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Abstract. The present paper is concerned with a certain sequence of the nonlinear Durrmeyer operators
NDn, very recently introduced by the author [22] and [23], of the form

(NDn f )(x) =

1∫
0

Kn
(
x, t, f (t)

)
dt , 0 ≤ x ≤ 1 , n ∈N,

acting on Lebesgue measurable functions defined on [0, 1] , where

Kn (x, t,u) = Fn (x, t) Hn(u)

satisfy some suitable assumptions. As a continuation of the very recent papers of the author [22] and
[23], we estimate their pointwise convergence to functions f and ψ ◦

∣∣∣ f ∣∣∣ having derivatives are of bounded
(Jordan) variation on the interval [0, 1] .Here ψo

∣∣∣ f ∣∣∣ denotes the composition of the functions ψ and
∣∣∣ f ∣∣∣. The

function ψ : R+
0 → R+

0 is continuous and concave with ψ(0) = 0, ψ(u) > 0 for u > 0.This study can be
considered as an extension of the related results dealing with the classical Durrmeyer operators.

1. Introduction

Let f be a Lebesgue integrable function defined on [0, 1] and letN := {1, 2, ...} . The classical Durrmeyer
operators Dn applied to f are defined as

(Dn f )(x) =

1∫
0

f (t)Fn(x, t) dt, 0 ≤ x ≤ 1 (1)

where Fn(x, t) = (n + 1)
n∑

k=0
pn,k (x) pn,k (t) ,and pn,k (x) =

(n
k
)
xk(1 − x)n−k is the Bernstein basis. These operators

were introduced by Durrmeyer [11] and also let us note that these operators were introduced independently
by Lupas [28].

These operators are the integral modification of Bernstein polynomials so as to approximate Lebesgue inte-
grable functions defined on the interval [0,1]. Some remarkable approximation properties of the operators
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(1) are presented by Zeng [32], Derriennic [9] and Gupta [14].

The present paper concerns with the nonlinear counterpart of the well-known Durrrmeyer operators intro-
duced and studied by the author [22] and [23].

It is worthwhile to mention the very recent papers of the author [25] and [26], which are dealing with some
properties of the nonlinear counterpart of the well-known Bernstein operators in BV and DBV-spaces.

By using the techniques due to Musielak [30], Karsli [22] and [23] introduced the following type nonlinear
counterpart of the well-known Durrmeyer operators;

(NDn f )(x) =

1∫
0

Kn
(
x, t, f (t)

)
dt , 0 ≤ x ≤ 1 , n ∈N, (2)

acting on Lebesgue measurable functions on the interval [0, 1] , where Kn (x, t,u) satisfy some suitable
assumptions. In particular, he proved some existence and approximation theorems for the nonlinear
Durrmeyer operators. In particular, in [22] he investigated the pointwise convergence of (2) to the functions
of bounded (Jordan) variation on the interval [0, 1] and in [23] he obtained some pointwise convergence for
the nonlinear sequence of Durrmeyer operators (2) to the Lebesgue point x of f , as n→∞.

Approximation with nonlinear integral operators of convolution type was introduced by J. Musielak in [30]
and widely developed in [1]. Especially, nonlinear integral operators of type

(
Tλ f

)
(x) =

b∫
a

Kλ(t − x, f (t)) dt, x ∈ (a, b) ,

and its special cases were studied by Bardaro, Karsli and Vinti [2]-[4], Karsli [18], [20] and Karsli-Gupta [19]
in some Lebesgue spaces, BV-spaces and BVϕ-spaces.

As a continuation of the very recent papers of the author [22] and [23], we estimate their pointwise
convergence to functions f and ψ ◦

∣∣∣ f ∣∣∣ having derivatives are of bounded (Jordan) variation on the interval
[0, 1] .

For future studies, it is important to say that this kind of approach can apply for several linear positive
operators presented in the papers [10], [13], [29] and in the very recent books of Gupta-Agarwal [15] (see
also Gal [12]).

An outline of the paper is as follows:

The next section contains basic definitions and notations.

