Comparability of Lower Attouch-Wets Topologies

Marco Rosa ${ }^{\text {a }}$, Paolo Vitolo ${ }^{\text {a }}$
${ }^{a}$ Dipartimento di Matematica, Informatica ed Economia, Università degli studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza (Italy)

Abstract

Beer and Di Concilio [4] have given necessary and sufficient conditions for a two-sided AttouchWets topology to contain another on the hyperspace of non-empty closed subsets of a metrizable space as determined by metrics compatible with the topology. In the present paper, we characterize comparability of lower Attouch-Wets topologies as determined by compatible metrics.

1. Introduction

In the literature there are many topologies that can be defined on the hyperspace $C L(X)$ of a metrizable space X, i.e. the collection of all non-empty closed subsets of X. We refer to the reader to [3] for comprehensive discussion of these. One of the best known is undoubtedly the Hausdorff metric topology $\tau_{H_{d}}$. Even if this topology works well for bounded sets, it is in general too strong for applications to unbounded sets. For instance, if E_{n} denotes the line $y=x / n$ in \mathbb{R}^{2} and E is the x-axis, then the sequence $\left(E_{n}\right)_{n \in \mathbb{N}}$ does not converge to E with respect to $\tau_{H_{d}}$.

A weakening of the Hausdorff metric topology that is more useful in applications is the Attouch-Wets topology (which is also called "bounded-Hausdorff topology"). It appears for the first time as a convergence in Mosco's paper [7], and was later deeply studied by Attouch and Wets [1, 2].

Given a metric space (X, d), the Attouch-Wets topology $\tau_{A W_{d}}$ on $C L(X)$ is defined as the topology that $C L(X)$ inherits from the space $C(X, \mathbb{R})$ of all continuous real-valued functions on X, equipped with the topology of uniform convergence on bounded subsets of X, under the identification $E \leftrightarrow d(\cdot, E)$, where $d(\cdot, E): x \mapsto d(x, E)=\inf _{y \in E} d(x, y)$.

For our purposes, we split this topology in two halves: the upper and the lower Attouch-Wets topologies, respectively denoted by $\tau_{A W_{d}}^{+}$and $\tau_{A W_{d}}^{-}$.

On a metrizable space X, let $\mathfrak{M}(X)$ be the set of all compatible metrics. For any pair $d, \rho \in \mathfrak{M}(X)$ we consider the topologies $\tau_{A W_{d}}^{-}, \tau_{A W_{d}}^{+}, \tau_{A W_{d}}$ and $\tau_{A W_{\rho}}^{-}, \tau_{A W_{\rho}}^{+}, \tau_{A W_{\rho}}$. In [4], the following theorem is established by Beer and Di Concilio to characterize $\tau_{A W_{d}} \subseteq \tau_{A W_{\rho}}$. Even if the comparison of upper Attouch-Wets topologies was never explicitly characterized, it can be easily proved in a similar way that the same condition characterizes also $\tau_{A w_{d}}^{+} \subseteq \tau_{A w_{p}}^{+}$.

Theorem 1.1. ([4, Theorem 3.1]) Let X be a metrizable space and let $d, \rho \in \mathfrak{M}(X)$. The following are equivalent:
(1) $\tau_{A W_{d}} \subseteq \tau_{A W_{\rho}}$ on $\mathrm{CL}(X)$.

[^0](2) $\tau_{A W_{d}}^{+} \subseteq \tau_{A W_{\rho}}^{+}$on $\mathrm{CL}(X)$.
(3) $\mathcal{B}_{d} \subseteq \mathcal{B}_{\rho}$ and $\iota:(X, \rho) \rightarrow(X, d)$ is strongly uniformly continuous on \mathcal{B}_{d}.

Here, in condition (3), the symbol ι denotes the identity function and \mathcal{B}_{d} is the collection of d-bounded subsets of X. Strong uniform continuity is a stronger (as the name suggests) concept than uniform continuity. We will see its definition later on.

