

and h2 such that |h1| ≤ |h2|. Then Fh1
j ⊆ Fh2

j for each j ∈ N, where Fhi
j = {x ∈ X : |hi(x)| ≥ j}, (i = 1, 2).

By hypothesis, U(n, (Fh1
j )) ⊆ U(n, (Fh2

j )). For each x ∈ X, there exists n0 ∈ N such that x ∈ U(n0, (Fh2
j )) −

U(n0 + 1, (Fh2
j )) (Let U(0, (Fh2

j )) = X) by hypothesis
⋂

n∈NU(n, (Fh2
j )) = ∅. That is x < U(n0 + 1, (Fh2

j )) ⊇

U(n0 + 1, (Fh1
j ))={x ∈ X : h′1(x) > n0 + 1}, and so h′2(x) = n0 + 1 ≥ h′1(x). This implies that h′1 ≤ h′2.

Then we need only to show that h′ is k-upper semi-continuous. Suppose that K is a compact set. If
K ∩ U(n, (F j)) = ∅ for some n ∈ N, let N = min{n : K ∩ U(n, (F j)) = ∅}. Then K ∩ U(n, (F j)) = ∅ for all
n ≥ N, and K ∩ U(n, (F j)) , ∅ for all n < N. Thus K ∩ (

⋂
n<N U(n, (F j))) = K ∩ U(N − 1, (F j)) , ∅. Take

x0 ∈ K ∩ (
⋂

n<N U(n, (F j))). Then for each x ∈ K, h′(x) ≤ N = h′(x0). Then h′ has a maximum value on K.
Therefore, h′ is k-upper semi-continuous.

Conversely, let (F j) j∈N be a decreasing sequence of closed sets with empty intersection in X, We define
an upper semi-continuous function h(F j) : X→ R by

h(F j)(x) =

{
1 x ∈ X \ F1

n + 1 x ∈ Fn \ Fn+1
(3.2.2)

Clearly, h(F j) is also locally bounded. By hypothesis, there exists a lower semi-continuous and k-upper
semi-continuous function h′ : X → R such that (i) h′ > |h(F j)|; (ii) h′1 ≥ h′2 whenever |h1| ≥ |h2|. Set
U j = {x ∈ X : h′(x) > j} for each j ∈ N, thus we can define an operator U assigning to each decreasing
sequence of closed sets (F j) j∈N by U((F j)) = (U(n, (F j)))n∈N where U(n, (F j)) = Un for each n ∈ N. We assert
that U satisfies (i)-(iii) of Theorem 2.6. By h′ > |h(F j)|, it is easy to see that Un ⊇ Fn.

Take any two decreasing sequences of closed sets (F j) j∈N and (E j) j∈N in X such that F j ⊆ E j for each
j ∈ N and

⋂
n∈N Fn =

⋂
n∈N En = ∅, then one can easily obtain |h(E j)| ≥ |h(F j)|, where h(E j) and h(F j) are defined

by (3.2.2). By hypothesis there are functions h′(E j)
, h′(F j)

: X → R such that h′(E j)
> |h(E j)| and h′(F j)

> |h(F j)|. And
we also have h′(E j)

≥ h′(F j)
, then we can get U(n, (E j)) = {x ∈ X : h′(E j)

(x) > j} ⊇ {x ∈ X : h′(F j)
(x) > j} = U(n, (F j))

for each n ∈N.
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Suppose C is a compact subset of X. Then h′ is k-upper semi-continuous, and so there exists x0 ∈ C
such that |h(F j)(x)| < h′(x) ≤ h′(x0) for all x ∈ C. Fix n0 ∈ N such that h′(x0) ≤ n0. Then h′(x) ≤ n0 and so
x ∈ {x ∈ X : h′(x)) ≤ n0}, which implies that x < Un0 = {x ∈ X : h′(x) > n0}. Then we have C ∩ Un0 = ∅. This
concludes the proof.

The Question 1.5 has a negative answer. We prove that the spaces satisfying the conditions are zero-
dimensional spaces. Example 3.3 provides a counterexample in this case.

Definition 3.3. [4] A topological space X is zero-dimensional (ind X = 0) if it is Hausdorff and has a basis consisting
of clopen (i.e., open and closed) sets.