In Section 3, the main approximation results of this study are given. They are dealing with the rate
of pointwise convergence of the nonlinear Durrmeyer operators NDn for functions with derivatives of
bounded variation on [0, 1]. At the point x, which is a discontinuity of the first kind of f and of its
derivative, we shall prove that (NDn f )(x) converge to the limit f (x). Some important papers on this topic
for the linear conterpart of positive linear operators are [5]-[16], [19], [24] and [31].

In Section 4, we give some certain results which are necessary to prove the main result.

The final section, that is Section 5, concerns with the proof of the main results presented in Section 3.

2. Preliminaries

In this section, we assemble the main definitions and notations given in [22] and [23].

Let X be the set of all bounded Lebesgue measurable functions f : [0, 1]→ R.
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Let Ψ be the class of all functions ψ : R+
0 → R

+
0 such that the function ψ is a continuous and non-decreasing

with ψ(0) = 0, ψ(u) > 0 for u > 0.

We now introduce a sequence of functions. Let {Kn (x, t,u)}n∈N be a sequence of functions Kn (x, t,u) defined
by

Kn (x, t,u) = (n + 1)
n∑

k=0

pn,k (x) pn,k (t) Hn(u), (3)

where Hn : R→ R is a function such that Hn(0) = 0 and pn,k(x) is the Bernstein basis.

Throughout the paper we assume that µ : N → R+ is an increasing and continuous function such that
lim
n→∞

µ(n) = ∞.

First of all we assume that the following conditions hold:

a ) Hn : R→ R is such that

|Hn(u) −Hn(v)| ≤ ψ (|u − v|) , ψ ∈ Ψ,

holds for every u, v ∈ R and for every n ∈N. That is, Hn satisfies a
(
L − ψ

)
Lipschitz condition.

b ) We now set

Fn(x, t) := (n + 1)
n∑

k=0

pn,k (x) pn,k(t).

c) Denoting by rn(u) := Hn(u) − u, u ∈ R and n ∈N, such that

lim
n→∞
|rn(u)| = 0

uniformly with respect to u.

In other words, for n sufficiently large

sup
u
|rn(u)| = sup

u
|Hn(u) − u| ≤

1
µ(n)

,

holds.

The symbol [a] will denote the greatest integer not greater than a.

3. Convergence Results

Let us take the following type nonlinear Durrmeyer operators,

(
NDn f

)
(x) =

1∫
0

Kn
(
x, t, f (t)

)
dt,

where

Kn
(
x, t, f (t)

)
= (n + 1)

n∑
k=0

pn,k (x) pn,k(t)Hn( f (t)) = Fn(x, t)Hn( f (t)).

We will consider that this operator defined for every f ∈ Dom NDn, where Dom NDn is the subset of X on
which NDn is well-defined.
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As before, we let

fx(t) =


f (t) − f (x+) , x < t ≤ 1

0 , t = x
f (t) − f (x−) , 0 ≤ t < x

, (4)

and
1∨
0
ψ(

∣∣∣ fx∣∣∣) is the total variation of ψ(
∣∣∣ fx∣∣∣) on [0, 1].

We are now ready to establish the main results of this study:

Let DBV(I) denotes the class of differentiable functions defined on a set I ⊂ R, whose derivatives are
bounded variation on I and will be denoted as

DBV(I) =
{
f : f ′ ∈ BV(I)

}
.

Theorem 1. Let ψ ∈ Ψ and f be a function with derivatives of bounded variation on [0, 1]. Then for every x ∈ (0, 1) ,
we have for sufficiently large n,

∣∣∣(NDn f
)

(x) − f (x)
∣∣∣ ≤ ∣∣∣∣∣ f ′(x+) − f ′(x−)

2

∣∣∣∣∣
√

2nx(1 − x) + 2
n2 (5)

+
2 (n + 1)

n2x(1 − x)

[
√

n]∑
k=1

x+ 1−x
k∨

x− x
k

( f ′x) +
1
µ(n)

,

where
b∨
a

( f ′x) is the total variation of f ′x on [a, b].

