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Available at: http://www.pmf.ni.ac.rs/filomat

Comparability of Lower Attouch–Wets Topologies
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Abstract. Beer and Di Concilio [4] have given necessary and sufficient conditions for a two-sided Attouch–
Wets topology to contain another on the hyperspace of non-empty closed subsets of a metrizable space as
determined by metrics compatible with the topology. In the present paper, we characterize comparability
of lower Attouch–Wets topologies as determined by compatible metrics.

1. Introduction

In the literature there are many topologies that can be defined on the hyperspace CL(X) of a metrizable
space X, i.e. the collection of all non-empty closed subsets of X. We refer to the reader to [3] for comprehen-
sive discussion of these. One of the best known is undoubtedly the Hausdorff metric topology τHd

. Even if
this topology works well for bounded sets, it is in general too strong for applications to unbounded sets.
For instance, if En denotes the line y = x/n in R2 and E is the x-axis, then the sequence (En)n∈N does not
converge to E with respect to τHd

.
A weakening of the Hausdorff metric topology that is more useful in applications is the Attouch–Wets

topology (which is also called “bounded-Hausdorff topology”). It appears for the first time as a convergence
in Mosco’s paper [7], and was later deeply studied by Attouch and Wets [1, 2].

Given a metric space (X, d), the Attouch–Wets topology τAWd
on CL(X) is defined as the topology that

CL(X) inherits from the space C(X,R) of all continuous real-valued functions on X, equipped with the
topology of uniform convergence on bounded subsets of X, under the identification E ↔ d(·,E), where
d(·,E) : x 7→ d(x,E) = infy∈E d(x, y).

For our purposes, we split this topology in two halves: the upper and the lower Attouch–Wets topologies,
respectively denoted by τ+

AWd
and τ−AWd

.
On a metrizable space X, let M(X) be the set of all compatible metrics. For any pair d, ρ ∈ M(X) we

consider the topologies τ−AWd
, τ+

AWd
, τAWd

and τ−AWρ
, τ+

AWρ
, τAWρ . In [4], the following theorem is established by Beer

and Di Concilio to characterize τAWd
⊆ τAWρ . Even if the comparison of upper Attouch–Wets topologies was

never explicitly characterized, it can be easily proved in a similar way that the same condition characterizes
also τ+

AWd
⊆ τ+

AWρ
.

Theorem 1.1. ([4, Theorem 3.1]) Let X be a metrizable space and let d, ρ ∈M(X). The following are equivalent:

(1) τAWd
⊆ τAWρ on CL(X).
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(2) τ+
AWd
⊆ τ+

AWρ
on CL(X).

(3) Bd ⊆ Bρ and ι : (X, ρ)→ (X, d) is strongly uniformly continuous on Bd.

Here, in condition (3), the symbol ιdenotes the identity function andBd is the collection of d-bounded subsets
of X. Strong uniform continuity is a stronger (as the name suggests) concept than uniform continuity. We
will see its definition later on.

Of course the previous result gives also a condition to characterize τAWd
= τAWρ and τ+

AWd
= τ+

AWρ
. Another

condition to characterize the equality τAWd
= τAWρ was found in [3], and again it can be easily shown, by a

slight modification of the proof, that the same condition also characterizes τ+
AWd

= τ+
AWρ

.

Theorem 1.2. ([3, Theorem 3.3.3]) Let X be a metrizable space and let d, ρ ∈M(X). The following are equivalent:

(1) τAWd
= τAWρ on CL(X).

(2) τ+
AWd

= τ+
AWρ

on CL(X).
(3) Bd = Bρ and ι : (X, ρ)→ (X, d) is bi-uniformly continuous on Bd.

Note that condition (3) of Theorem 1.2 is seemingly weaker than what one expects from Theorem 1.1.
Our aim is to characterize the inclusion τ−AWd

⊆ τ−AWρ
, using again a condition on the collections of d-

bounded and ρ-bounded sets, and on strong uniform continuity of the identity map on a certain collection
of sets. We also show that our condition is strictly weaker than the condition for τ+

AWd
⊆ τ+

AWρ
or equivalently,

than the condition for τAWd
⊆ τAWρ .

2. Preliminaries and Notation

In a metric space (X, d), the ε-ball about a point x will be denoted, as usual, by Bd
ε(x). Given a set A ⊆ X

we denote by Bd
ε[A] the ε-expansion of A, namely Bd

ε[A] =
⋃

x∈A Bd
ε(x).