Of course the previous result gives also a condition to characterize $\tau_{A w_{d}}=\tau_{A N_{\rho}}$ and $\tau_{A W_{d}}^{+}=\tau_{A W_{\rho}}^{+}$. Another condition to characterize the equality $\tau_{A W_{d}}=\tau_{A W_{\rho}}$ was found in [3], and again it can be easily shown, by a slight modification of the proof, that the same condition also characterizes $\tau_{A w_{d}}^{+}=\tau_{A w_{p}}^{+}$.
Theorem 1.2. ([3, Theorem 3.3.3]) Let X be a metrizable space and let $d, \rho \in \mathfrak{M}(X)$. The following are equivalent:
(1) $\tau_{A W_{d}}=\tau_{A W_{p}}$ on $\mathrm{CL}(X)$.
(2) $\tau_{A W_{d}}^{+}=\tau_{A W_{\rho}}^{+}$on $\mathrm{CL}(X)$.
(3) $\mathcal{B}_{d}=\mathcal{B}_{\rho}$ and $\iota:(X, \rho) \rightarrow(X, d)$ is bi-uniformly continuous on \mathcal{B}_{d}.

Note that condition (3) of Theorem 1.2 is seemingly weaker than what one expects from Theorem 1.1.
Our aim is to characterize the inclusion $\tau_{A w_{d}}^{-} \subseteq \tau_{A w_{\rho}}^{-}$, using again a condition on the collections of d bounded and ρ-bounded sets, and on strong uniform continuity of the identity map on a certain collection of sets. We also show that our condition is strictly weaker than the condition for $\tau_{A w_{d}}^{+} \subseteq \tau_{A w_{\rho}}^{+}$or equivalently, than the condition for $\tau_{A w_{d}} \subseteq \tau_{A w_{\rho}}$.

2. Preliminaries and Notation

In a metric space (X, d), the ε-ball about a point x will be denoted, as usual, by $B_{\varepsilon}^{d}(x)$. Given a set $A \subseteq X$ we denote by $B_{\varepsilon}^{d}[A]$ the ε-expansion of A, namely $B_{\varepsilon}^{d}[A]=\bigcup_{x \in A} B_{\varepsilon}^{d}(x)$.

A local base at $E \in \mathrm{CL}(X)$ with respect to the topologies $\tau_{A w_{d}}^{-}$and $\tau_{A N_{d}}^{+}$, is constituted by all collections of the form

$$
\left\{F \in \mathrm{CL}(X) \mid E \cap B \subseteq B_{\varepsilon}^{d}[F]\right\}
$$

and, respectively,

$$
\left\{F \in \mathrm{CL}(X) \mid F \cap B \subseteq B_{\varepsilon}^{d}[E]\right\}
$$

where B runs over the d-bounded subsets of X and $\varepsilon>0$. Now the Attouch-Wets topology can be defined as $\tau_{A W_{d}}=\tau_{A W_{d}}^{-} \vee \tau_{A W_{d}}^{+}$.

Consider the filter Σ_{d} on $\mathrm{CL}(X) \times \mathrm{CL}(X)$ having as a base all sets of the form

$$
U_{d}\left[x_{0}, n\right]=\left\{(E, F) \left\lvert\, E \cap B_{n}^{d}\left(x_{0}\right) \subseteq B_{\frac{1}{n}}^{d}[F]\right. \text { and } F \cap B_{n}^{d}\left(x_{0}\right) \subseteq B_{\frac{1}{n}}^{d}[E]\right\}
$$

when n runs over \mathbb{N} and x_{0} is an arbitrary fixed point of X. It has been shown in [3, Prop. 3.1.6], that Σ_{d} is a uniformity and it is compatible with $\tau_{A w_{d}}$.

Given $x_{0} \in X$, arbitrarily fixed point, consider the filters Σ_{d}^{-}and Σ_{d}^{+}having as a base respectively all sets of the form

$$
U_{d}^{-}\left[x_{0}, n\right]=\left\{(E, F) \left\lvert\, E \cap B_{n}^{d}\left(x_{0}\right) \subseteq B_{\frac{1}{n}}^{d}[F]\right.\right\}
$$

and

$$
U_{d}^{+}\left[x_{0}, n\right]=\left\{(E, F) \left\lvert\, F \cap B_{n}^{d}\left(x_{0}\right) \subseteq B_{\frac{1}{n}}^{d}[E]\right.\right\}
$$

when n runs over \mathbb{N}. It can be easily shown using the same technique of [3, Prop. 3.1.6], that both Σ_{d}^{-}and Σ_{d}^{+}are quasi-uniformities and that they are compatible respectively with $\tau_{A w_{d}}^{-}$and $\tau_{A W_{d}}^{+}$.