For example, the Cantor space C is a zero-dimensional space, but Rn, and Cn are connected.

Definition 3.4. [28] A mapϕ : R(X)→ R(X) is called order-preserving ifϕ(1) ≤ ϕ(h) for every pair 1, h of elements
of R(X) satisfying 1 ≤ h.

Theorem 3.5. Let X be a topological space. If there is an order-preserving map ϕ : USC(X) → LSC(X) such that
for any h ∈ USC(X), 0 ≤ ϕ(h) ≤ h and 0 < ϕ(h)(x) < h(x) whenever h(x) > 0, then X is a zero-dimensional space
(ind X = 0 ).

Proof. Let U be an open set and φ0 : USC(X) → LSC(X) be an operator satisfying the conditions given in
the theorem. We define an upper semi-countious function h(U) : X→ R as follows:

h(U)(x) =

{
1 x ∈ X \U
0 x ∈ U

By hypothesis, φ0(h(U)) : X → R is lower semi-continuous. Let F j = {x ∈ X : φ0(h(U))(x) ≤ 1
j } for each

j ∈N. Clearly, (F j) j∈N is a decreasing sequence of closed sets. By the definition of h(U) and 0 ≤ φ0(h(U)) ≤ h(U),
U = {x ∈ X : h(U)) = 0} ⊆ {x ∈ X : φ0(h(U)) = 0} =

⋂
n∈N Fn, for each j ∈N. We assert that U =

⋂
n∈N Fn. Take

x ∈
⋂

n∈N Fn, because of φ0(h(U))(x) = 0, h(U)(x) = 0 by 0 < φ0(h(U))(x) < h(U)(x) whenever h(U)(x) > 0. Then
x ∈ U. We get U =

⋂
n∈N Fn. This implies that U is also closed.

In addition, for any closed set F, there exists a closed sequence (E j) j∈N such that X \ F =
⋂

n∈N En. Then
F =
⋃

n∈N(X \ En). This means F is also open. This means ind X = 0.
And we complete the proof.

From the proofs we can see that X satisfying the conditions in Theorem 3.5 has the properties: every
open set is closed and every closed set is open.

Example 3.6. R with the usual topology is stratifiable (hence δ-stratifiable). For R is connected, Ind R = 1.

4. The Characterization of Semistratifiable Spaces and k-Semistratifiable Spaces

In this section, we refer to the proof of C. Good [6] (Theorem1.3) and get similar results. We give another
equivalent conditions for semi-stratifiable spaces and stratifiable spaces. But the real-valued function is not
enough to describe semistratifiable spaces. We introduce the definitions as follows:

Definition 4.1. [9] The symbols −∞ and +∞ are called generalized real numbers. Let R∗ = R ∪ {−∞,+∞}, which
is homeomorphic to [0, 1]. R∗ is called generalized real number set. It satisfies the order relation: −∞ < r < +∞, for
any r ∈ R. The function f : X→ R∗ is called generalized real-valued function.

Definition 4.2. [9] A generalized real-valued function f : X → R∗ is called lower (upper) semi-continuous, if for
any r ∈ R, the set {x ∈ X : f (x) > r} ({x ∈ X : f (x) < r}) is open.



Y.-Y. Jin et al. / Filomat 31:3 (2017), 575–584 581

Definition 4.3. For a topological space X, h : X → R∗ is called locally bounded at x with respect to R, if there is a
positive real number r, and an open neighborhood U of x such that h(U) ⊆ (−r, r); if h is locally bounded at each x ∈ X
with respect to R, then h is called locally bounded on X with respect to R.

For a function h : X→ R∗, define

Uh = {x ∈ X : h is locally bounded at x with respect to R}.

Clearly, Uh is an open set in X.

Definition 4.4. A generalized real-valued function f : X → R∗ is called k-lower (k-upper) semi-continuous, if for
every compact set K, there exists x0 ∈ K such that f (x0), f (x0) ≤ f (x) ( f (x0) ≥ f (x)) for any x ∈ K.

In this section, a function represents a generalized real-valued function unless otherwise specified. We
can verify that for a decreasing sequence of closed (open) sets, it can define an upper (lower) semi-continuous
function with respect to R as following.

