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Abstract. In this paper, we present some sufficient conditions for which a Banach space has normal
structure and therefore the fixed point property for nonexpansive mappings in terms of the gener-
alized James, von Neumann-Jordan, Zbăganu constants, the Ptolemy constant and the Domı́nguez-
Benavides coefficient. Our main results extend and improve some known results in the recent
literature.

1. Introduction

It is well known that the concepts of normal structure and weak normal structure play an important
role in metric fixed point theory for nonexpansive mappings (see [14]). For many years metric fixed
point theory just studied some extensions of Banach Theorem relaxing the contractiveness condition,
and the extension of this result for multivalued mappings. In 1965, metric fixed point theory received
a strong boost when Kirk [20] proved that every reflexive Banach space X with normal structure has
the fixed point property for nonexpansive mappings. In other words, if C is any nonempty, bounded,
closed and convex subset of X, then every nonexpansive (i.e., 1-Lipschitz) self-mapping of C has a
fixed point.

The result obtained by Kirk is, in some sense, surprising because it uses geometric properties of
Banach spaces (commonly used in Linear Functional Analysis, but rarely considered in Nonlinear
Analysis until then). Thus, it is the starting point for a new mathematical field: the application of the
Geometric Theory of Banach Spaces to Fixed Point Theory. From that moment on, many researchers
have tried to exploit this connection.

Recently, many geometric constants for a Banach space have been investigated and a good deal of
investigations have focused on finding the sufficient conditions with various geometrical constants
for a Banach space to have normal structure. Whether or not a Banach space has normal structure
depends on the geometry of its unit ball or its unit sphere. Many mathematicians have established
that, under various geometric properties of a Banach space often measured by different geometric
constants, normal structure of the space is guaranteed. The James and von Neumann-Jordan constants
are two most widely studied constants, due to their connections with various geometric structure
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of Banach spaces. The interested reader is referred to [2–10, 12, 13, 17, 19, 22, 24] for a widespread
discussion and recent results in this direction.

The aim of this work is to investigate some sufficient conditions for normal structure of Banach
spaces in terms of the generalized James, von Neumann-Jordan, Zbăganu constants, the Ptolemy
constant and the Domı́nguez-Benavides coefficient. The obtained results extend and improve several
recent results on this subject. Furthermore, we give different examples which show that these results
are strictly more general than other results previously known to imply normal structure.

2. Preliminaries

We shall begin by recalling the definition of some geometric parameters with which we will be
concerned throughout the paper.

Let X be a Banach space with the closed unit ball BX = {x ∈ X : ‖x‖ ≤ 1} and the unit sphere
SX = {x ∈ X : ‖x‖ = 1}. xn

w
−→ x stands for weak convergence of a sequence {xn} in X to a point x in X.

The following two constants of a Banach space X,

CNJ(X) = sup
{
‖x + y‖2 + ‖x − y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X, ‖x‖ + ‖y‖ > 0

}
,

J(X) = sup
{

min{‖x + y‖, ‖x − y‖} : x, y ∈ SX

}
,

are called the von Neumann-Jordan [3] and James constants [12], respectively. As stated in the
introduction, these constants are widely studied by many authors.

Recently, both constants are generalized in the following ways (see [5, 6]): for 0 ≤ a ≤ 2,

CNJ(a,X) = sup
{
‖x + y‖2 + ‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2
: x, y, z ∈ X, ‖x‖ + ‖y‖ + ‖z‖ > 0, and ‖y − z‖ ≤ a‖x‖

}
,

J(a,X) = sup
{

min{‖x + y‖, ‖x − z‖} : x, y, z ∈ BX, and ‖y − z‖ ≤ a‖x‖
}
.

It is clear that CNJ(0,X) = CNJ(X) and J(0,X) = J(X).
Recently, Gao and Saejung in [13] defined a new constant as follows: for a ≥ 0,

CZ(a,X) = sup
{ 2‖x + y‖‖x − z‖

2‖x‖2 + ‖y‖2 + ‖z‖2
: x, y, z ∈ X, ‖x‖ + ‖y‖ + ‖z‖ > 0, and ‖y − z‖ ≤ a‖x‖

}
,

which is inspired by Zbăganu paper [26]. It is clear that

CZ(0,X) = CZ(X) = sup
{
‖x + y‖‖x − z‖
‖x‖2 + ‖y‖2

: x, y ∈ X, ‖x‖ + ‖y‖ > 0
}
.