Definition 2.1. Let (X, ρ) and (Y, d) be metric spaces. A function $f:(X, \rho) \rightarrow(Y, d)$ is strongly uniformly continuous on a set $A \subseteq X$ if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \in A \quad \forall y \in X \quad[\rho(x, y)<\delta \Longrightarrow d(f(x), f(y))<\varepsilon] .
$$

We say that f is strongly uniformly continuous on a collection \mathcal{A} if it is strongly uniformly continuous on each $A \in \mathcal{A}$.

This notion of continuity was investigated and explicitly defined in [5]. A basic reference for strong uniform continuity is [6]. Note that strong uniform continuity on a set A is stronger than uniform continuity on A.

Let X be a metrizable space and let $d, \rho \in \mathfrak{M}(X)$. It follows immediately from the definition that the identity $\iota:(X, \rho) \rightarrow(X, d)$ is strongly uniformly continuous on a set A if, and only if,

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \in A \quad B_{\delta}^{\rho}(x) \subseteq B_{\varepsilon}^{d}(x) .
$$

For every compatible metric d on X, we denote by D_{d} the gap between two non-empty closed sets $E, F \in C L(X)$, defined as:

$$
D_{d}(E, F)=\inf _{x \in E} \inf _{y \in F} d(x, y)
$$

3. When are Lower Attouch-Wets Topologies Comparable?

In this section we give necessary and sufficient conditions for $\tau_{A W_{d}}^{-} \subseteq \tau_{A W_{\rho}}^{-}$on $\mathrm{CL}(X)$.
Recall that $A \subseteq X$ is d-uniformly discrete with respect to $\varepsilon>0$ if $d(x, y) \geq \varepsilon$ for every distinct $x, y \in A$. A set A is d-uniformly discrete if there exists $\varepsilon>0$ such that A is d-uniformly discrete with respect to ε.

A set $A \subseteq X$ is d-totally bounded if for every $\varepsilon>0$ there exists $F \subseteq X$ finite such that $A \subseteq B_{\varepsilon}^{d}[F]$. When we say that A is not d-totally bounded with respect to $\sigma>0$ we mean of course that $A \nsubseteq B_{\sigma}^{d}[F]$ for every finite $F \subseteq X$.

We use the following notations:

$$
\begin{aligned}
& \mathcal{B}_{d}=\{E \subseteq X \mid E \text { is } d \text {-bounded }\} \\
& \mathcal{D}_{d}=\{E \subseteq X \mid E \text { is } d \text {-uniformly discrete }\} .
\end{aligned}
$$

We first need some preliminary results. The following two lemmas deal with the comparison of the lower Attouch-Wets topology $\tau_{A W_{d}}^{-}$and the lower Vietoris topology τ_{V}^{-}, and will be useful to prove our main theorem. Recall that a subbase for τ_{V}^{-}is constituted by all collections of the form $V^{-}=\{E \in \operatorname{CL}(X) \mid E \cap V \neq$ \varnothing \}, where V runs over all open subsets of X.

Lemma 3.1. Let (X, d) be a metric space. Then $\tau_{V}^{-} \subseteq \tau_{A w_{d}}^{-}$.
Proof. Let $W \subseteq X$ be open and let $W^{-}=\{E \in C L(X) \mid E \cap W \neq \varnothing\}$ be a subbasic open set of τ_{V}^{-}. We show that W^{-}is open with respect to $\tau_{A W_{d}}^{-}$.

Let $E \in W^{-}$. Given $x \in E \cap W$, there exists $n_{0} \in \mathbb{N}$ such that $x \in B_{n_{0}}^{d}\left(x_{0}\right)$ and there exists $n_{1} \in \mathbb{N}$ such that $B_{\frac{1}{n_{1}}}^{d}(x) \subseteq W$. Set $n=\max \left\{n_{0}, n_{1}\right\}$. We prove $U_{d}^{-}\left[x_{0}, n\right](E) \subseteq W^{-}$. Indeed, if $F \in U_{d}^{-}\left[x_{0}, n\right](E)$, then $E \cap B_{n}^{d}\left(x_{0}\right) \subseteq B_{\frac{1}{n}}^{d}[F]$. Since $x \in E \cap B_{n}^{d}\left(x_{0}\right)$, there exists $y \in F$ such that $d(x, y)<\frac{1}{n}$. Therefore $y \in B_{\frac{1}{n}}^{d}(x) \subseteq W$ and then $y \in F^{n} \cap W \neq \varnothing$, that is $F \in W^{-}$.