Lemma 4.5. If (F j) j∈N is a decreasing sequence of closed sets in X, then there is a function h(F j) : X→ R∗ defined by

h(F j) =


1 x ∈ X \ F1

n + 1 x ∈ Fn \ Fn+1
+∞ x ∈

⋂
j∈N F j

(4.5.1)

such that h(F j) is upper semi-continuous and locally bounded in X \
⋂

j∈N F j with respect to R. Given two decreasing
sequences of closed sets (F j) j∈N and (E j) j∈N such that F j ⊆ E j for each j ∈N, then h(F j) ≤ h(E j).

Proof. To prove h(F j) is upper semi-continuous, it is enough to show that the set {x ∈ X : h(F j)(x) ≥ r} is
closed for any real number r. Without loss of generality, we assume r ∈ [1,+∞). Thus, (i) if r ∈ N,
then {x ∈ X : h(F j)(x) ≥ r} = Fr−1 (let X = F0); (ii) if r < N, we have {x ∈ X : h(F j)(x) ≥ r} = F[r]. Since
(F j) j∈N is a sequence of closed sets, the set {x ∈ X : h(F j)(x) ≥ r} is closed, which implies that h(F j) is upper
semi-continuous.

If x ∈
⋂

j∈N E j, then h(E j) = +∞ ≥ h(F j). On the other hand, if x <
⋂

j∈N E j, there exists n ∈ N such that
x ∈ En \ En+1. If x < Fn+1, then h(F j) ≤ n + 1. Then we get h(E j) = n + 1 ≥ h(F j), since x < En+1 ⊇ Fn+1.

Lemma 4.6. If (U j) j∈N is a decreasing sequence of open sets in X, then there is a function h(U j) : X→ R∗ defined by

h(U j) =


1 x ∈ X \U1

n + 1 x ∈ Un \Un+1
+∞ x ∈

⋂
j∈NU j

(4.6.1)

such that h(U j) is lower semi-continuous. Given two decreasing sequences of open sets (U j) j∈N and (G j) j∈N such that
U j ⊆ G j for each j ∈N, then h(U j) ≤ h(G j).

Proof. To prove h(U j) is lower semi-continuous, it is enough to show that the set {x ∈ X : h(U j)(x) > r} is
open for any real number r. Without loss of generality, we assume r ∈ [1,+∞). Thus, (i) if r ∈ N, then
{x ∈ X : h(U j)(x) > r} = Ur; (ii) if r < N, we have {x ∈ X : h(U j)(x) > r} = U[r]. Since (U j) j∈N is a sequence of
open sets, the set {x ∈ X : h(U j)(x) > r} is open, which implies that h(U j) is lower semi-continuous.

If x ∈
⋂

j∈N G j, then h(G j) = +∞ ≥ h(U j). On the other hand, if x <
⋂

j∈N G j, there exists n ∈ N such that
x ∈ Gn \ Gn+1. If x < Un+1, then h(U j) ≤ n + 1. Then we get h(G j) = n + 1 ≥ h(U j), since x < Gn+1 ⊇ Un+1.

Theorem 4.7. A space X is semistratifiable if and only if for each function h : X → R∗, there is a lower semi-
continuous function h′ : X→ R∗, such that (i) h′(Uh) ⊆ R; (ii) | h |≤ h′; (iii) h′1 ≤ h′2 whenever |h1| ≤ |h2|.
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Proof. Suppose that X is semistratifiable. Take any function h : X → R∗. Let Fh
j = {x ∈ X : |h(x)| ≥ j} for

each j ∈ N. Then one can easily verify that (Fh
j ) j∈N is a decreasing sequence of closed sets such that⋂

j∈N Fh
j = X \ Uh by h being locally bounded at each x ∈ Uh with respect to R. According to Theorem 2.4,

there exists an operator U satisfies the conditions of (i)-(iii).
Define a function h′ : X→ R∗ as follows:

h′(x) =


1 x ∈ X \U(1, (Fh

j ))
j + 1 x ∈ U( j, (Fh

j )) \U( j + 1, (Fh
j ))

+∞ x ∈ X \Uh

(4.7.1)

Then h′ is lower semi-continuous. We prove that h′ ≥ |h| for each h : X → R∗. Take any x ∈ X.
If x ∈ X \Uh, then h′(x) = +∞ = |h(x)| by