Recall also that the real number

Cp(X) = sup
{

‖x − y‖ ‖z‖
‖x − z‖ ‖y‖ + ‖z − y‖ ‖x‖

: x, y, z ∈ X\{0}, x , y , z , x
}

is called the Ptolemy constant. The notion of the Ptolemy constant of Banach spaces was introduced
in [23] and recently it has been studied by Llorens-Fuster et al. in [21].
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As regards the above constants, the following inequalities do hold (see [21]):

1
2

(
J(X)

)2
≤ CZ(X) ≤ min

{
CNJ(X),Cp(X)

}
. (1)

The coefficient M(X) ∈ [1, 2] of X, introduced by Domı́nguez-Benavides [10], is defined by

M(X) = sup
{ 1 + α

R(α,X)
: α ≥ 0

}
,

with

R(α,X) = sup
{

lim inf
n→∞

‖xn + x‖
}
,

where the supremum is taken over all x ∈ X with ‖x‖ ≤ α and all weakly null sequences {xn} in BX
such that

D({xn}) = lim sup
n→∞

(
lim sup

m→∞
‖xn − xm‖

)
≤ 1.

Obviously, 1 ≤ R(1,X) ≤ 2.
Recall that a Banach space X is said to have normal structure (weak normal structure, respectively)

[1] if for every bounded closed (weakly compact, respectively) convex subset K in X that contains
more than one point, there exists a point x0 ∈ K such that

sup
{
‖x0 − y‖ : y ∈ K

}
< sup

{
‖x − y‖ : x, y ∈ K

}
.

It is clear that for a reflexive Banach space, normal structure and weak normal structure coincide. It is
well known (see [14]) that if X fails to have weak normal structure, then there exist a weakly compact
convex subset C ⊂ X and a sequence {xn} ⊂ C such that dist

(
xn+1, co{xk}

n
k=1

)
→ diam(C) = 1.

A Banach space X is said to have uniform normal structure if there exists 0 < c < 1 such that for
any closed bounded convex subset K of X that contains more than one point, there exists x0 ∈ K such
that

sup
{
‖x0 − y‖ : y ∈ K

}
< c sup

{
‖x − y‖ : x, y ∈ K

}
.

Recall also that a Banach space X is uniformly nonsquare [15] if and only if there exists δ > 0 such
that ‖x + y‖ ≤ 2 − δ or ‖x − y‖ ≤ 2 − δ for all x, y ∈ BX. It is known that every uniformly nonsquare
space is super-reflexive (see [15]). It is worth mentioning that if J(a,X) < 2 or CNJ(a,X) < 2 for some
0 ≤ a < 2, then X is uniformly nonsquare (see [5, 6]).

In the sequel, we recall some basic facts about ultrapowers which are the main ingredient of our
results. Ultrapowers are proved to be useful in many branches of mathematics. Many results can be
seen more easily when treated in this setting.

LetU be a nontrivial ultrafilter onN and let X be a Banach space. A sequence {xn} in X converges
to x with respect toU, denoted by limU xi = x, if for each neighborhood U of x, {i ∈N : xi ∈ U} ∈ U.
Let `∞(X) denotes the subspace of the product space

∏
n∈N X equipped with the norm

‖(xn)‖ := sup
n∈N
‖xn‖ < ∞,

and let

NU =
{
(xn) ∈ `∞(X) : lim

U

‖xn‖ = 0
}
.
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The ultrapower of X, denoted by X̃, is the quotient space `∞(X)
NU

equipped with the quotient norm.
Write (xn)U to denote the elements of the ultrapower. It follows from the definition of the quotient
norm that∥∥∥(xn)U

∥∥∥ = lim
U

‖xn‖.

Note that X can be embedded into X̃ isometrically. For more detailed discussion on the Banach
space ultrapower construction, the reader is directed to [14, 18, 25]. We also note that if X is super-
reflexive, that is X̃∗ = (X̃)∗, then X has uniform normal structure if and only if X̃ has normal structure
(see [18]).