Theorem 2. Let ψ ∈ Ψ and f ∈ X be such that ψo
∣∣∣ f ∣∣∣ ∈ DBV ([0, 1]) . Then for every x ∈ (0, 1) , we have for

sufficiently large n,

∣∣∣(NDn f
)

(x) − f (x)
∣∣∣ ≤ (

ψo
∣∣∣ f ∣∣∣)′ (x−) −

(
ψo

∣∣∣ f ∣∣∣)′ (x+)

2

√
2nx(1 − x) + 2

n2

+
2 (n + 1)

n2x(1 − x)

[
√

n]∑
k=1

x+ 1−x
k∨

x− x
k

(
ψo

∣∣∣ f ∣∣∣)′
x

+
1
µ(n)

.

4. Auxiliary Result

In this section we recall some certain results, which are necessary to prove our theorems.

Lemma 1([27]). For (Dnts)(x), s = 0, 1, 2, one has

(Dn1)(x) = 1, (Dnt)(x) = x +
1 − 2x
n + 2

(Dnt2)(x) = x2 +
[4n − 6(n + 1)x]
(n + 1) (n + 2)

x +
2

(n + 2) (n + 3)
.

For proof of this Lemma see Lorentz [27].

By direct calculation, we find;

(Dn (t − x)2)(x) ≤
2nx(1 − x) + 2

n2 , (Dn (t − x))(x) =
1 − 2x
n + 2

.
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Lemma 2 ([22] and [23]). For all x ∈ (0, 1) and for each n ∈N, one has

λn(x, z) =:

z∫
0

Fn(x,u)du ≤
B(x)

(x − z)βnγ/β
, 0 ≤ z < x, (6)

and

1 − λn(x, z) =

1∫
z

Fn(x,u)du ≤
B(x)

(z − x)βnγ/β
, x < z < 1. (7)

5. Proof of the Theorems

Proof of Theorem 1. In general, a singular integral operator may be written in the form

(
Tn f

)
(x) =

b∫
a

f (t)Kn(x, t)dt, (8)

where Kn(x, t) is the kernel function, defined for a ≤ x, t ≤ b, which the property that for functions f (x) of a
certain class in a certain sense,

(
Tn f

)
(x) converges to f (x) as n→∞.

We can write the difference between
(
NDn f

)
(x) and f (x) as a singular Stieltjes integral as follows;

(
NDn f

)
(x) − f (x) =

1∫
0

Hn
(

f (t)
)

Fn(x, t)dt − f (x)

=

1∫
0

[
Hn

(
f (t)

)
− f (t)

]
Fn(x, t)dt +

1∫
0

[
f (t) − f (x)

]
Fn(x, t)dt = In,1(x) + In,2(x).

Firstly, we consider

In,2(x) =

1∫
0

[ f (t) − f (x)]Fn(x, t)dt. (9)

Since f (t) ∈ DBV[0, 1] we can rewrite (9) as follows:

In,2(x) =

x∫
0

[ f (t) − f (x)]Fn(x, t)dt +

1∫
x

[ f (t) − f (x)]Fn(x, t)dt

= −

x∫
0


x∫

t

f ′(u) du

 Fn(x, t)dt +

1∫
x


t∫

x

f ′(u) du

 Fn(x, t)dt

= −I1(x) + I2(x),

where

I1(x) =

x∫
0


x∫

t

f ′(u) du

 Fn(x, t)dt (10)
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and

I2(x) =

1∫
x


t∫

x

f ′(u) du

 Fn(x, t)dt. (11)

Following Karsli [21], for any f (t) ∈ DBV[0, 1], we decompose f (t) into four parts as

f ′(t) =
f ′(x+) + f ′(x−)

2
+ f ′x(t) +

f ′(x+) − f ′(x−)
2

s1n(t − x) + δx(t)
[

f ′(x) −
f ′(x+) + f ′(x−)

2

]
,

where

δx(t) =

{
1 , x = t
0 , x , t .