Lemma 3.2. Let (X, d) be a metric space and let $E \in C L(X)$. If E is d-totally bounded, then every neighbourhood of E with respect to $\tau_{A w_{d}}^{-}$contains a neighbourhood of E with respect to τ_{V}^{-}. As a consequence, if (X, d) is totally bounded, then $\tau_{A W_{d}}^{-}=\tau_{V}^{-}$.

Proof. Let $U_{d}^{-}\left[x_{0}, n\right](E)$ be a basic neighbourhood of E with respect to $\tau_{A W_{d}}^{-}$. Since E is d-totally bounded, there exists $F \subseteq E$ finite such that $E \subseteq B_{\frac{1}{2 n}}^{d}[F]$.

Set $W_{z}=B_{\frac{1}{2 n}}^{d}(z)$ for every $z \in F$ and set $\mathcal{G}=\bigcap_{z \in F} W_{z}^{-}$. Then \mathcal{G} is a neighbourhood of E in τ_{V}^{-}, because each W_{z} is open in X and $z \in E \cap W_{z} \neq \varnothing$ for every $z \in F$.

We want to prove that $\mathcal{G} \subseteq U_{d}^{-}\left[x_{0}, n\right](E)$, that is $E \cap B_{n}^{d}\left(x_{0}\right) \subseteq B_{\frac{1}{n}}^{d}[G]$ for every $G \in \mathcal{G}$. Let $G \in \mathcal{G}$ and $x \in E \cap B_{n}^{d}\left(x_{0}\right)$. There exists $z \in F$ such that $x \in B_{\frac{1}{2 n}}^{d}(z)$. Since $G \in W_{z}^{-}$, there exists $y \in G \cap W_{z}$, and then $d(x, y) \leq d(x, z)+d(z, y)<\frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n}$. It follows that $x \in B_{\frac{1}{n}}^{d}[G]$ and therefore $E \cap B_{n}^{d}\left(x_{0}\right) \subseteq B_{\frac{1}{n}}^{d}[G]$.

We now prove our main result.
Theorem 3.3. Let X be a metrizable space and let $d, \rho \in \mathfrak{M}(X)$. The following are equivalent:
(1) $\tau_{A W_{d}}^{-} \subseteq \tau_{A W_{p}}^{-}$;
(2) $\mathcal{B}_{d} \cap \mathcal{D}_{d} \subseteq \mathcal{B}_{\rho}$, and $\iota:(X, \rho) \rightarrow(X, d)$ is strongly uniformly continuous on $\mathcal{B}_{d} \cap \mathcal{D}_{d}$;
(3) $\mathcal{B}_{d} \cap \mathcal{D}_{d} \subseteq \mathcal{B}_{\rho}$, and for every pair of sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in X, where either $\left\{x_{n} \mid n \in \mathbb{N}\right\}$ or $\left\{y_{n} \mid n \in \mathbb{N}\right\}$ is d-bounded and d-uniformly discrete,

$$
\lim _{n \rightarrow \infty} \rho\left(x_{n}, y_{n}\right)=0 \quad \Longrightarrow \quad \lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0
$$

(4) $\mathcal{B}_{d} \cap \mathcal{D}_{d} \subseteq \mathcal{B}_{\rho}$, and for every $E, F \in \mathrm{CL}(X)$, where at least one of them is d-bounded and d-uniformly discrete,

$$
D_{d}(E, F)>0 \quad \Longrightarrow \quad D_{\rho}(E, F)>0
$$

Proof. (1) \Rightarrow (2) We prove the first condition. On the contrary suppose that there exists $E \in \mathrm{CL}(X)$ which is d-bounded and d-uniformly discrete but not ρ-bounded.

Let $x_{1} \in E$. Since E is not ρ-bounded, for every $n \in \mathbb{N}$ we can choose a point $x_{n+1} \in E \backslash B_{n}^{\rho}\left[\left\{x_{1}, \ldots, x_{n}\right\}\right]$. Then $E^{\prime}=\left\{x_{n} \mid n \in \mathbb{N}\right\} \subseteq E$ is ρ-uniformly discrete.