3. Main Results

We first start with a lemma. The following lemma is our main tool for proving our results. The
idea of the proof is same as the proof of Lemma 5 in [24].

Lemma 3.1. Let X be a Banach space for which BX∗ is w∗-sequentially compact (for example, X is reflexive or
separable, or has an equivalent smooth norm). Suppose that X fails to have weak normal structure. Then, for
any ε > 0, there exist z1, z2 ∈ SX and 11, 12 ∈ SX∗ such that the following conditions are satisfied:

(a)
∣∣∣‖z1 − z2‖ − 1

∣∣∣ < ε and
∣∣∣1i(z j)

∣∣∣ < ε for all i , j;

(b) 1i(zi) = 1 for i = 1, 2;

(c) ‖z1 + z2‖ ≤ R(1,X) + ε.

Proof. By the assumptions, there exists a sequence {xn} ⊂ X such that

(1) xn
w
−→ 0,

(2) diam
(
{xn}

∞

n=1

)
= 1 = limn→∞ ‖xn − x‖ for all x ∈ co {xn}

∞

n=1.

Since BX∗ is w∗-sequentially compact, passing to a suitable subsequence, we may assume that
there exist a sequence ( fn) ⊂ SX∗ such that

(3) fn(xn) = ‖xn‖ for all n ∈N, and

(4) fn
w∗
−→ f for some f ∈ BX∗ .

Observe that 0 is in the weakly closed convex hull of {xn}
∞

n=1 which equals the norm closed convex
hull co {xn}

∞

n=1. This implies that limn→∞ ‖xn‖ = 1.
Let us suppose that ε ∈ (0, 1). Pick η = ε

3 . By the properties of the sequence {xn}, we first choose a
natural number n1 so that∣∣∣ f (xn1 )

∣∣∣ < η

2
and 1 − η ≤ ‖xn1‖ ≤ 1.

Note that {xn} is a weakly null sequence and verifies D({xn}) = 1. It follows from the definition of
Domı́nguez-Benavides’ coefficient that

lim inf
n→∞

‖xn + xn1‖ ≤ R(1,X).
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Next, we choose n2 > n1 so that

‖xn2 + xn1‖ ≤ R(1,X) + η,

1 − η ≤ ‖xn2‖ ≤ 1, 1 − η ≤ ‖xn2 − xn1‖ ≤ 1,

∣∣∣ fn1 (xn2 )
∣∣∣ < η and

∣∣∣( fn2 − f )(xn1 )
∣∣∣ < η

2
.

This implies that∣∣∣ fn2 (xn1 )
∣∣∣ ≤ ∣∣∣( fn2 − f )(xn1 )

∣∣∣ +
∣∣∣ f (xn1 )

∣∣∣ < η.
Put

z1 :=
xn1

‖xn1‖
, z2 :=

xn2

‖xn2‖
, 11 := fn1 , 12 := fn2 .

We now prove that (a), (b) and (c) are satisfied. Clearly, (b) holds. Moreover, for i , j,

∣∣∣1i(z j)
∣∣∣ =

∣∣∣ fni (xn j )
∣∣∣

‖xn j‖
<

η

1 − η
< 2η < ε.

Next, we observe that

‖z1 − z2‖ =

∥∥∥∥∥ xn1

‖xn1‖
−

xn2

‖xn2‖

∥∥∥∥∥
≤

∥∥∥∥∥ xn1

‖xn1‖
− xn1

∥∥∥∥∥ + ‖xn1 − xn2‖ +

∥∥∥∥∥xn2 −
xn2

‖xn2‖

∥∥∥∥∥
=

∣∣∣1 − ‖xn1‖

∣∣∣ + ‖xn1 − xn2‖ +
∣∣∣1 − ‖xn2‖

∣∣∣
< 1 + 2η < 1 + ε,

and

‖z1 − z2‖ ≥ 11(z1 − z2) = 11(z1) − 11(z2) ≥ 1 − η > 1 − ε,

that is (a) is satisfied. Moreover, (c) is satisfied, since

‖z1 + z2‖ =

∥∥∥∥∥ xn1

‖xn1‖
+

xn2

‖xn2‖

∥∥∥∥∥
≤

∥∥∥∥∥ xn1

‖xn1‖
− xn1

∥∥∥∥∥ + ‖xn1 + xn2‖ +

∥∥∥∥∥xn2 −
xn2

‖xn2‖

∥∥∥∥∥
=

∣∣∣1 − ‖xn1‖

∣∣∣ + ‖xn1 + xn2‖ +
∣∣∣1 − ‖xn2‖

∣∣∣
< 1 + 3η < 1 + ε.