If we use this equality in (10) and (11), we have the following expressions;

I1(x) =
f ′(x+) + f ′(x−)

2

x∫
0

(x − t)Fn(x, t)dt +

x∫
0


x∫

t

f ′x(u) du

 Fn(x, t)dt

−
f ′(x+) − f ′(x−)

2

x∫
0

(x − t)Fn(x, t)dt +

[
f ′(x) −

f ′(x+) + f ′(x−)
2

] x∫
0


x∫

t

δx(u) du

 Fn(x, t)dt.

It is obvious that
x∫

t
δx(u) du = 0. From the fact that, we get

I1(x) =

[
f ′(x+) + f ′(x−)

2
−

f ′(x+) − f ′(x−)
2

] x∫
0

(x − t)Fn(x, t)dt +

x∫
0


x∫

t

f ′x(u) du

 Fn(x, t)dt. (12)

Using a similar method, for evaluating I2(x), we find that

I2(x) =

[
f ′(x+) + f ′(x−)

2
−

f ′(x+) − f ′(x−)
2

] 1∫
x

(t − x)Fn(x, t)dt +

1∫
x


t∫

x

f ′x(u) du

 Fn(x, t)dt. (13)

Combining (12) and (13), we get

−I1(x) + I2(x) =
f ′(x+) + f ′(x−)

2

1∫
0

(t − x)Fn(x, t)dt +
f ′(x+) − f ′(x−)

2

1∫
0

|t − x|Fn(x, t)dt

−

x∫
0


x∫

t

f ′x(u) du

 Fn(x, t)dt +

1∫
x


t∫

x

f ′x(u) du

 Fn(x, t)dt.

From the last expression, we can rewrite (9) as follows:

In,2(x) =
f ′(x+) + f ′(x−)

2

1∫
0

(t − x)Fn(x, t)dt +
f ′(x+) − f ′(x−)

2

1∫
0

|t − x|Fn(x, t)dt (14)
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−

x∫
0


x∫

t

f ′x(u) du

 Fn(x, t)dt +

1∫
x


t∫

x

f ′x(u) du

 Fn(x, t)dt.

On the other hand, since

1∫
0
|t − x|Fn(x, t)dt = (Dn |t − x|) (x) and

1∫
0

(t − x)Fn(x, t)dt = (Dn (t − x)) (x),

then using these equalities in (14) and taking absolute value, we can re-expressed (14) as follows;∣∣∣In,2(x)
∣∣∣ ≤ ∣∣∣∣∣ f ′(x+) + f ′(x−)

2

∣∣∣∣∣ |(Dn (t − x)) (x)| +
∣∣∣∣∣ f ′(x+) − f ′(x−)

2

∣∣∣∣∣ |(Dn |t − x|) (x)|

+

∣∣∣∣∣∣∣∣−
x∫

0


x∫

t

f ′x(u) du

 Fn(x, t)dt

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
1∫

x


t∫

x

f ′x(u) du

 Fn(x, t)dt

∣∣∣∣∣∣∣∣ . (15)

According to (6), we write

x∫
0


x∫

t

f ′x(u) du

 Fn(x, t)dt =

x∫
0


x∫

t

f ′x(u) du

 ∂∂t
λn(x, t)dt. (16)

Using partial integration on the right hand side of (16), we obtain

x∫
0


x∫

t

f ′x(u) du

 ∂∂t
λn(x, t)dt =

x∫
0

f ′x(t)λn(x, t) dt.

Thus ∣∣∣∣∣∣∣∣−
x∫

0


x∫

t

f ′x(u) du

 Fn(x, t)dt

∣∣∣∣∣∣∣∣ ≤
x∫

0

∣∣∣ f ′x(t)
∣∣∣ λn(x, t) dt

and ∣∣∣∣∣∣∣∣−
x∫

0


x∫

t

f ′x(u) du

 Fn(x, t)

∣∣∣∣∣∣∣∣ ≤
x− x

√
n∫

0

∣∣∣ f ′x(t)
∣∣∣ λn(x, t) dt +

x∫
x− x

√
n

∣∣∣ f ′x(t)
∣∣∣ λn(x, t) dt.