For every $n \in \mathbb{N}$ set $E_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$. We first prove that $\left(E_{n}\right)_{n \in \mathbb{N}}$ converges to E^{\prime} with respect to $\tau_{A w_{\rho}}^{-}$.
Let $\varepsilon>0$ and let B be ρ-bounded. There exists $q \in \mathbb{N}$ such that $B \subseteq B_{q}^{\rho}\left(x_{1}\right)$. Then $E^{\prime} \cap B \subseteq\left\{x_{i} \mid \rho\left(x_{i}, x_{1}\right)<\right.$ $q\} \subseteq\left\{x_{1}, \ldots, x_{q}\right\}$. Therefore $E^{\prime} \cap B \subseteq B_{\varepsilon}^{\rho}\left[E_{n}\right]$ for every $n \geq q$. Hence $E_{n} \rightarrow E^{\prime}$ with respect to $\tau_{A W_{p}}^{-}$.

By (1) we have $E_{n} \rightarrow E^{\prime}$ with respect to $\tau_{A w_{d}}^{-}$. Consider the d-bounded set E : for every $\varepsilon>0$, eventually $E^{\prime}=E^{\prime} \cap E \subseteq B_{\varepsilon}^{d}\left[E_{n}\right]$. Since each E_{n} is finite, this would imply that E^{\prime} is d-totally bounded, a contradiction because E^{\prime} is infinite and d-uniformly discrete being contained in E.

We now prove strong uniform continuity of ι. Let E be d-uniformly discrete with respect to some $\sigma>0$ and d-bounded. There exists $h \in \mathbb{N}$ such that $E \subseteq B_{h}^{d}\left(x_{0}\right)$. Let $\varepsilon>0, k \in \mathbb{N}$ such that $k>\max \left\{h, \frac{1}{\sigma}, \frac{1}{\varepsilon}\right\}$ and consider $U_{d}^{-}\left[x_{0}, k\right](E)$. Since $\tau_{A W_{d}}^{-} \subseteq \tau_{A w_{\rho}}^{-}$, there exists $m \in \mathbb{N}$ such that $U_{\rho}^{-}\left[x_{0}, m\right](E) \subseteq U_{d}^{-}\left[x_{0}, k\right](E)$. Let $x \in E$ and $y \in X$ such that $\rho(x, y)<\frac{1}{m}$. We want to prove that $d(x, y)<\varepsilon$. Set $F=(E \backslash\{x\}) \cup\{y\}$. Then $E \cap B_{m}^{\rho}\left(x_{0}\right) \subseteq E \subseteq B_{\frac{1}{m}}^{\rho}[F]$, that is $F \in U_{\rho}^{-}\left[x_{0}, m\right](E)$. Thus $F \in U_{d}^{-}\left[x_{0}, k\right](E)$, that is $E \cap B_{k}^{d}\left(x_{0}\right) \subseteq B_{\frac{1}{k}}^{d}[F]$. Since $x \in E=E \cap B_{h}^{d}\left(x_{0}\right) \subseteq E \cap B_{k}^{d}\left(x_{0}\right)$, there exists $z \in F$ such that $d(z, x)<\frac{1}{k}$. Since E is uniformly discrete with respect to $\sigma>\frac{1}{k}$, it must be $z=y$ and therefore $d(x, y)<\frac{1}{k}<\varepsilon$.
$(2) \Rightarrow(1)$ Let $E \in \mathrm{CL}(X)$ and let $n \in \mathbb{N}$. Consider the neighbourhood $U_{d}^{-}\left[x_{0}, n\right](E)$ of E with respect to $\tau_{A N_{d}}^{-}$. We want to prove that it is also a neighbourhood of E with respect to $\tau_{A N_{\rho}}^{-}$.

If $E \cap B_{n}^{d}\left(x_{0}\right)$ is d-totally bounded, then by Lemma 3.2, the neighbourhood $U_{d}^{-}\left[x_{0}, n\right](E)=U_{d}^{-}\left[x_{0}, n\right](E \cap$ $\left.B_{n}^{d}\left(x_{0}\right)\right)$ of $E \cap B_{n}^{d}\left(x_{0}\right)$ contains a neighbourhood \mathcal{G} of $E \cap B_{n}^{d}\left(x_{0}\right)$ with respect to τ_{V}^{-}. Then \mathcal{G} is also a neighbourhood of E with respect to τ_{V}^{-}and finally, by Lemma 3.1, \mathcal{G} is a neighbourhood of E with respect to $\tau_{A W_{\rho}}^{-}$.

