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Abstract. In this paper, we investigate the existence of minimal nonnegative solution for a class of nonlinear
fractional integro-differential equations on semi-infinite intervals in Banach spaces by applying the cone
theory and the monotone iterative technique. An example is given for the illustration of main results.

1. Introduction and Terminology

Fractional differential equations are now recognized as an excellent source of models to many phe-
nomena observed in control theory, mechanics, electricity, chemistry, biology, economics, signal and image
processing, blood flow phenomena, aerodynamics, electro-dynamics of complex medium, etc. For some
recent details and examples, see [1]-[15] and the references therein.

The monotone iterative technique can be successfully applied to obtain existence results for fractional
differential problems, see book [3] and papers [16]-[31]. In these papers, by employing the technique,
authors obtained the existence results of fractional differential problems on bounded domains. In our
paper, we also apply this technique to fractional differential problems on unbounded domains in Banach
Spaces.

Boundary value problems of integer order on infinite intervals arise in the study of radially symmetric
solutions of the nonlinear elliptic equations and have received considerable attention, for instance, see [32]-
[40] and references therein. However, there are few papers dealing with nonlinear fractional differential
equations on an unbounded domain [41]-[48]. In this paper, by using a method entirely different from the
ones employed in [41]-[48], we discuss the existence of the minimal nonnegative solution on an unbounded
domain in an ordered Banach space E for the following boundary value problem (BVP for short) of a
fractional nonlinear integro-differential equation{

Dαu(t) + f (t,u(t),Tu(t),Su(t)) = θ, 1 < α < 2,
u(0) = θ, Dα−1u(∞) = u∗, (1)
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where t ∈ J = [0,+∞), f ∈ C[J × P × P × P,P], P is a cone of E which defines a partial ordering in E: x ≤ y if
and only if y − x ∈ P. Dα is the Riemann-Liouville fractional derivatives.

(Tu)(t) =

∫ t

0
k(t, s)u(s)ds, (Su)(t) =

∫
∞

0
h(t, s)u(s)ds.

k(t, s) ∈ C[D,R+], h(t, s) ∈ C[D0,R+], D = {(t, s) ∈ R2
| 0 ≤ s ≤ t}, D0 = {(t, s) ∈ J × J}, R+ = [0,+∞). Let

k∗ = sup
t∈J

∫ t

0
k(t, s)ds < ∞, h∗ = sup

t∈J

1
(1 + tα−1)

∫
∞

0
h(t, s)(1 + sα−1)ds < ∞

and lim
t′→t

∫
∞

0 |h(t′, s) − h(t, s)|(1 + sα−1)ds = 0, t, t′ ∈ J.
Now, we denote the space

FC(J,E) = {u ∈ C(J,E) : sup
t∈J

‖u(t)‖
1 + tα−1 < ∞}

with norm

‖u‖F = sup
t∈J

‖u(t)‖
1 + tα−1 .

It is easy to see that FC(J,E) is a Banach space. Denote FC(J,P) = {u ∈ FC(J,E) : u(t) ≥ θ, ∀t ∈ J}. A map
u(t) ∈ FC(J,P) with its Riemann-Liouville derivative of order α existing on J is called a nonnegative solution
of (1) if u(t) ∈ FC(J,P) satisfies (1).

2. Several Lemmas

In this section, we recall some definitions and present some preliminary lemmas.

Definition 2.1. [1] The Riemann-Liouville fractional derivative of order δ for a continuous function f is defined by

Dδ f (t) =
1

Γ(n − δ)

( d
dt

)n
∫ t

0
(t − s)n−δ−1 f (s)ds, n = [δ] + 1,

provided the right hand side is defined pointwise on (0,∞).

Definition 2.2. [1] The Riemann-Liouville fractional integral of order δ for a continuous function f is defined as

Iδ f (t) =
1

Γ(δ)

∫ t

0
(t − s)δ−1 f (s)ds, δ > 0,

provided that the integral exists.

For the forthcoming analysis, we need the following assumptions:

(H1) there exist nonnegative functions a(t), b(t) ∈ C(J,R+) and positive constants c1, c2, c3 such that

‖ f (t,u, v,w)‖ ≤ a(t) + b(t)(c1‖u‖ + c2‖v‖ + c3‖w‖), t ∈ J,u, v,w ∈ P.

Furthermore, we set a∗ =
∫
∞

0 a(t)dt < ∞, b∗ =
∫
∞

0 (1 + tα−1)b(t)dt < ∞.