Since f ′x(x) = 0 and λn(x, t) ≤ 1, one has

x∫
x− x

√
n

∣∣∣ f ′x(t)
∣∣∣ λn(x, t) dt =

x∫
x− x

√
n

∣∣∣ f ′x(t) − f ′x(x)
∣∣∣ λn(x, t) dt ≤

x∫
x− x

√
n

x∨
t

( f ′x) dt.

Make the change of variables t = x − x
u , then

x∫
x− x

√
n

x∨
t

( f ′x) dt ≤
x∨

x− x
√

n

( f ′x)

x∫
x− x

√
n

dt.
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Besides from (6), we can write

x− x
√

n∫
0

∣∣∣ f ′x(t)
∣∣∣ λn(x, t) dt ≤

2nx(1 − x) + 2
n2

x− x
√

n∫
0

x∨
t

( f ′x)
dt

(x − t)2 .

Make the change of variables t = x − x
u again, we have

x− x
√

n∫
0

x∨
t

( f ′x)
dt

(x − t)2 =

√
n∫

1

x∨
x− x

u

( f ′x)
( x

u2 ) du
(− x

u )2 =
1
x

[
√

n]∑
k=1

x∨
x− x

k

( f ′x)

and hence, we obtained∣∣∣∣∣∣∣∣−
x∫

0


x∫

t

f ′x(u) du

 Fn(x, t)dt

∣∣∣∣∣∣∣∣ ≤ x
√

n

x∨
x− x

√
n

( f ′x) +
2nx(1 − x) + 2

n2x

[
√

n]∑
k=1

x∨
x− x

k

( f ′x).

Since

x
√

n

x∨
x− x

√
n

( f ′x) ≤
2x
n

[
√

n]∑
k=1

x∨
x− x

k

( f ′x),

it follows that

x
√

n

x∨
x− x

√
n

( f ′x) +
2nx(1 − x) + 2

n2x

[
√

n]∑
k=1

x∨
x− x

k

( f ′x) ≤
2x
n

[
√

n]∑
k=1

x∨
x− x

k

( f ′x) +
2nx(1 − x) + 2

n2x

[
√

n]∑
k=1

x∨
x− x

k

( f ′x)

≤
2 (n + 1)

n2x

[
√

n]∑
k=1

x∨
x− x

k

( f ′x).

Therefore∣∣∣∣∣∣∣∣−
x∫

0


x∫

t

f ′x(u) du

 Fn(x, t)dt

∣∣∣∣∣∣∣∣ ≤ 2 (n + 1)
n2x

[
√

n]∑
k=1

x∨
x− x

k

( f ′x).

Using a similar method we have∣∣∣∣∣∣∣∣
1∫

x


t∫

x

f ′x(u) du

 Fn(x, t)dt

∣∣∣∣∣∣∣∣ ≤ 2 (n + 1)
n2(1 − x)

[
√

n]∑
k=1

x+ 1−x
k∨

x

( f ′x).

Collecting the estimates, we get (5), i.e.,

∣∣∣In,2(x)
∣∣∣ ≤ ∣∣∣∣∣ f ′(x+) − f ′(x−)

2

∣∣∣∣∣
√

2nx(1 − x) + 2
n2 +

2 (n + 1)
n2x(1 − x)

[
√

n]∑
k=1

x+ 1−x
k∨

x− x
k

( f ′x).

In view of c) one has

∣∣∣In,1(x)
∣∣∣ =

∣∣∣∣∣∣∣∣
1∫

0

[
Hn

(
f (t)

)
− f (t)

]
Fn(x, t)dt

∣∣∣∣∣∣∣∣ ≤
1∫

0

∣∣∣Hn
(

f (t)
)
− f (t)

∣∣∣ Fn(x, t)dt

≤
1
µ(n)



H. Karsli / Filomat 31:5 (2017), 1367–1380 1375

holds true. This completes the proof of the theorem.