A local base at E ∈ CL(X) with respect to the topologies τ−AWd
and τ+

AWd
, is constituted by all collections of

the form

{F ∈ CL(X) | E ∩ B ⊆ Bd
ε[F] }

and, respectively,

{F ∈ CL(X) | F ∩ B ⊆ Bd
ε[E] }

where B runs over the d-bounded subsets of X and ε > 0. Now the Attouch–Wets topology can be defined
as τAWd

= τ−AWd
∨ τ+

AWd
.

Consider the filter Σd on CL(X) × CL(X) having as a base all sets of the form

Ud[x0,n] =
{

(E,F) | E ∩ Bd
n(x0) ⊆ Bd

1
n
[F] and F ∩ Bd

n(x0) ⊆ Bd
1
n
[E]

}
when n runs overN and x0 is an arbitrary fixed point of X. It has been shown in [3, Prop. 3.1.6], that Σd is
a uniformity and it is compatible with τAWd

.
Given x0 ∈ X, arbitrarily fixed point, consider the filters Σ−d and Σ+

d having as a base respectively all sets
of the form

U−d [x0,n] =
{

(E,F) | E ∩ Bd
n(x0) ⊆ Bd

1
n
[F]

}
and

U+
d [x0,n] =

{
(E,F) | F ∩ Bd

n(x0) ⊆ Bd
1
n
[E]

}
when n runs overN. It can be easily shown using the same technique of [3, Prop. 3.1.6], that both Σ−d and
Σ+

d are quasi-uniformities and that they are compatible respectively with τ−AWd
and τ+

AWd
.
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Definition 2.1. Let (X, ρ) and (Y, d) be metric spaces. A function f : (X, ρ) → (Y, d) is strongly uniformly
continuous on a set A ⊆ X if

∀ε > 0 ∃δ > 0 ∀x ∈ A ∀y ∈ X [ρ(x, y) < δ =⇒ d( f (x), f (y)) < ε].

We say that f is strongly uniformly continuous on a collectionA if it is strongly uniformly continuous on
each A ∈ A.

This notion of continuity was investigated and explicitly defined in [5]. A basic reference for strong
uniform continuity is [6]. Note that strong uniform continuity on a set A is stronger than uniform continuity
on A.

Let X be a metrizable space and let d, ρ ∈ M(X). It follows immediately from the definition that the
identity ι : (X, ρ)→ (X, d) is strongly uniformly continuous on a set A if, and only if,

∀ε > 0 ∃δ > 0 ∀x ∈ A Bρδ(x) ⊆ Bd
ε(x).

For every compatible metric d on X, we denote by Dd the gap between two non-empty closed sets
E,F ∈ CL(X), defined as:

Dd(E,F) = inf
x∈E

inf
y∈F

d(x, y).

3. When are Lower Attouch–Wets Topologies Comparable?

In this section we give necessary and sufficient conditions for τ−AWd
⊆ τ−AWρ

on CL(X).
Recall that A ⊆ X is d-uniformly discrete with respect to ε > 0 if d(x, y) ≥ ε for every distinct x, y ∈ A. A

set A is d-uniformly discrete if there exists ε > 0 such that A is d-uniformly discrete with respect to ε.
A set A ⊆ X is d-totally bounded if for every ε > 0 there exists F ⊆ X finite such that A ⊆ Bd

ε[F]. When
we say that A is not d-totally bounded with respect to σ > 0 we mean of course that A * Bd

σ[F] for every
finite F ⊆ X.

We use the following notations:

Bd = {E ⊆ X | E is d-bounded },
Dd = {E ⊆ X | E is d-uniformly discrete }.

We first need some preliminary results. The following two lemmas deal with the comparison of the lower
Attouch–Wets topology τ−AWd

and the lower Vietoris topology τ−V , and will be useful to prove our main
theorem. Recall that a subbase for τ−V is constituted by all collections of the form V− = {E ∈ CL(X) | E∩V ,
∅ }, where V runs over all open subsets of X.

Lemma 3.1. Let (X, d) be a metric space. Then τ−V ⊆ τ−AWd
.