Otherwise, if $E \cap B_{n}^{d}\left(x_{0}\right)$ is not d-totally bounded with respect to some $\sigma>0$ (and in particular is infinite), then it is not d-totally bounded with respect to $\sigma^{\prime}=\min \left\{\sigma, \frac{1}{2 n}\right\}$. Therefore, by Zorn's lemma, we can construct a maximal set $E^{\prime} \subseteq E \cap B_{n}^{d}\left(x_{0}\right)$, which is (infinite and) d-uniformly discrete, such that

$$
E^{\prime} \subseteq E \cap B_{n}^{d}\left(x_{0}\right) \subseteq B_{\sigma^{\prime}}^{d}\left[E^{\prime}\right] \subseteq B_{\frac{1}{2 n}}^{d}\left[E^{\prime}\right]
$$

The set $E^{\prime}=E^{\prime} \cap B_{n}^{d}\left(x_{0}\right)$ is d-bounded and d-uniformly discrete, hence there exists $m_{0} \in \mathbb{N}$ such that $E^{\prime} \subseteq B_{m_{0}}^{\rho}\left(x_{0}\right)$. Moreover, since ι is strongly uniformly continuous on E^{\prime},

$$
\exists m_{1} \in \mathbb{N} \quad \forall x \in E^{\prime} \quad B_{\frac{1}{m_{1}}}^{\rho}(x) \subseteq B_{\frac{1}{2 n}}^{d}(x)
$$

Set $m=\max \left\{m_{0}, m_{1}\right\}$, we prove that $U_{\rho}^{-}\left[x_{0}, m\right](E) \subseteq U_{d}^{-}\left[x_{0}, n\right](E)$. Let $F \in U_{\rho}^{-}\left[x_{0}, m\right](E)$, that is $E \cap B_{m}^{\rho}\left(x_{0}\right) \subseteq$ $B_{\frac{1}{m}}^{\rho}[F]$. Given $z \in E \cap B_{n}^{d}\left(x_{0}\right)$, we claim that $z \in B_{\frac{1}{n}}^{d}[F]$.

Since $z \in E \cap B_{n}^{d}\left(x_{0}\right)$, there exists $x \in E^{\prime}$ such that $d(z, x)<\frac{1}{2 n}$. Thus $B_{\frac{1}{2 n}}^{d}(x) \subseteq B_{\frac{1}{n}}^{d}(z)$. Moreover $x \in E^{\prime} \subseteq$ $E \cap B_{m}^{\rho}\left(x_{0}\right) \subseteq B_{\frac{1}{m}}^{\rho}[F]$ and hence there exists $y \in F$ such that $\rho(x, y)<\frac{1}{m}$. Then $y \in B_{\frac{1}{m}}^{\rho}(x) \subseteq B_{\frac{1}{2 n}}^{d}(x) \subseteq B_{\frac{1}{n}}^{d}(z)$. Consequently, $z \in B_{\frac{1}{n}}^{d}[F]$ as claimed
(2) \Leftrightarrow (3) This follows from [8, Proposition 4.3].
$(2) \Leftrightarrow(4)$ This follows from [5, Theorem 3.1].
Now we show by a counterexample that the condition for $\tau_{A w_{d}}^{-} \subseteq \tau_{A W_{\rho}}^{-}$is strictly weaker that the condition for $\tau_{A W_{d}}^{+} \subseteq \tau_{A W_{\rho}}^{+}$(or equivalently than the condition for $\tau_{A W_{d}} \subseteq \tau_{A W_{p}}$).