Proof of Theorem 2. We can write the difference between
(
NDn f

)
(x) and f (x) as a singular Stieltjes

integral as follows;

∣∣∣(NDn f
)

(x) − f (x)
∣∣∣ =

∣∣∣∣∣∣∣∣
1∫

0

Hn
(

f (t)
)

Fn(x, t)dt − f (x)

∣∣∣∣∣∣∣∣
≤

1∫
0

∣∣∣Hn
(

f (t)
)
−Hn

(
f (x)

)∣∣∣ Fn(x, t)dt +

1∫
0

∣∣∣Hn
(

f (x)
)
− f (x)

∣∣∣ Fn(x, t)dt

≤

1∫
0

ψ
(∣∣∣ f (t) − f (x)

∣∣∣) Fn(x, t)dt +

1∫
0

∣∣∣Hn
(

f (x)
)
− f (x)

∣∣∣ Fn(x, t)dt

= In,1(x) + In,2(x).

Note that for a non-decreasing function ψ

−ψ
(∣∣∣ f (t) − f (x)

∣∣∣) ≤ ψ (∣∣∣ f (t)
∣∣∣) − ψ (∣∣∣ f (x)

∣∣∣)
holds true. Since ψ

(∣∣∣ f (t)
∣∣∣) ∈ DBV[0, 1] we can rewrite (9) as follows:

In,1(x) =

0∫
x

[
ψ

(∣∣∣ f (t)
∣∣∣) − ψ (∣∣∣ f (x)

∣∣∣)] Fn(x, t)dt +

x∫
1

[ψ
(∣∣∣ f (t)

∣∣∣) − ψ (∣∣∣ f (x)
∣∣∣)]Fn(x, t)dt

=

x∫
0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′ (u) du

 Fn(x, t)dt +

1∫
x


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′ (u) du

 Fn(x, t)dt

= I1(x) − I2(x),

where

I1(x) =

x∫
0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′ (u) du

 Fn(x, t)dt (17)

and

I2(x) =

1∫
x


t∫

x

(
ψo

∣∣∣ f ∣∣∣)′ (u) du

 Fn(x, t)dt. (18)

For any
(
ψo

∣∣∣ f ∣∣∣) (t) ∈ DBV[0, 1], we decompose
(
ψo

∣∣∣ f ∣∣∣) (t) into four parts as

(
ψo

∣∣∣ f ∣∣∣)′ (t) =

(
ψo

∣∣∣ f ∣∣∣)′ (x+) +
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2
+

(
ψo

∣∣∣ f ∣∣∣)′
x

(t)

+

(
ψo

∣∣∣ f ∣∣∣)′ (x+) −
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2
s1n(t − x) + δx(t)

(ψo
∣∣∣ f ∣∣∣)′ (x) −

(
ψo

∣∣∣ f ∣∣∣)′ (x+) +
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2

 ,
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where

δx(t) =

{
1 , x = t
0 , x , t .

If we use this equality in (17) and (18), we have the following expressions.

I1(x) =

x∫
0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′ (x+) +
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2
+

(
ψo

∣∣∣ f ∣∣∣)′
x

(u)

+

(
ψo

∣∣∣ f ∣∣∣)′ (x+) −
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2
s1n(u − x)

+δx(u)

(ψo
∣∣∣ f ∣∣∣)′ (x) −

(
ψo

∣∣∣ f ∣∣∣)′ (x+) +
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2

 du

 Fn(x, t)dt

and

I2(x) =

1∫
x


t∫

x

(
ψo

∣∣∣ f ∣∣∣)′ (x+) +
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2
+

(
ψo

∣∣∣ f ∣∣∣)′
x

(u)

+

(
ψo

∣∣∣ f ∣∣∣)′ (x+) −
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2
s1n(u − x)

+δx(u)

(ψo
∣∣∣ f ∣∣∣)′ (x) −

(
ψo

∣∣∣ f ∣∣∣)′ (x+) +
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2

 du

 Fn(x, t)dt.

