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Abstract. In this paper, we introduce a new concept of nonlocal anti-periodic boundary conditions and
solve fractional and sequential fractional differential equations supplemented with these conditions. The
anti-periodic boundary conditions involve a nonlocal intermediate point together with one of the fixed end
points of the interval under consideration, and accounts for a flexible situation concerning anti-periodic
phenomena. The existence results for the given problems are obtained with the aid of standard fixed point
theorems. Some examples illustrating the main results are also discussed. The paper concludes with several
interesting observations.

1. Introduction

The topic of boundary value problems is an important and interesting field of research. In recent years,
boundary value problems of fractional differential equations and inclusions involving different kinds of
boundary conditions such as multipoint and nonlocal conditions have extensively been investigated by
several researchers and a variety of results can be found in the works [1]-[11].

Anti-periodic boundary conditions appear in a variety of situations of applied problems. As a matter
of fact, many numerical problems (in the study of modes) converge faster when anti-periodic boundary
conditions are used instead of periodic boundary conditions [12]. The classical as well as fractional
antiperiodic boundary conditions have been considered by several authors ([13]-[18]). However, the
concept of parametric (nonlocal) anti-periodic boundary conditions has not been addressed yet.

In this paper, we consider nonlocal (parametric type) anti-periodic conditions involving a nonlocal
intermediate point 0 < a < T and the right end point (t = T). This gives rise to a new kind of anti-periodic
conditions: x(a) = −x(T), x′(a) = −x′(T). As a first problem, we consider an anti-periodic boundary value
problem of Caputo type fractional differential equations given by

cDqx(t) = f (t, x(t)), t ∈ [0,T], T > 0, 1 < q ≤ 2, (1)
x(a) = −x(T), x′(a) = −x′(T), 0 < a < T, (2)
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where cDq denotes the Caputo fractional derivative of order q and f : [0,T]×R→ R. is a given function. In
the second problem, we replace Caputo type fractional differential equation (1) with a sequential fractional
differential equation (see Section 4).

Here we remark that the interval [0,T] can be replaced with an interval of the form (−∞,T] with a in it.
This means that the anti-periodic phenomena can start from an arbitrary point in (−∞,T).

The paper is organized as follows. In Section 2, we solve a linear fractional differential equation of
fractional order q ∈ (1, 2] subject to nonlocal classical and fractional anti-periodic boundary conditions.
Section 3 presents uniqueness results for nonlinear fractional-order differential equations supplemented
with nonlocal classical and fractional anti-periodic boundary conditions. In Section 4, we extend our study
carried out in Section 3 to nonlinear sequential fractional differential equations. Section 5 contains some
illustrating examples while Section 6 concludes our work.

2. Preliminaries

Let us recall some basic definitions of fractional calculus [19].

Definition 2.1. The Riemann-Liouville fractional integral of order ν for 1 ∈ L1(0,T) is defined as

Iνh(t) =
1

Γ(ν)

∫ t

0

1(s)
(t − s)1−ν ds, ν > 0.

Definition 2.2. Let h : [0,∞)→ R be such that h ∈ ACn[0,T]. Then the Caputo derivative of fractional order ν for
h is defined as

cDνh(t) =
1

Γ(n − ν)

∫ t

0
(t − s)n−ν−1h(n)(s)ds, n − 1 < ν < n,n = [ν] + 1,

where [ν] denotes the integer part of the real number ν.

2.1. Nonlocal classical anti-periodic boundary conditions
In this subsection, we consider a linear variant of the problem (1)-(2) and prove the following result that

will be used to define an operator equation for the given problem.

Lemma 2.1. For any 1 < q ≤ 2 and 1 ∈ C[0,T], the integral solution of the equation cDqx(t) = 1(t) with the
boundary conditions (2) is given by

x(t) =

∫ t

0

(t − s)q−1

Γ(q)
1(s)ds −

1
2

( ∫ T

0

(T − s)q−1

Γ(q)
1(s)ds +

∫ a

0

(a − s)q−1

Γ(q)
1(s)ds

)
+

(T + a − 2t)
4

( ∫ T

0

(T − s)q−2

Γ(q − 1)
1(s)ds +

∫ a

0

(a − s)q−2

Γ(q − 1)
1(s)ds

)
. (3)