Proof. Let W ⊆ X be open and let W− = {E ∈ CL(X) | E ∩W , ∅ } be a subbasic open set of τ−V . We show
that W− is open with respect to τ−AWd

.
Let E ∈ W−. Given x ∈ E ∩W, there exists n0 ∈ N such that x ∈ Bd

n0
(x0) and there exists n1 ∈ N such

that Bd
1

n1

(x) ⊆ W. Set n = max{n0,n1 }. We prove U−d [x0,n](E) ⊆ W−. Indeed, if F ∈ U−d [x0,n](E), then

E ∩ Bd
n(x0) ⊆ Bd

1
n
[F]. Since x ∈ E ∩ Bd

n(x0), there exists y ∈ F such that d(x, y) < 1
n . Therefore y ∈ Bd

1
n
(x) ⊆ W

and then y ∈ F ∩W , ∅, that is F ∈W−.

Lemma 3.2. Let (X, d) be a metric space and let E ∈ CL(X). If E is d-totally bounded, then every neighbourhood of E
with respect to τ−AWd

contains a neighbourhood of E with respect to τ−V . As a consequence, if (X, d) is totally bounded,
then τ−AWd

= τ−V .
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Proof. Let U−d [x0,n](E) be a basic neighbourhood of E with respect to τ−AWd
. Since E is d-totally bounded,

there exists F ⊆ E finite such that E ⊆ Bd
1

2n
[F].

Set Wz = Bd
1

2n
(z) for every z ∈ F and set G =

⋂
z∈F W−

z . Then G is a neighbourhood of E in τ−V , because

each Wz is open in X and z ∈ E ∩Wz , ∅ for every z ∈ F.
We want to prove that G ⊆ U−d [x0,n](E), that is E ∩ Bd

n(x0) ⊆ Bd
1
n
[G] for every G ∈ G. Let G ∈ G and

x ∈ E ∩ Bd
n(x0). There exists z ∈ F such that x ∈ Bd

1
2n

(z). Since G ∈ W−
z , there exists y ∈ G ∩Wz, and then

d(x, y) ≤ d(x, z) + d(z, y) < 1
2n + 1

2n = 1
n . It follows that x ∈ Bd

1
n
[G] and therefore E ∩ Bd

n(x0) ⊆ Bd
1
n
[G].

We now prove our main result.

Theorem 3.3. Let X be a metrizable space and let d, ρ ∈M(X). The following are equivalent:

(1) τ−AWd
⊆ τ−AWρ

;
(2) Bd ∩Dd ⊆ Bρ, and ι : (X, ρ)→ (X, d) is strongly uniformly continuous on Bd ∩Dd;
(3) Bd ∩ Dd ⊆ Bρ, and for every pair of sequences (xn)n∈N and (yn)n∈N in X, where either { xn | n ∈ N } or
{ yn | n ∈N } is d-bounded and d-uniformly discrete,

lim
n→∞

ρ(xn, yn) = 0 =⇒ lim
n→∞

d(xn, yn) = 0;

(4) Bd ∩Dd ⊆ Bρ, and for every E,F ∈ CL(X), where at least one of them is d-bounded and d-uniformly discrete,

Dd(E,F) > 0 =⇒ Dρ(E,F) > 0.

Proof. (1)⇒ (2) We prove the first condition. On the contrary suppose that there exists E ∈ CL(X) which is
d-bounded and d-uniformly discrete but not ρ-bounded.

Let x1 ∈ E. Since E is not ρ-bounded, for every n ∈ N we can choose a point xn+1 ∈ E r Bρn[{ x1, . . . , xn }].
Then E′ = { xn | n ∈N } ⊆ E is ρ-uniformly discrete.

For every n ∈N set En = { x1, . . . , xn }. We first prove that (En)n∈N converges to E′ with respect to τ−AWρ
.

Let ε > 0 and let B be ρ-bounded. There exists q ∈N such that B ⊆ Bρq (x1). Then E′ ∩ B ⊆ { xi | ρ(xi, x1) <
q } ⊆ { x1, . . . , xq }. Therefore E′ ∩ B ⊆ Bρε [En] for every n ≥ q. Hence En → E′ with respect to τ−AWρ

.
By (1) we have En → E′ with respect to τ−AWd

. Consider the d-bounded set E: for every ε > 0, eventually
E′ = E′ ∩ E ⊆ Bd

ε[En]. Since each En is finite, this would imply that E′ is d-totally bounded, a contradiction
because E′ is infinite and d-uniformly discrete being contained in E.