Firstly, we evaluate I1(x).

I1(x) =

(
ψo

∣∣∣ f ∣∣∣)′ (x+) +
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2

x∫
0

(x − t)Fn(x, t)dt

+

x∫
0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 Fn(x, t)dt −

(
ψo

∣∣∣ f ∣∣∣)′ (x+) −
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2

x∫
0

(x − t)Fn(x, t)dt

+

(ψo
∣∣∣ f ∣∣∣)′ (x) −

(
ψo

∣∣∣ f ∣∣∣)′ (x+) +
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2


x∫

0


x∫

t

δx(u) du

 Fn(x, t)dt

It is obvious that
x∫

t
δx(u) du = 0. From the fact that, we get

I1(x) =

(
ψo

∣∣∣ f ∣∣∣)′ (x+) +
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2

x∫
0

(x − t)Fn(x, t)dt +

x∫
0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 Fn(x, t)dt

−

(
ψo

∣∣∣ f ∣∣∣)′ (x+) −
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2

x∫
0

(x − t)Fn(x, t)dt. (19)
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Using a similar method, for evaluating I2(x), we find that

I2(x) =

(
ψo

∣∣∣ f ∣∣∣)′ (x+) +
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2

1∫
x

(t − x)Fn(x, t)dt +

1∫
x


t∫

x

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 Fn(x, t)dt

−

(
ψo

∣∣∣ f ∣∣∣)′ (x+) −
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2

1∫
x

(t − x)Fn(x, t)dt. (20)

Combining (19) and (20), we get

I1(x) − I2(x) =

(
ψo

∣∣∣ f ∣∣∣)′ (x+) +
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2

1∫
0

(x − t)Fn(x, t)dt

−

(
ψo

∣∣∣ f ∣∣∣)′ (x+) −
(
ψo

∣∣∣ f ∣∣∣)′ (x−)

2

1∫
0

|t − x|Fn(x, t)dt

+

x∫
0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 Fn(x, t)dt −

1∫
x


t∫

x

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 Fn(x, t)dt.

On the other hand, note that

1∫
0

|t − x|Fn(x, t)dt = Dn(|t − x| ; x) ≤
√(

Dn (t − x)2
)

(x) =

√
2nx(1 − x) + 2

n2

and

1∫
0

(t − x)Fn(x, t)dt = (Dn (t − x)) (x) =
1 − 2x
n + 2

.

Using these equalities we can re-expressed I1(x) − I2(x) as follows;

I1(x) − I2(x) ≤

(
ψo

∣∣∣ f ∣∣∣)′ (x−) −
(
ψo

∣∣∣ f ∣∣∣)′ (x+)

2

√
2nx(1 − x) + 2

n2

+

x∫
0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 Fn(x, t)dt −

1∫
x


t∫

x

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 Fn(x, t)dt.

Since
x∫

0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 Fn(x, t)dt =

x∫
0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 ∂∂t
λn(x, t)dt. (21)

and using partial integration on the right hand side of (21), we obtain

x∫
0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 ∂∂t
λn(x, t)dt =

x∫
0

(
ψo

∣∣∣ f ∣∣∣)′
x

(t)λn(x, t) dt
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and

x∫
0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 ∂∂t
λn(x, t)dt =

x− x
√

n∫
0

(
ψo

∣∣∣ f ∣∣∣)′
x

(t)λn(x, t) dt +

x∫
x− x

√
n

(
ψo

∣∣∣ f ∣∣∣)′
x

(t)λn(x, t) dt.

Since
(
ψo

∣∣∣ f ∣∣∣)′
x

(x) = 0 and λn(x, t) ≤ 1, one has

x∫
x− x

√
n

(
ψo

∣∣∣ f ∣∣∣)′
x

(t)λn(x, t) dt ≤

x∫
x− x

√
n

x∨
t

(
ψo

∣∣∣ f ∣∣∣)′
x

dt.