This completes the proof.

Lemma 3.1 can be rewritten in ultrapower language as follows.

Lemma 3.2. If a super-reflexive Banach space X fails to have normal structure, then there are x̃1, x̃2 ∈ SX̃ and
f̃1, f̃2 ∈ S(X̃)∗ such that
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(a) ‖x̃1 − x̃2‖ = 1 and f̃i(x̃ j) = 0 for all i , j;

(b) f̃i(x̃i) = 1 for i = 1, 2;

(c) ‖x̃1 + x̃2‖ ≤ R(1,X).

Now, we are ready to state and prove our main results.

Theorem 3.3. Let X be a Banach space such that

J(a,X) < 1 + a +
1 − a

R(1,X)

for some 0 ≤ a ≤ 1. Then X has normal structure.

Proof. It is proved in [5] that J(1,X) < 2 implies X has normal structure. We now suppose that X fails
to have normal structure and there exists 0 ≤ a < 1 such that the inequality above holds. It is clear
that X is uniformly nonsquare and hence super-reflexive. Then there are elements x̃1, x̃2 ∈ SX̃ and
f̃1, f̃2 ∈ S(X̃)∗ satisfying all the conditions in Lemma 3.2 We now use these elements to estimate the

generalized James constant of the Banach space ultrapower X̃ which is the same as that of the space
X itself. We put

x̃ = x̃2 − x̃1, ỹ = ax̃2 + (1 − a)
x̃2 + x̃1

‖x̃2 + x̃1‖
, and z̃ = ax̃1 + (1 − a)

x̃2 + x̃1

‖x̃2 + x̃1‖
.

We noted here that ‖x̃2 + x̃1‖ ≥ f̃2(x̃2 + x̃1) = 1. It is easy to see that

‖ỹ‖ ≤ 1, ‖̃z‖ ≤ 1, and ỹ − z̃ = ax̃.

Hence, we have

J(a,X) = J(a, X̃)

≥ min
{
‖x̃ + ỹ‖, ‖x̃ − z̃‖

}
= min

{∥∥∥∥∥x̃2 − x̃1 + ax̃2 + (1 − a)
x̃2 + x̃1

‖x̃2 + x̃1‖

∥∥∥∥∥, ∥∥∥∥∥x̃2 − x̃1 − ax̃1 − (1 − a)
x̃2 + x̃1

‖x̃2 + x̃1‖

∥∥∥∥∥}
≥ min

{
f̃2
(
x̃2 − x̃1 + ax̃2 + (1 − a)

x̃2 + x̃1

‖x̃2 + x̃1‖

)
, (− f̃1)

(
x̃2 − x̃1 − ax̃1 − (1 − a)

x̃2 + x̃1

‖x̃2 + x̃1‖

)}
≥ 1 + a +

1 − a
‖x̃2 + x̃1‖

≥ 1 + a +
1 − a

R(1,X)
,

which is a contradiction. This completes the proof.

Corollary 3.4. ([22, Corollary 24], [5, Corollary 3.5] and [13, Theorem 12]) A Banach space X has normal
structure if

J(X) < 1 +
1

R(1,X)
or J(1,X) < 2.
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Remark 3.5. When a = 0, Theorem 3.3 is sharp in the sense that there is a Banach space X such that J(X) =
1 + 1

R(1,X) and X fails to have normal structure. Consider the Bynum space `2,∞ defined as `2,∞ := (`2, ‖ · ‖2,∞)
where ‖x‖2,∞ := max{‖x+

‖2, ‖x−‖2} with x+(i) = max{x(i), 0} for each i ≥ 1 and x− = x+
− x. It is known that

J(`2,∞) = 1 + 1
√

2
(see [17]) and R(1, `2,∞) =

√
2 (see [10]). Thus, we have

J(`2,∞) = 1 +
1
√

2
= 1 +

1
R(1, `2,∞)

,

and `2,∞ fails to have weak normal structure.