(H2) f (t,u, v,w) is increasing in u, v,w ∈ P, that is,

f (t,u, v,w) ≤ f (t,u, v,w), t ∈ J, u ≥ u ≥ θ, v ≥ v ≥ θ, w ≥ w ≥ θ.
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Lemma 2.3. Assume (H1) holds. Then u(t) ∈ FC(J,P) with its Riemann-Liouville derivative of order α existing on
J is called a nonnegative solution of problem (1) if and only if u(t) ∈ FC(J,P) is a solution of the integral equation

u(t) =
u∗tα−1

Γ(α)
+

∫
∞

0
G(t, s) f (s,u(s), (Tu)(s), (Su)(s))ds, (2)

where

G(t, s) =
1

Γ(α)

{
tα−1
− (t − s)α−1, 0 ≤ s ≤ t,

tα−1, 0 ≤ t ≤ s. (3)

Proof. We can reduce (1) to the integral equation

u(t) = c1tα−1 + c2tα−2
−

1
Γ(α)

∫ t

0
(t − s)α−1 f (s,u(s), (Tu)(s), (Su)(s))ds, (4)

where constants c1, c2 ∈ R.
By the conditions u(0) = θ and Dα−1u(∞) = u∗, we can get

c1 =
1

Γ(α)

( ∫ ∞

0
f (s,u(s), (Tu)(s), (Su)(s))ds + u∗

)
, c2 = 0.

Substituting c1 and c2 into (4), we have

u(t) =
u∗tα−1

Γ(α)
+

tα−1

Γ(α)

∫
∞

0
f (s,u(s), (Tu)(s), (Su)(s))ds

−
1

Γ(α)

∫ t

0
(t − s)α−1 f (s,u(s), (Tu)(s), (Su)(s))ds

=
u∗tα−1

Γ(α)
+

∫
∞

0
G(t, s) f (s,u(s), (Tu)(s), (Su)(s))ds,

(5)

where G(t, s) is defined by 3. The converse follows by direct computation.

Remark 2.4. Notice that G(t, s) ≥ 0 and
G(t, s)

1 + tα−1 <
1

Γ(α)
.

Define the operator A by

(Au)(t) =
u∗tα−1

Γ(α)
+

∫
∞

0
G(t, s) f (s,u(s), (Tu)(s), (Su)(s))ds. (6)

Lemma 2.5. If (H1) is satisfied, then the operator A is from FC(J,P) to FC(J,P).

Proof. Let u(t) ∈ FC(J,P), that is u(t) ≥ θ and ‖u‖F < ∞. Since f ∈ C[J × P × P × P,P] and G(t, s) > 0, therefore
(Au)(t) ≥ θ. By the condition (H1), we have

‖(Au)(t)‖ ≤
‖u∗‖tα−1

Γ(α)
+

∫
∞

0
G(t, s)‖ f (s,u(s), (Tu)(s), (Su)(s))‖ds

≤
‖u∗‖tα−1

Γ(α)
+

1 + tα−1

Γ(α)

∫
∞

0
[a(s) + b(s)(c1‖u(s)‖ + c2‖(Tu)(s)‖ + c3‖(Su)(s)‖)]ds

≤
‖u∗‖tα−1

Γ(α)
+

1 + tα−1

Γ(α)
[a∗ + b∗(c1 + c2k∗ + c3h∗)‖u‖F],

(7)

which implies that

‖Au‖F = sup
t∈J

‖(Au)(t)‖
1 + tα−1 < ∞,

that is, A is FC(J,P)→ FC(J,P). This completes the proof.
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3. Main Results

Theorem 3.1. Let P be a fully regular cone and the assumptions (H1), (H2) are satisfied. Furthermore,

r =
b∗(c1 + c2k∗ + c3h∗)

Γ(α)
< 1. (8)

Then there exists a nondecreasing sequence {un} ⊂ FC(J,P) converges uniformly on J to the minimal solution u. That

is, for any solution u(t) of (1), we have u(t) ≥ u(t),∀t ∈ J. Moreover, ‖u‖F ≤
d

1 − r
, where d =

‖u∗‖F + a∗

Γ(α)
and

a∗, b∗, k∗, h∗, c1, c2, c3 are given by (H1) and (H2).