Make the change of variables t = x − x
u , then

x∫
x− x

√
n

x∨
t

(
ψo

∣∣∣ f ∣∣∣)′
x

dt ≤
x∨

x− x
√

n

(
ψo

∣∣∣ f ∣∣∣)′
x

x∫
x− x

√
n

dt.

In view of (6), we can write

x− x
√

n∫
0

(
ψo

∣∣∣ f ∣∣∣)′
x
λn(x, t) dt ≤

2nx(1 − x) + 2
n2

x− x
√

n∫
0

x∨
t

(
ψo

∣∣∣ f ∣∣∣)′
x

dt
(x − t)2 .

Make the change of variables t = x − x
u again, we have

2nx(1 − x) + 2
n2

x− x
√

n∫
0

x∨
t

(
ψo

∣∣∣ f ∣∣∣)′
x

dt
(x − t)2 =

2nx(1 − x) + 2
n2

√
n∫

1

x∨
x− x

u

(
ψo

∣∣∣ f ∣∣∣)′
x

( x
u2 ) du
(− x

u )2

=
2nx(1 − x) + 2

n2x

[
√

n]∑
k=1

x∨
x− x

k

(
ψo

∣∣∣ f ∣∣∣)′
x

and hence, we obtained

x∫
0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 ∂∂t
λn(x, t)dt ≤

x
√

n

x∨
x− x

√
n

(
ψo

∣∣∣ f ∣∣∣)′
x

+
2nx(1 − x) + 2

n2x

[
√

n]∑
k=1

x∨
x− x

k

(
ψo

∣∣∣ f ∣∣∣)′
x
.

Since

x
√

n

x∨
x− x

√
n

( f ′x) ≤
2x
n

[
√

n]∑
k=1

x∨
x− x

k

( f ′x),

it follows that

x
√

n

x∨
x− x

√
n

(
ψo

∣∣∣ f ∣∣∣)′
x

+
2nx(1 − x) + 2

n2x

[
√

n]∑
k=1

x∨
x− x

k

(
ψo

∣∣∣ f ∣∣∣)′
x

≤
2x
n

[
√

n]∑
k=1

x∨
x− x

k

(
ψo

∣∣∣ f ∣∣∣)′
x

+
2nx(1 − x) + 2

n2x

[
√

n]∑
k=1

x∨
x− x

k

(
ψo

∣∣∣ f ∣∣∣)′
x
≤

2 (n + 1)
n2x

[
√

n]∑
k=1

x∨
x− x

k

(
ψo

∣∣∣ f ∣∣∣)′
x
.
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Therefore

x∫
0


x∫

t

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 ∂∂t
λn(x, t)dt ≤

2 (n + 1)
n2x

[
√

n]∑
k=1

x∨
x− x

k

(
ψo

∣∣∣ f ∣∣∣)′
x
.

By the same way we have

−

1∫
x


t∫

x

(
ψo

∣∣∣ f ∣∣∣)′
x

(u) du

 Fn(x, t)dt ≤
2 (n + 1)
n2(1 − x)

[
√

n]∑
k=1

x+ 1−x
k∨

x

(
ψo

∣∣∣ f ∣∣∣)′
x
.

Thus, one has

In,1(x) ≤

(
ψo

∣∣∣ f ∣∣∣)′ (x−) −
(
ψo

∣∣∣ f ∣∣∣)′ (x+)

2

√
2nx(1 − x) + 2

n2 +
2 (n + 1)

n2x(1 − x)

[
√

n]∑
k=1

x+ 1−x
k∨

x− x
k

(
ψo

∣∣∣ f ∣∣∣)′
x
.

In view of (c) we obtain

In,2(x) =

1∫
0

∣∣∣Hn
(

f (t)
)
− f (t)

∣∣∣ Fn(x, t)dt ≤
1
µ(n)

holds for sufficiently large n. Collecting the above estimates the proof of the Theorem 2 is now complete.
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[5] R. Bojanić, An estimate of the rate of convergence for Fourier series of functions of bounded variation, Publ. l’Inst. Math. 26
(1979), pp. 57–60.
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