We now prove strong uniform continuity of ι. Let E be d-uniformly discrete with respect to some σ > 0
and d-bounded. There exists h ∈ N such that E ⊆ Bd

h(x0). Let ε > 0, k ∈ N such that k > max{ h, 1
σ ,

1
ε }

and consider U−d [x0, k](E). Since τ−AWd
⊆ τ−AWρ

, there exists m ∈ N such that U−ρ [x0,m](E) ⊆ U−d [x0, k](E). Let
x ∈ E and y ∈ X such that ρ(x, y) < 1

m . We want to prove that d(x, y) < ε. Set F = (E r { x }) ∪ { y }. Then
E ∩ Bρm(x0) ⊆ E ⊆ Bρ1

m
[F], that is F ∈ U−ρ [x0,m](E). Thus F ∈ U−d [x0, k](E), that is E ∩ Bd

k(x0) ⊆ Bd
1
k
[F]. Since

x ∈ E = E ∩ Bd
h(x0) ⊆ E ∩ Bd

k(x0), there exists z ∈ F such that d(z, x) < 1
k . Since E is uniformly discrete with

respect to σ > 1
k , it must be z = y and therefore d(x, y) < 1

k < ε.

(2)⇒ (1) Let E ∈ CL(X) and let n ∈ N. Consider the neighbourhood U−d [x0,n](E) of E with respect to τ−AWd
.

We want to prove that it is also a neighbourhood of E with respect to τ−AWρ
.

If E ∩ Bd
n(x0) is d-totally bounded, then by Lemma 3.2, the neighbourhood U−d [x0,n](E) = U−d [x0,n](E ∩

Bd
n(x0)) of E ∩ Bd

n(x0) contains a neighbourhood G of E ∩ Bd
n(x0) with respect to τ−V . Then G is also a

neighbourhood of E with respect to τ−V and finally, by Lemma 3.1, G is a neighbourhood of E with respect
to τ−AWρ

.
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Otherwise, if E∩Bd
n(x0) is not d-totally bounded with respect to some σ > 0 (and in particular is infinite),

then it is not d-totally bounded with respect to σ′ = min{ σ, 1
2n }. Therefore, by Zorn’s lemma, we can

construct a maximal set E′ ⊆ E ∩ Bd
n(x0), which is (infinite and) d-uniformly discrete, such that

E′ ⊆ E ∩ Bd
n(x0) ⊆ Bd

σ′ [E
′] ⊆ Bd

1
2n

[E′].

The set E′ = E′ ∩ Bd
n(x0) is d-bounded and d-uniformly discrete, hence there exists m0 ∈ N such that

E′ ⊆ Bρm0
(x0). Moreover, since ι is strongly uniformly continuous on E′,

∃m1 ∈N ∀x ∈ E′ Bρ1
m1

(x) ⊆ Bd
1

2n
(x).

Set m = max{m0,m1 }, we prove that U−ρ [x0,m](E) ⊆ U−d [x0,n](E). Let F ∈ U−ρ [x0,m](E), that is E ∩ Bρm(x0) ⊆
Bρ1

m
[F]. Given z ∈ E ∩ Bd

n(x0), we claim that z ∈ Bd
1
n
[F].

Since z ∈ E ∩ Bd
n(x0), there exists x ∈ E′ such that d(z, x) < 1

2n . Thus Bd
1

2n
(x) ⊆ Bd

1
n
(z). Moreover x ∈ E′ ⊆

E ∩ Bρm(x0) ⊆ Bρ1
m

[F] and hence there exists y ∈ F such that ρ(x, y) < 1
m . Then y ∈ Bρ1

m
(x) ⊆ Bd

1
2n

(x) ⊆ Bd
1
n
(z).

Consequently, z ∈ Bd
1
n
[F] as claimed

(2)⇔ (3) This follows from [8, Proposition 4.3].
(2)⇔ (4) This follows from [5, Theorem 3.1].

Now we show by a counterexample that the condition for τ−AWd
⊆ τ−AWρ

is strictly weaker that the condition
for τ+

AWd
⊆ τ+

AWρ
(or equivalently than the condition for τAWd

⊆ τAWρ ).

Counterexample 3.4. Let X = N and, for every n,m ∈ N, define ρ(n,m) = |n − m| and d(n,m) =
∣∣∣ 1

n −
1
m

∣∣∣. Then
τ−AWd
⊆ τ−AWρ

but τ+
AWd
* τ+

AWρ
and τAWd

* τAWρ .