Proof. Let u0(t) = θ, un(t) = Aun−1(t),n = 1, 2, 3, · · · , where

un(t) =
u∗tα−1

Γ(α)
+

∫
∞

0
G(t, s) f (s,un−1(s), (Tun−1)(s), (Sun−1)(s))ds. (9)

By Lemma 2.5, we have un(t) ∈ FC(J,P). Thus un(t) ≥ θ.
On one hand, using (H2) and the fact that f ∈ C[J × P × P × P,P] and G(t, s) ≥ 0, we have

θ = u0(t) ≤ u1(t) ≤ u2(t) ≤ · · · ≤ un(t) ≤ · · · , t ∈ J. (10)

Now, from the iteration formula (9), we can get

‖un‖F = ‖Aun−1‖F ≤ d + r‖un−1‖F ≤ d + r(d + r‖un−2‖F)

≤ d + r(d + r(d + r‖un−3‖F)) ≤ · · · ≤ d(1 + r + r2 + r3 + · · · + rn
‖u0‖F)

≤
d

1 − r
, n = 1, 2, 3, · · · ,

(11)

where r and d are given in the statement of Theorem 3.1.
It follows from (11) and the fully regularity of P that

lim
n→∞

un(t) = u(t), t ∈ J. (12)

Since un(t) ∈ FC(J,P) and FC(J,P) is a closed convex set in space C(J,E), therefore, by (11), we have

u ∈ FC(J,P) and ‖u‖F ≤
d

1 − r
.

Moreover, we have

f (s,un(s), (Tun)(s), (Sun)(s))→ f (s,u(s), (Tu)(s), (Su)(s)) (13)

and

‖ f (s,un(s), (Tun)(s), (Sun)(s)) − f (s,u(s), (Tu)(s), (Su)(s))‖

≤ 2a(s) + 2b(s)(c1 + c2k∗ + c3h∗)
d

1 − r
, s ∈ J, n = 1, 2, · · · .

(14)

Taking the limit n→∞ in (9), and using (13) and (14), we obtain

u(t) =
u∗tα−1

Γ(α)
+

∫
∞

0
G(t, s) f (s,u(s), (Tu)(s), (Su)(s))ds, (15)

which, by Lemma 2.3, implies that u ∈ FC(J,P) is a nonnegative solution of problem (1).
Finally, we prove the minimal property of the solution u(t). Let u(t) ∈ FC(J,P) be any solution of (1). By

Lemma 2.3, u(t) satisfies (2). Also, we have that u(t) ≥ θ = u0(t) for t ∈ J. Assuming that u(t) ≥ un−1(t) holds
for t ∈ J, it follows from (2), (9) and (H2) that u(t) ≥ un(t). Hence, by induction, taking the limit n→∞, we
get u(t) ≥ u(t) for t ∈ J. This implies that u(t) is the minimal solution of (1). This completes the proof.
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Theorem 3.2. Let P be a regular cone and the conditions (H1), (H2) hold. If there exists a w ∈ FC(J,P) with its
Riemann-Liouville derivative of order α existing on J such that{

Dαw(t) + f (t,w(t),Tw(t),Sw(t)) ≤ θ,
w(0) = θ, Dα−1w(∞) ≥ u∗, (16)

then (1) has a minimal nonnegative solution u. Moreover, u ∈ FC(J,P) and u ≤ w(t),∀t ∈ J.

Proof. From (16) and Lemma 2.3, we have

w(t) ≥
u∗tα−1

Γ(α)
+

∫
∞

0 G(t, s) f (s,w(s), (Tw)(s), (Sw)(s))ds

= (Aw)(t),
(17)

where G(t, s) is given by 3 and the operator A is defined by (6).
Let u0(t) = θ, un(t) = (Aun−1)(t),n = 1, 2, 3 · · · . As in the proof of Theorem 3.1, (10) holds. Furthermore,

u0(t) ≤ w(t). Assuming un−1(t) ≤ w(t) for t ∈ J, we find by (H3) and (17) that

un(t) = (Aun−1)(t) ≤ (Aw)(t) ≤ w(t), ∀t ∈ J.

Also, from (10), (17) and the regularity of P, (12) holds and we have that u(t) ≤ w(t),∀t ∈ J. Thus, it follows
that

‖u(t)‖ ≤ N‖w(t)‖,∀t ∈ J,

where N denotes the normal constant of the cone P. As in the proof of Theorem 3.1, it can be shown that
{un(t)} converges to u(t) uniformly on J. Hence u(t) ∈ FC(J,P). Further, we have that u(t) satisfies (15) and u
is the minimal nonnegative solution of (1). This completes the proof.

Concluding Remarks. It is imperative to note that our method of proof is entirely different from the one
employed in ([41]-[48]). In case f does not depend on Volterra integral operator Tu(t) and Fredholm integral
operator Su(t), our problem reduces to the one considered in [44], where the existence of the solution for
the problem (1) with nonlinearity f (t,u(t)) was shown by requiring a condition of the form:

(H) there exists a nonnegative function l(t) ∈ L1(J) such that α( f (t,B)) ≤ l(t)α(B), t ∈ J, where B is any
bounded subset of E and

∫
∞

0 (1 + tα−1)l(t)dt < Γ(α).
In the present work, we not only remove the condition (H) on f , but also obtain minimal nonnegative
solution of the problem (1). Thus, our results generalize and improve the work presented in [44].