⋂
n∈NU(n, (Fh

j )) =
⋂

n∈N Fh
n = X \ Uh. Otherwise x ∈ Uh, for⋂

n∈NU(n, (Fh
j )) = X \ Uh, there exists n ∈ N such that x ∈ Uh

n \ Uh
n+1. Then h′(x) = n + 1 > |h(x)| by

x < Uh
n+1 ⊇ Fh

n+1 = {x ∈ X : |h(x)| ≥ n + 1} ⊇ {x ∈ X : |h(x)| ≥ n + 1}.

Secondly, we prove that if |h1| ≤ |h2|, then h′1 ≤ h′2. It is known that Fh1
j ⊆ Fh2

j for |h1| ≤ |h2|. Then we

have
⋂

j∈N Fh1
j ⊆
⋂

j∈N Fh2
j , X \ Uh1 ⊆ X \ Uh2 , and U(n, (Fh1

j )) ⊆ U(n, (Fh2
j ))n∈N. If x ∈ Uh2 , there exists n0 ∈ N

such that x ∈ U(n0, (Fh2
j )) \ U(n0 + 1, (Fh2

j )) (let X = U(0,Fh2
j )) by

⋂
n∈NU(n, (Fh2

j )) = X \ Uh2 . Furthermore,

x < U(n0 + 1, (Fh2
j )) ⊇ U(n0 + 1, (Fh1

j )) = {x ∈ X : h′1(x) > n0 + 1}. This implies h′2(x) = n0 + 1 ≥ h′1(x). That

is h′2 ≥ h′1. Otherwise if x ∈ Uh1 \ Uh2 , there exists n1 ∈ N such that x ∈ U(n1, (Fh1
j )) \ U(n1 + 1, (Fh1

j )) (let

X = U(0,Fh1
j )) by

⋂
n∈NU(n, (Fh1

j )) = X \ Uh1 . Since h′1(x) = n1 + 1, and h′2(x) = +∞, then we have h′1 ≤ h′2.
Finally, if x ∈ X \Uh1 , then h′1(x) = h′2(x) = +∞. The result is obvious.

Conversely, take any decreasing sequence (F j) j∈N of closed sets in X. Then define a function h(F j) : X→ R∗

by (4.5.1). Clearly, h(F j) is upper semi-continuous and Uh(Fj ) = X \
⋂

j∈N F j. By hypothesis, there is a lower
semi-continuous function h′ : X → R∗, such that h′(Uh) ⊆ R, | h |≤ h′ and h′1 ≤ h′2 whenever |h1| ≤ |h2|.
Set Un = {x ∈ X : h′(F j)

(x) > n}. Then we can define an operator U assigning to each decreasing sequence
of closed sets (F j) j∈N by U((F j)) = (U(n, (F j)))n∈N, where U(n, (F j)) = Un for each n ∈N. To show X is
semistratifiable, it need prove that the operator U satisfies (a)-(c) in Theorem 2.4.

By |h(F j)| ≤ h′(F j)
, it is easy to see that Un ⊇ Fn for each n ∈N and therefore, the operator U satisfies (a) in

Theorem 2.4.
For two decreasing sequences (F j) j∈N and (E j) j∈N of closed sets in X such that F j ⊆ E j, it is obvious that

h(F j) ≥ h(E j). Then U(n, (F j)) = {x ∈ X : h′(F j)
(x) > n} ⊆ {x ∈ X : h′(E j)

(x) > n} = U(n, (E j)) for each n ∈N and
therefore, the operator U satisfies (c) in Theorem 2.4.

Clearly,
⋂

j∈NU(n, (F j)) ⊇
⋂

n∈N Fn. Take any x <
⋂

j∈N F j. By hypothesis, there is r ∈ R such that
h′(F j)

(x) = r. Hence, x < U(n0, (F j)) whenever n0 > r. This implies that
⋂

j∈NU(n, (F j)) =
⋂

n∈N Fn. This shows
that the operator U satisfies (b) in Theorem 2.4.