Counterexample 3.4. Let $X=\mathbb{N}$ and, for every $n, m \in \mathbb{N}$, define $\rho(n, m)=|n-m|$ and $d(n, m)=\left|\frac{1}{n}-\frac{1}{m}\right|$. Then $\tau_{A w_{d}}^{-} \subseteq \tau_{A w_{\rho}}^{-}$but $\tau_{A w_{d}}^{+} \nsubseteq \tau_{A w_{\rho}}^{+}$and $\tau_{A w_{d}} \nsubseteq \tau_{A w_{\rho}}$.
Proof. Observe first that both d and ρ induce on \mathbb{N} the discrete topology.
Now, as (\mathbb{N}, d) is totally bounded, Lemma 3.2 gives $\tau_{A W_{d}}^{-}=\tau_{V}^{-}$. Therefore $\tau_{A W_{d}}^{-} \subseteq \tau_{A w_{p}}^{-}$by Lemma 3.1. Since \mathbb{N} is not ρ-bounded but is d-bounded, we have $\mathcal{B}_{d} \nsubseteq \mathcal{B}_{\rho}$. Applying Theorem 1.1 we get both $\tau_{A w_{d}}^{+} \nsubseteq \tau_{A w_{\rho}}^{+}$ and $\tau_{A W_{d}} \nsubseteq \tau_{A W_{p}}$.

4. Comparison of Topologies on Ideals

In [5] Beer and Levi gave conditions on two compatible metrics ρ and d which ensure that the Hausdorff metric topology $\tau_{H_{\rho}}$ induced by ρ restricted to an ideal $I \subseteq C L(X)$ is stronger than $\tau_{H_{d}}$ so restricted. This is of course equivalent to continuity of the identity function $\hat{\imath}:\left(\mathrm{CL}(X), \tau_{H_{\rho}}^{-}\right) \rightarrow\left(\mathrm{CL}(X), \tau_{H_{d}}^{-}\right)$on I.

In the same spirit, a similar condition was given in [8] which ensures continuity of the identity function $\hat{\imath}:\left(\mathrm{CL}(X), \mathscr{H}_{V}^{-}\right) \rightarrow\left(\mathrm{CL}(X), \mathscr{H}_{\mathcal{U}}^{-}\right)$on a particular collection \mathcal{I} of $\mathrm{CL}(X)$, where $\mathscr{H}_{\mathcal{U}}^{-}$and \mathscr{H}_{V}^{-}are the lower Hausdorff quasi-uniform hypertopologies generated by two uniformities \mathcal{U} and \mathcal{V}.

We want to give a similar result for the lower Attouch-Wets topologies generated by two compatible metrics d and ρ. We omit the proof of the following theorem because it can be easily obtained by a slight modification of the proof of Theorem 3.3.

Theorem 4.1. Let $\mathcal{A} \subseteq \mathrm{CL}(X)$ be stable under taking nonempty closed subsets and let $d, \rho \in \mathfrak{M}(X)$. The following conditions are equivalent:
(1) $\hat{\imath}:\left(\mathcal{A}, \tau_{A W_{\rho}}^{-}\right) \rightarrow\left(\mathcal{A}, \tau_{A W_{d}}^{-}\right)$is continuous;
(2) $\mathcal{B}_{d} \cap \mathcal{D}_{d} \cap \mathcal{A} \subseteq \mathcal{B}_{\rho}$ and $\iota:(X, \rho) \rightarrow(X, d)$ is strongly uniformly continuous on $\mathcal{B}_{d} \cap \mathcal{D}_{d} \cap \mathcal{A}$;
(3) $\mathcal{B}_{d} \cap \mathcal{D}_{d} \cap \mathcal{A} \subseteq \mathcal{B}_{\rho}$ and for every pair of sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in X, where either $\left\{x_{n} \mid n \in \mathbb{N}\right\}$ or $\left\{y_{n} \mid n \in \mathbb{N}\right\}$ belongs to $\mathcal{B}_{d} \cap \mathcal{D}_{d} \cap \mathcal{A}$,

$$
\lim _{n \rightarrow \infty} \rho\left(x_{n}, y_{n}\right)=0 \quad \Longrightarrow \quad \lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0
$$

(4) $\mathcal{B}_{d} \cap \mathcal{D}_{d} \cap \mathcal{A} \subseteq \mathcal{B}_{\rho}$ and for every $E, F \in \mathrm{CL}(X)$, where at least one of them belongs to $\mathcal{B}_{d} \cap \mathcal{D}_{d} \cap \mathcal{A}$,

$$
D_{d}(E, F)>0 \quad \Longrightarrow \quad D_{\rho}(E, F)>0
$$

Note that for $\mathcal{A}=C L(X)$ we obtain again Theorem 3.3.
As a consequence of Theorem 4.1, we can characterize continuity of $\hat{\imath}$ on an ideal \mathcal{I}. As observed for example in [8], \mathcal{D}_{d} is not an ideal since the union of two uniformly discrete sets need not be uniformly discrete.