4. Example

Consider the problem

D
3
2 un(t) +

e−tun+1

5(1 +
√

t)5
+

e−2t
√

1 + 2un + u2n+1

2n+3(1 +
√

t)3
+

e−3t

10(1 +
√

t)2

[
1 +

∫ t

0
e−(t+1)su2n(s)ds

] 1
5

+
e−2t

2n+2(1 +
√

t)

[ ∫ ∞

0

un(s)
1 + t + s2 ds

] 1
3

= θ, 0 ≤ t < ∞,

un(0) =θ, D
1
2 un(∞) =

1
n3 ,

(18)

We will prove that the problem (18) has a minimal nonegative solution un(t) satisfying
∑
∞

n=1 un(t) < ∞
for t ≥ 0.

Let E = l1 = {u = (u1, · · · ,un, · · · ) :
∑
∞

n=1 |un| < ∞}with norm ‖u‖ =
∑
∞

n=1 |un|and P = {u = (u1, · · · ,un, · · · ) ∈
l1 : un ≥ 0,n = 1, 2, · · · }. Then P is a normal cone in E. Since l1 is weakly complete, from Theorem 2.2 in [49],
the normality of P implies the regularity of P, it’s easy to show that P is fully regular.
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Now (18) can be considered as a boundary value problem of form (1) in E, where u = (u1, · · · ,un, · · · ), v =
(v1, · · · , vn, · · · ),w = (w1, · · · ,wn, · · · ), k(t, s) = e−(t+1)s, h(t, s) = (1 + t + s2)−1, f = ( f1, · · · , fn, · · · ),

fn(t,u, v,w) =
e−tun+1

5(1 +
√

t)5
+

e−2t
√

1 + 2un + u2n+1

2n+3(1 +
√

t)3
+

e−3t

10(1 +
√

t)2

(
1 + v2n

) 1
5

+
e−2t

2n+2(1 +
√

t)
w

1
3
n ,

(19)

and θ = {0, · · · , 0, · · · }, u∗ = {1, · · · ,
1
n3 , · · · }.

Clearly, f ∈ C(J × P × P × P,P), where J = [0,∞), and θ,u∗ ∈ P. Then, the condition (H2) holds.
Note that

k∗ = sup
t∈J

∫ t

0
e−(t+1)sds = sup

t∈J

1 − e−(t+1)t

t + 1
ds ≤ 1, h∗ = sup

t∈J

∫
∞

0
(1 + t + s2)−1ds ≤

∫
∞

0
(1 + s2)−1ds =

π
2
.

and

lim
t′→t

∫
∞

0

∣∣∣∣ 1
1 + t′ + s2 −

1
1 + t + s2

∣∣∣∣ds = lim
t′→t

∫
∞

0

|t′ − t|
(1 + t + s2)(1 + t′ + s2)

ds = 0, t′, t ∈ J.

By a simple computation, we have

0 ≤ fn(t,u, v,w) ≤
e−tun+1

5(1 +
√

t)5
+

e−2t

2n+3(1 +
√

t)3

(
1 + un +

1
2

u2n+1

)
+

e−3t

10(1 +
√

t)2

(
1 +

1
5

v2n

)
+

e−2t

2n+2(1 +
√

t)

(2
3

+
1
3

wn

)
≤

e−2t

10(1 +
√

t)
+

e−t

(1 +
√

t)

[1
5

un+1 +
1

2n+3 un +
1

2n+4 u2n+1 +
1

50
v2n +

1
3 × 2n+2 wn

]
.

So,

‖ f (t,u, v,w)‖ ≤
e−2t

10(1 +
√

t)
+

e−t

(1 +
√

t)

[1
5
‖u‖ +

1
8
‖u‖ +

1
16
‖u‖ +

1
50
‖v‖ +

1
12
‖w‖

]
=

e−2t

10(1 +
√

t)
+

e−t

(1 +
√

t)

[31
80
‖u‖ +

1
50
‖v‖ +

1
12
‖w‖

]
.

and a∗ =
∫
∞

0 a(t)dt =
∫
∞

0

e−2t

10(1 +
√

t)
dt ≤

1
20
, b∗ =

∫
∞

0 (1 +
√

t)b(t)dt =
∫
∞

0 e−tdt = 1. Then (H1) holds.

In addition,

r =
b∗(c1 + c2k∗ + c3h∗)

Γ(α)
≤

31
80

+
1
50

+
π
24

√
π

2

< 0.607915 < 1.

Hence, all conditions of Theorem 3.1 hold. Thus, our conclusion follows from Theorem 3.1.
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