Theorem 4.8. A space X is stratifiable if and only if for each function h : X→ R∗, there is a lower semi-continuous
function h′ : X → R∗ such that (i) h′ is locally bounded at each x ∈ Uh with respect to R; (ii) | h |≤ h′; (iii) h′1 ≤ h′2
whenever |h1| ≤ |h2|.

Proof. Suppose that X is stratifiable. Take any function h : X→ R∗. Let Fh
j = {x ∈ X : |h(x)| ≥ j} for each j ∈N.

Then one can easily verify that (Fh
j ) j∈N is a decreasing sequence of closed sets such that

⋂
j∈N Fh

j = X \ Uh

by h being locally bounded in Uh. According to Theorem 2.4, there exists an operator U which satisfies the
conditions of (i)-(iii).

Define a function h′ : X→ R∗ by
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h′(x) =


1 x ∈ X \U(1, (Fh

j ))
j + 1 x ∈ U( j, (Fh

j )) \U( j + 1, (Fh
j ))

+∞ x ∈ X \Uh

(4.8.1)

It is easy to see that h′ is lower semi-continuous.

To show h′ is locally bounded at each x ∈ Uh with respect to R. Take any x ∈ Uh, since
⋂

n∈NU(n, (Fh
j )) =⋂

n∈N(Fh
n)) = X \Uh, there exists n0 ∈N such that x ∈ U(n0, (Fh

j )) \U(n0 + 1, (Fh
j )), and an open neighborhood

O of x such that O ∩U((n0 + 1, (Fh
n))) = ∅. It implies that |h(O)| ≤ n0 + 1. This completes the proof that h′ is

locally bounded at each x ∈ Uh.
We prove |h| ≤ h′. Take any x ∈ Uh, since

⋂
n∈NU(n, (Fh

j )) = X \ Uh, there exists n ∈ N such that

x ∈ U(n, (Fh
j ))\U(n+1, (Fh

j )). Then h′(x) = n+1 > |h(x)| by x < U(n + 1, (Fh
j )) ⊇ Fh

n+1 = {x ∈ X : |h(x)| ≥ n + 1} ⊇
{x ∈ X : |h(x)| ≥ n + 1}. Otherwise if x ∈ X \Uh, then h′(x) = |h(x)| = +∞. We obtain the results |h| ≤ h′.

The proof of the property (iii) is similar to the proof of Theorem 4.7.
Conversely, take any decreasing sequence (F j) j∈N of closed sets in X. Then define a function h(F j) : X→ R∗

by (4.5.1). Clearly, h(F j) is upper semi-continuous such that Uh(Fj ) = X \
⋂

j∈N F j. By hypothesis, there is a
function h′(F j)

: X→ R∗ satisfying the properties (i) through (iii). Set Un = {x ∈ X : h′(F j)
(x) > n}. Then we can

define an operator U assigning to each decreasing sequence of closed sets (F j) j∈N by U((F j)) = (U(n, (F j)))n∈N,
where U(n, (F j)) = Un for each n ∈N. To show X is stratifiable, it need prove that the operator U satisfies
(a)-(c) in Theorem 2.4.

By |h(F j)| ≤ h′(F j)
, it is easy to see that Un ⊇ Fn for each n ∈N and therefore, the operator U satisfies (a) in

Theorem 2.4.
For two decreasing sequences (F j) j∈N and (E j) j∈N of closed sets in X such that F j ⊆ E j, it is obvious that

h(F j) ≥ h(E j). Then U(n, (F j)) = {x ∈ X : h′(F j)
(x) > n} ⊆ {x ∈ X : h′(E j)

(x) > n} = U(n, (E j)) for each n ∈N and
therefore, the operator U satisfies (c) in Theorem 2.4.

Clearly,
⋂

j∈NU(n, (F j)) ⊇
⋂

n∈N Fn. Take any x <
⋂

j∈N F j. By hypothesis, h′(F j)
is locally bounded at x with

respect to R, so there is r ∈ R and a neighborhood O of x such that h′(F j)
(O) ⊆ (−r, r). Hence, x < U(n0, (F j))

whenever n0 > r. This implies that
⋂

j∈NU(n, (F j)) =
⋂

n∈N Fn. This shows that the operator U satisfies (b)
in Theorem 2.4.