Given a collection C of subsets of X, denote by $\mathfrak{I}(C)$ be the ideal generated by C. Note that $\mathfrak{J}\left(\mathcal{D}_{d}\right)=$ $\left\{\bigcup \mathcal{A} \mid \mathcal{A}\right.$ finite, $\left.\mathcal{A} \subseteq \mathcal{D}_{d}\right\}$.

Corollary 4.2. Let $I \subseteq \mathrm{CL}(X)$ be an ideal and let $d, \rho \in \mathfrak{M}(X)$. The following conditions are equivalent:
(1) $\hat{\imath}:\left(\mathcal{I}, \tau_{A W_{\rho}}^{-}\right) \rightarrow\left(\mathcal{I}, \tau_{A W_{d}}^{-}\right)$is continuous;
(2) $\mathcal{B}_{d} \cap \mathfrak{J}\left(\mathcal{D}_{d}\right) \cap \mathcal{I} \subseteq \mathcal{B}_{\rho}$ and $\iota:(X, \rho) \rightarrow(X, d)$ is strongly uniformly continuous on $\mathcal{B}_{d} \cap \mathfrak{J}\left(\mathcal{D}_{d}\right) \cap \mathcal{I}$.

Remark 4.3. As remarked in [5], a function $f:(X, \rho) \rightarrow(X, d)$ is continuous at $x \in X$ if, and only if, it is strongly uniformly continuous on $\{x\}$. Hence $\iota:(X, \rho) \rightarrow(X, d)$ is continuous if, and only if, it is strongly uniformly continuous on $\mathcal{F}(X)=\{A \subseteq X \mid A$ is finite $\}$.

If we consider as I the ideal of all d-totally bounded subsets of X, then $\mathfrak{J}\left(\mathcal{D}_{d}\right) \cap I=\mathcal{F}(X)$. Therefore $\mathcal{B}_{d} \cap \mathfrak{J}\left(\mathcal{D}_{d}\right) \cap \mathcal{I}=\mathcal{F}(X) \subseteq \mathcal{B}_{\rho}$. for every $\rho \in \mathfrak{M}(X)$.

By Remark 4.3, ι is strongly uniformly continuous on $\mathcal{B}_{d} \cap \mathfrak{J}\left(\mathcal{D}_{d}\right) \cap I$ and this implies that $\hat{\imath}:\left(\mathcal{I}, \tau_{A N_{\rho}}^{-}\right) \rightarrow$ $\left(\mathcal{I}, \tau_{A W_{d}}^{-}\right)$is continuous for every $\rho \in \mathfrak{M}(X)$.

Note that indeed $\tau_{A W_{d}}^{-}=\tau_{V}^{-}$on I by Lemma 3.2, and hence continuity of $\hat{\iota}$ on I could be also seen as a consequence of Lemma 3.1.

Acknowledgement

The authors express their gratitude to the referee for useful comments and suggestions.

References

[1] H. Attouch, R. Wets, A convergence theory for saddle functions, Transactions of the American Mathematical Society 280 (1983) 1-41
[2] H. Attouch, R. Wets, Isometries for the Legendre-Fenchel transform, Transactions of the American Mathematical Society 296 (1986) 33-60
[3] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer, Dodrecht, 1993
[4] G. Beer, A. Di Concilio, Uniform continuity on bounded sets and the Attouch-Wets topology, Proceedings of the American Mathematical Society 112 (1991) 235-243
[5] G. Beer, S. Levi, Strong uniform continuity, Journal of Mathematical Analysis and Applications 350 (2009) 568-589
[6] G. Beer, S. Levi, Uniform continuity, Uniform convergence and Shields, Set Valued Anal. 18 (2010) 251-275
[7] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Mathematics 3 (1969) 510-585
[8] M. Rosa, P. Vitolo, A question related to the Isbell problem, Topology and its Applications 160 (2013) 1829-1848

[^0]: 2010 Mathematics Subject Classification. Primary 54B20; Secondary 54E35
 Keywords. Hyperspace, metrizable space, Attouch-Wets topology
 Received: 17 February 2015; Revised: 15 May 2015; Accepted: 17 May 2015
 Communicated by Ljubiša D.R. Kočinac
 Email addresses: marco.rosa@unibas.it (Marco Rosa), paolo.vitolo@unibas.it (Paolo Vitolo)