It is noted that Theorem 3.3 is a result strictly more applicable than Theorem 2 of Gao and Saejung
[13] when a = 0. More precisely, Proposition 26 of Mazcuñán-Navarro [22] shows that Theorem 2
of Gao and Saejung [13] implies Theorem 3.3 when a = 0. But in the next example, we see that the
converse of this implication is not true.

Example 3.6. For β ≥ 1, let Eβ be the space `2 endowed with the norm

|x|β := max
{
‖x‖2, β‖x‖∞

}
.

The space Eβ has uniform normal structure if and only if β <
√

2. It is known that J(Eβ) = min(2, β
√

2)

(see [19]) and R(1,Eβ) = max
(
β
√

2
,
√

3
√

2

)
(see [11]). Thus, for any β ∈

[
1+
√

5
2
√

2
, 1+

√
2/3
√

2

)
, we have

1 +
√

5
2

≤ β
√

2 = J(Eβ) < 1 +

√
2
3

= 1 +
1

R(1,Eβ)
.

Therefore, Eβ has normal structure by Theorem 3.3 but lies out of the scope of [13, Theorem 2].

Remark 3.7. Theorem 3.3 is better than Theorem 12 of Gao and Saejung [13] involving the coefficient of weak
orthogonality of Sims µ(X). Note that 1 ≤ R(1,X) ≤ 2 and 1 ≤ µ(X) ≤ 3.

Theorem 3.8. Let X be a Banach space such that

CNJ(a,X) <

(
1 + 1−a

(R(1,X))2 + a
)2

1 +
(

1−a
R(1,X) + a

)2

for some 0 ≤ a ≤ 1. Then X has normal structure.

Proof. It is proved in [5] that CNJ(1,X) < 2 implies X has normal structure. Since R(1,X) ≥ 1, it follows
that X is uniformly nonsquare and hence the inequality above implies the super-reflexivity of X. As
in the proof of Theorem 3.3, we suppose that X fails to have normal structure and the inequality
holds for some 0 ≤ a < 1. We will make use of the existence of elements x̃1, x̃2 ∈ SX̃ and f̃1, f̃2 ∈ S(X̃)∗

satisfying all the conditions in Lemma 3.2. We follow the proof of the first theorem but we will
estimate β := ‖x̃1 + x̃2‖ in terms of the generalized von Neumann-Jordan constant CNJ(a,X). Now, we
take

x̃ = x̃2 − x̃1, ỹ =
1 − a
β2 (x̃1 + x̃2) + ax̃2, and z̃ =

1 − a
β2 (x̃1 + x̃2) + ax̃1.
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It follows that

‖x̃‖ = 1, ‖ỹ‖ ≤
1 − a
β

+ a, ‖̃z‖ ≤
1 − a
β

+ a, and ‖ỹ − z̃‖ = a‖x̃‖.

Therefore, we have

CNJ(a,X) = CNJ(a, X̃)

≥
‖x̃ + ỹ‖2 + ‖x̃ − z̃‖2

2‖x̃‖2 + ‖ỹ‖2 + ‖̃z‖2

=

(
1 + 1−a

β2 + a
)2

1 +
(

1−a
β + a

)2

≥

(
1 + 1−a

(R(1,X))2 + a
)2

1 +
(

1−a
R(1,X) + a

)2 ,

which is a contradiction. This completes the proof.

Corollary 3.9. ([22, Corollary 18] and [6, Theorem 3.6]) A Banach space X has normal structure if

CNJ(X) < 1 +

(
M(X)

)2

4
or CNJ(1,X) < 2.

Remark 3.10. When a = 0, Theorem 3.8 is sharp in the sense that there is a Banach space X such that
CNJ(X) = 1 + 1

(R(1,X))2 and X fails to have normal structure. Consider the Bynum space `2,∞ which fails to have

weak normal structure. It is known that CNJ(`2,∞) = 3
2 (see [17]) and R(1, `2,∞) =

√
2 (see [10]). Therefore,

we have

CNJ(`2,∞) =
3
2

= 1 +
1(

R(1, `2,∞)
)2 .