Recall that the stratifiable (semistratifiable) spaces is the monotone versions of the perfectly normal
(perfect) spaces. We get the similar results for perfectly normal (perfect) spaces as follows.

Theorem 4.9. A space X is perfect if and only if for each function h : X → R∗, there is a lower semi-continuous
function h′ : X→ R∗, such that (i) h′(Uh) ⊆ R; (ii) |h| ≤ h′.

Theorem 4.10. A space X is perfectly normal if and only if for each function h : X → R∗, there is a lower
semi-continuous function h′ : X → R∗ such that (i) h′ is locally bounded at each x ∈ Uh with respect to R; (ii)
|h| ≤ h′.

Theorem 4.11. A space X is k-semistratifiable if and only if for each function h : X → R∗, there is a lower semi-
continuous and k-upper semi-continuous function h′ : X → R∗, such that (i) h′(Uh) ⊆ R; (ii) |h| ≤ h′; (iii) h′1 ≤ h′2
whenever |h1| ≤ |h2|..

Proof. Suppose that X is k-semistratifiable. Define a function h′ as that in the proof of Theorem 4.7 (necessary)
with U satisfying the the additional condition (ii) in Theorem 2.5 for k-semistratifiable. Then we need only
to show that for each function h : X→ R∗, h′ : X→ R∗ is k-upper semi-continuous.

Suppose that K is a compact set in X. If K∩U(n, (Fh
j )) = ∅ for some n ∈N, let m = min{n : K∩U(n, (Fh

j )) = ∅}.

Then we have K∩U(n, (Fh
j )) = ∅ for all n ≥ m and K∩U(n, (Fh

j )) , ∅ for all n < m. Thus K∩(
⋂

n<m U(n, (Fh
j ))) =

K ∩U(m − 1, (Fh
j )) , ∅. Take x0 ∈ K ∩ (

⋂
n<m U(n, (Fh

j ))). Then for each x ∈ K, h′(x) ≤ h′(x0) = m.
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If K ∩ U(n, (Fh
j )) , ∅ for each n ∈ N, then, by condition (ii) in Theorem 2.5, K ∩ Fn , ∅ for each n ∈ N,

and so K ∩ (
⋂

n∈N Fn) , ∅ because of the compactness of K. Thus by the equality
⋂

n∈N Fn =
⋂

n∈NU(n, (Fh
j )),

we have K∩ (
⋂

n∈NU(n, (Fh
j ))) , ∅. Take x0 ∈ K∩ (

⋂
n∈NU(n, (Fh

j ))). Then for each x ∈ K, h′(x) ≤ h′(x0) = +∞.
From the discussion above, we see that h′ have a maximum value on K. Therefore, for each h, h′ is

k-upper semi-continuous.
Conversely, take any decreasing sequence (F j) j∈N of closed sets in X. Then define a function h(F j) : X→ R∗

by (4.5.1). Clearly, h(F j) is upper semi-continuous such that Uh(Fj ) = X \
⋂

j∈N F j. By hypothesis, there is a
lower semi-continuous and k-upper semi-continuous function h′(F j)

: X → R∗ satisfying the properties (i)
through (iii). Set Un = {x ∈ X : h′(F j)

(x) > n}. Then we can define an operator U assigning to each decreasing
sequence of closed sets (F j) j∈N by U((F j)) = (U(n, (F j)))n∈N, where U(n, (F j)) = Un for each n ∈N. Then the
operator U satisfies (i) and (iii) of Theorem 2.5 as shown in Theorem 4.7 (sufficiency). Thus we need only
to show that U also satisfies condition (ii) of Theorem 2.5.

Suppose K is an arbitrary compact set of X and
⋂

n∈ω Fn
⋂

K = ∅. Then K ⊆ Uh(Fj ) , and so h′(F j)
(K) ⊆ R.

There exists x0 ∈ K such that h′(F j)
(x) ≤ h′(F j)

(x0) for all x ∈ K. Take n0 ∈ N such that h′(F j)
(x) ≤ h′(F j)

(x0) ≤ n0.
Then x ∈ {x ∈ X : h′(F j)

(x)) ≤ n0}, which implies that x < Un0 = {x ∈ X : h′(F j)
(x) > n0}. Then we have

K ∩Un0 = ∅. This concludes the proof.
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