Proof. For some constants b1, b2 ∈ R, we know that the solution of the given equation can be written as

x(t) = Iq1(t) + b1 + b2t =

∫ t

0

(t − s)q−1

Γ(q)
1(s)ds + b1 + b2t. (4)

Using the boundary conditions (2) in (4), it is found that

b1 = −
1
2

( ∫ T

0

(T − s)q−1

Γ(q)
1(s)ds −

1
2

∫ a

0

(a − s)q−1

Γ(q)
1(s)ds

)
+

(T + a)
4

( ∫ T

0

(T − s)q−2

Γ(q − 1)
1(s)ds +

∫ a

0

(a − s)q−2

Γ(q − 1)
1(s)ds

)
b2 = −

1
2

( ∫ T

0

(T − s)q−2

Γ(q − 1)
1(s)ds +

∫ a

0

(a − s)q−2

Γ(q − 1)
1(s)ds

)
.

Substituting the values of b1 and b2 in (4) completes the solution (3).



R. P. Agarwal et al. / Filomat 31:5 (2017), 1207–1214 1209

Remark 2.3. We note that the solution of the classical anti-periodic boundary value problem of fractional differential
equations:

cDqx(t) = 1(t), 0 < t < T, 1 < q ≤ 2,
x(0) = −x(T), x′(0) = −x′(T)

is [15]

x(t) =

∫ t

0

(t − s)q−1

Γ(q)
1(s)ds −

1
2

∫ T

0

(T − s)q−1

Γ(q)
1(s)ds +

1
4

(T − 2t)
∫ T

0

(T − s)q−2

Γ(q − 1)
1(s)ds. (5)

Comparing (3) and (5), it is found that the nonlocal anti-periodic boundary conditions give rise to two additional
terms (third and fifth terms in (3) with coefficient function (T − 2t) replaced by (T + a − 2t)).

2.2. Nonlocal fractional anti-periodic boundary conditions
As in Lemma 2.1, the solution of the equation cDqx(t) = 1(t) subject to the nonlocal fractional anti-periodic

boundary conditions:

x(a) = −x(T), cDpx(a) = −cDpx(T), 0 < p < 1 (6)

is

x(t) =

∫ t

0

(t − s)q−1

Γ(q)
1(s)ds −

1
2

( ∫ T

0

(T − s)q−1

Γ(q)
1(s)ds +

∫ a

0

(a − s)q−1

Γ(q)
1(s)ds

)
+

Γ(2 − p)(T + a − 2t)
2T1−p[1 + (a/T)1−p]

( ∫ T

0

(T − s)q−p−1

Γ(q − p)
1(s)ds +

∫ a

0

(a − s)q−p−1

Γ(q − p)
1(s)ds

)
,

(7)

where we have used

cDpx(t) =

∫ t

0

(t − s)q−p−1

Γ(q − p)
y(s)ds − b2

t1−p

Γ(2 − p)
.

On the other hand, the solution of the given equation subject to the fractional anti-periodic boundary
conditions x(0) = −x(T), cDpx(0) = −cDpx(T), 0 < p < 1, is given by [16].

x(t) =

∫ t

0

(t − s)q−1

Γ(q)
1(s)ds −

1
2

∫ T

0

(T − s)q−1

Γ(q)
1(s)ds +

Γ(2 − p)(T − 2t)
2T1−p

∫ T

0

(T − s)q−p−1

Γ(q − p)
1(s)ds. (8)

Notice that the solution (7) contains five terms whereas the solution (2) has three terms with the coefficient
function (T−2t) modified by (T+a−2t)/[1+(a/T)1−p]. Thus, two additional terms (with different coefficients)
occur due to nonlocal anti-periodic boundary conditions in contrast to the classical case.

3. Uniqueness Results

This section deals with the existence and uniqueness of solutions for the problems (1)-(2) and (1)-(6).

Let P = C([0,T],R) denote the Banach space of all continuous functions from [0,T] into R endowed
with the usual norm defined by ‖x‖ = sup{|x(t)|, t ∈ [0,T]}.