In Proposition 26 of Mazcuñán-Navarro [22] it was proved that Theorem 3.16 of Dhompongsa and
Kaewkhao [4] or Theorem 2 of Saejung [24] implies Corollary 3.17 of Dhompongsa and Kaewkhao
[4] which in its turn implies Theorem 3.8 when a = 0. These considerations let us conclude that the
result assuring normal structure for Banach spaces satisfying Theorem 3.8 is strictly more applicable
than Corollary 3.17 of [4] and then than Theorem 3.16 of [4] or Theorem 2 of [24].

Now, we shall present an example which shows that the scope of Theorem 3.16 of [4] and Theorem
2 of [24] is strictly more limited than the scope of Theorem 3.8 when a = 0.

Example 3.11. Consider the space Eβ which has uniform normal structure if and only if β <
√

2. The

space Eβ verifies CNJ(Eβ) = min(2, β2) (see [19]) and R(1,Eβ) = max
(
β
√

2
,
√

3
√

2

)
(see [11]). Hence, for any

β ∈
[ √

1+
√

3
√

2
, 1+

√
2/3
√

2

)
, we have

1 +
√

3
2

≤ β2 = CNJ(Eβ) <
5
3

= 1 +
1(

R(1,Eβ)
)2 .

Therefore, Eβ verifies the hypothesis in Theorem 3.8 but lies out of the scope of [4, Theorem 3.16] or
[24, Theorem 2].
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In the next example, we show that the hypothesis of [4, Corollary 3.17] is more restrictive than the
hypothesis of Theorem 3.8 when a = 0. In order to see this, we show that there are spaces satisfying
Theorem 3.8 which do not satisfy Corollary 3.17 of [4].

Example 3.12. Consider the Bynum space `2,1 defined as `2,1 := (`2, ‖ ·‖2,1) where ‖x‖2,1 := ‖x+
‖2 +‖x−‖2

with x+(i) = max{x(i), 0} for each i ≥ 1 and x− = x+
− x. If we consider x =

(
1
2 ,−

1
2 , 0, · · ·

)
and

y =
(

1
√

2
, 1
√

2
, 0, · · ·

)
in `2,1, then we obtain that J(`2,1) ≥ 3

2 . It is also known that CNJ(`2,1) = CNJ(`2,∞) = 3
2

(see [17]) and M(`2,1) =
√

5
2 (see [11]). Thus, we have

CNJ(`2,1) =
3
2
>

13
9
≥ 1 +

1(
J(`2,1)

)2 ,

while

CNJ(`2,1) =
3
2
<

13
8

= 1 +

(
M(`2,1)

)2

4
.

Therefore, `2,1 has normal structure by Theorem 3.8 but lies out of the scope of [4, Corollary 3.17].

Theorem 3.13. Let X be a Banach space such that

CZ(a,X) <

(
1 + 1−a

(R(1,X))2 + a
)2

1 +
(

1−a
R(1,X) + a

)2

for some 0 ≤ a ≤ 1. Then X has normal structure.

Proof. The proof is the same as that of Theorem 3.8, so it is left for the reader to verify.

According to Theorem 3.13, we get the following result.

Corollary 3.14. If X is a Banach space such that

CZ(X) < 1 +

(
M(X)

)2

4
,

then X has normal structure.

Remark 3.15. Since CZ(X) ≤ CNJ(X), it follows that Corollary 3.9 is better than [22, Corollary 18].

Corollary 3.16. ([13, Corollary 7 and Theorem 12]) If CZ(1,X) < 2, then X has normal structure.

Remark 3.17. When a = 0, Theorem 3.13 is sharp in the sense that there is a Banach space X such that
CZ(X) = 1 + 1

(R(1,X))2 and X fails to have normal structure. Consider the Bynum space `2,∞ which fails to have
weak normal structure. By using the inequality, CZ(X) ≤ CNJ(X) (see [26]), we get that CZ(`2,∞) ≤ 3

2 . Now
taking the points x = (−1, 1, 0, · · · ) and y =

(
1
2 ,

1
2 , 0, · · ·

)
in `2,∞. Thus, we obtain that ‖x + y‖ = ‖x − y‖ = 3

2 ,

‖x‖ = 1 and ‖y‖ = 1
√

2
. So CZ(`2,∞) ≥ 3

2 and consequently, CZ(`2,∞) = 3
2 . It is known that R(1, `2,∞) =

√
2

(see [10]). Hence, we have

CZ(`2,∞) =
3
2

= 1 +
1(

R(1, `2,∞)
)2 .