Proof. Observe first that both d and ρ induce onN the discrete topology.
Now, as (N, d) is totally bounded, Lemma 3.2 gives τ−AWd

= τ−V . Therefore τ−AWd
⊆ τ−AWρ

by Lemma 3.1. Since
N is not ρ-bounded but is d-bounded, we have Bd * Bρ. Applying Theorem 1.1 we get both τ+

AWd
* τ+

AWρ

and τAWd
* τAWρ .

4. Comparison of Topologies on Ideals

In [5] Beer and Levi gave conditions on two compatible metrics ρ and d which ensure that the Hausdorff
metric topology τHρ induced by ρ restricted to an ideal I ⊆ CL(X) is stronger than τHd

so restricted. This is
of course equivalent to continuity of the identity function ι̂ : (CL(X), τ−Hρ )→ (CL(X), τ−Hd

) on I.
In the same spirit, a similar condition was given in [8] which ensures continuity of the identity function

ι̂ : (CL(X),H −

V
) → (CL(X),H −

U
) on a particular collection I of CL(X), where H −

U
and H −

V
are the lower

Hausdorff quasi-uniform hypertopologies generated by two uniformitiesU andV.
We want to give a similar result for the lower Attouch–Wets topologies generated by two compatible

metrics d and ρ. We omit the proof of the following theorem because it can be easily obtained by a slight
modification of the proof of Theorem 3.3.

Theorem 4.1. LetA ⊆ CL(X) be stable under taking nonempty closed subsets and let d, ρ ∈ M(X). The following
conditions are equivalent:

(1) ι̂ : (A, τ−AWρ
)→ (A, τ−AWd

) is continuous;
(2) Bd ∩Dd ∩A ⊆ Bρ and ι : (X, ρ)→ (X, d) is strongly uniformly continuous on Bd ∩Dd ∩A;
(3) Bd ∩ Dd ∩ A ⊆ Bρ and for every pair of sequences (xn)n∈N and (yn)n∈N in X, where either { xn | n ∈ N } or
{ yn | n ∈N } belongs to Bd ∩Dd ∩A,

lim
n→∞

ρ(xn, yn) = 0 =⇒ lim
n→∞

d(xn, yn) = 0;
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(4) Bd ∩Dd ∩A ⊆ Bρ and for every E,F ∈ CL(X), where at least one of them belongs to Bd ∩Dd ∩A,

Dd(E,F) > 0 =⇒ Dρ(E,F) > 0.

Note that forA = CL(X) we obtain again Theorem 3.3.
As a consequence of Theorem 4.1, we can characterize continuity of ι̂ on an ideal I. As observed for

example in [8], Dd is not an ideal since the union of two uniformly discrete sets need not be uniformly
discrete.

Given a collection C of subsets of X, denote by I(C) be the ideal generated by C. Note that I(Dd) ={ ⋃
A | A finite,A ⊆ Dd

}
.

Corollary 4.2. Let I ⊆ CL(X) be an ideal and let d, ρ ∈M(X). The following conditions are equivalent:

(1) ι̂ : (I, τ−AWρ
)→ (I, τ−AWd

) is continuous;
(2) Bd ∩ I(Dd) ∩ I ⊆ Bρ and ι : (X, ρ)→ (X, d) is strongly uniformly continuous on Bd ∩ I(Dd) ∩ I.

Remark 4.3. As remarked in [5], a function f : (X, ρ) → (X, d) is continuous at x ∈ X if, and only if, it is
strongly uniformly continuous on {x}. Hence ι : (X, ρ) → (X, d) is continuous if, and only if, it is strongly
uniformly continuous on F (X) = {A ⊆ X | A is finite }.

If we consider as I the ideal of all d-totally bounded subsets of X, then I(Dd) ∩ I = F (X). Therefore
Bd ∩ I(Dd) ∩ I = F (X) ⊆ Bρ. for every ρ ∈M(X).

By Remark 4.3, ι is strongly uniformly continuous on Bd ∩I(Dd)∩I and this implies that ι̂ : (I, τ−AWρ
)→

(I, τ−AWd
) is continuous for every ρ ∈M(X).

Note that indeed τ−AWd
= τ−V on I by Lemma 3.2, and hence continuity of ι̂ on I could be also seen as a

consequence of Lemma 3.1.
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