M. Dinarvand / Filomat 31:5 (2017), 1305–1315 1314

Proposition 3.18. Let X be a Banach space. The conditions

(i) CZ(X) < 1+
√

3
2 ,

(ii) CZ(X) < 1 + 1
(J(X))2 ,

(iii) CZ(X) < 1 +
(M(X))2

4

satisfy the chain of implications (i)⇒ (ii)⇒ (iii).

Proof. [(i)⇒ (ii)] Since the inequality 2x(x− 1) < 1 holds if and only if x ∈
(

1−
√

3
2 , 1+

√
3

2

)
, it follows that

2CZ(X)
(
CZ(X) − 1

)
< 1. On the other hand, CZ(X) ≥ (J(X))2

2 . Thus, we have(
J(X)

)2(
CZ(X) − 1

)
≤ 2CZ(X)

(
CZ(X) − 1

)
< 1.

Therefore, CZ(X) < 1 + 1
(J(X))2 .

[(ii) ⇒ (iii)] Because J(X) ≥ R(1,X) (see [4, 22]), we get J(X) ≥ 2
M(X) , which implies the desired

inequality.

In view of Proposition 3.18, [13, Corollary 8] derives from [13, Corollary 7]. The above proposition
also shows that Theorem 3.13 applies whenever Theorem 6 of Gao and Saejung [13] does so when
a = 0.

The following example shows that Theorem 3.13 is a result strictly more applicable than Corollary
8 of Gao and Saejung [13] or Theorem 5 of Llorens-Fuster, Mazcuñán-Navarro and Reich [21] when
a = 0.

Example 3.19. Consider the space Eβ which has uniform normal structure if and only if β <
√

2.
Thus, by using the inequalities (1), we conclude that CZ(Eβ) = min(2, β2). It is easy to see that

R(1,Eβ) = max
(
β
√

2
,
√

3
√

2

)
(see [10]). Hence, for any β ∈

[ √
1+
√

3
√

2
, 1+

√
2/3
√

2

)
, we have

1 +
√

3
2

≤ β2 = CZ(Eβ) <
5
3

= 1 +
1(

R(1,Eβ)
)2 .

Therefore, Theorem 3.13 let us deduce the normal structure of Eβ, while these spaces lie out of the
scope of [13, Corollary 8].

Remark 3.20. Theorem 3.13 is better than Theorem 12 of Gao and Saejung [13] involving the coefficient of
weak orthogonality of Sims µ(X). Note that 1 ≤ R(1,X) ≤ 2 and 1 ≤ µ(X) ≤ 3.

Returning to the Ptolemy constant and bearing in mind the fact that CZ(X) ≤ Cp(X), we immedi-
ately obtain the following result.

Corollary 3.21. If X is a Banach space such that

Cp(X) < 1 +

(
M(X)

)2

4
,

then X has normal structure.
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Remark 3.22. Corollary 3.21 is sharp in the sense that there is a Banach space X such that Cp(X) = 1+
(M(X))2

4
and X fails to have normal structure. Consider the Bynum space `2,∞ which fails to have weak normal structure.
It is known that Cp(`2,∞) = 3

2 (see [21]) and M(`2,∞) =
√

2 (see [10]). Hence, we have

Cp(`2,∞) =
3
2

= 1 +

(
M(`2,∞)

)2

4
.
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[17] A. Jiménez-Melado, E. Llorens-Fuster, S. Saejung, The von Neumann-Jordan constant, weak orthogonality and normal

structure in Banach spaces, Proceedings of the American Mathematical Society 134 (2) (2006) 355–364.
[18] M. A. Khamsi, Uniform smoothness implies super-normal structure property, Nonlinear Analysis 19 (1992) 1063–1069.
[19] M. Kato, L. Maligranda, Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient

of Banach spaces, Studia Mathematica 144 (3) (2001) 275–295.
[20] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, The American Mathematical Monthly

72 (1965) 1004–1006.
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