In the sequel, we need the following assumption:

(H) f : [0,T] × R → R is a continuous function satisfying the Lipschitz condition: | f (t,u) − f (t, v)| ≤
L|u − v|, ∀t ∈ [0,T],L > 0, u, v ∈ R.
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For computational convenience, we introduce the notations:

µ = max
t∈[0,T]

{ (2t + Tq + aq)
2Γ(q + 1)

+
|T − 2t + a|(Tq−1 + aq−1)

4Γ(q)

}
; (9)

σ = max
t∈[0,T]

{ (2t + Tq + aq)
2Γ(q + 1)

+
Γ(2 − p)|T + a − 2t|(Tq−p + aq−p)
2T1−p[1 + (a/T)1−p]Γ(q − p + 1)

}
. (10)

Theorem 3.1. Assume that the condition (H) holds and that µL < 1, where µ is given by (9). Then the boundary
value problem (1)-(2) has a unique solution on [0,T].

Proof. As a first step, we transform the problem (1)-(2) to an equivalent fixed point problem via (3) as

x =Ucx, (11)

whereUc : P → P is defined by

(Ucx)(t) =

∫ t

0

(t − s)q−1

Γ(q)
f (s, x(s))ds

−
1
2

( ∫ T

0

(T − s)q−1

Γ(q)
f (s, x(s))ds +

∫ a

0

(a − s)q−1

Γ(q)
f (s, x(s))ds

)
+

(T + a − 2t)
4

( ∫ T

0

(T − s)q−2

Γ(q − 1)
f (s, x(s))ds +

∫ a

0

(a − s)q−2

Γ(q − 1)
f (s, x(s))ds

)
.

Using the Banach contraction principle, we shall show that the operator Uc has a fixed point. Fixing

maxt∈[0,T] | f (t, 0)| = N < ∞, and choosing r ≥
Nµ

1 − Lµ
, we show thatUcBr ⊂ Br, where Br = {x ∈ C([0,T],R) :

‖x‖ ≤ r}. For x ∈ Br, it is straightforward to show that ‖Uc‖ ≤ r. Next, for x, y ∈ C([0,T],R) and t ∈ [0,T], we
have

‖Ucx −Ucy‖ = max
t∈[0,T]

∣∣∣∣∣∣
∫ t

0

(t − s)q−1

Γ(q)
| f (s, x(s)) − f (s, y(s))|ds

−
1
2

( ∫ T

0

(T − s)q−1

Γ(q)
| f (s, x(s)) − f (s, y(s))|ds

+

∫ a

0

(a − s)q−1

Γ(q)
| f (s, x(s)) − f (s, y(s))|ds

)
+

(T + a − 2t)
4

( ∫ T

0

(T − s)q−2

Γ(q − 1)
| f (s, x(s)) − f (s, y(s))|ds

+

∫ a

0

(a − s)q−2

Γ(q − 1)
| f (s, x(s)) − f (s, y(s))|ds

)∣∣∣∣∣∣
≤ max

t∈[0,T]

{ (2t + Tq + aq)
2Γ(q + 1)

+
|T − 2t + a|(Tq−1 + aq−1)

4Γ(q)

}
L‖x − y‖,

which, in view of (9), can be written as ‖Ucx−Ucy‖ ≤ µL‖x− y‖. Thus, by the assumption: µL < 1, it follows
by Banach contraction principle that the operator Uc is a contraction. Thus there exists a unique solution
for the problem (1)-(2) on [0,T]. This completes the proof.

Theorem 3.2. Suppose that the condition (H) holds. Then there exists a unique solution on [0,T] for the equation
(1) supplemented with fractional boundary conditions (6) if σL < 1, where σ is given by (10).
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Proof. Define an operatorU f : P → P as

(U f x)(t) =

∫ t

0

(t − s)q−1

Γ(q)
f (s, x(s))ds −

1
2

( ∫ T

0

(T − s)q−1

Γ(q)
f (s, x(s))ds +

∫ a

0

(a − s)q−1

Γ(q)
f (s, x(s))ds

)
+

Γ(2 − p)(T + a − 2t)
2T1−p[1 + (a/T)1−p]

( ∫ T

0

(T − s)q−p−1

Γ(q − p)
1(s)ds +

∫ a

0

(a − s)q−p−1

Γ(q − p)
f (s, x(s))ds

)
.

Observe that the problem (1) and (6) has solutions if and only if the operator equation x = U f x has fixed
points. Following the method of proof for Theorem 3.1, it can be shown that the operator U f has a fixed
point which in fact is a solution of the problem (1) and (6). This completes the proof.

4. Sequential Fractional Differential Equations

We now consider a nonlocal anti-periodic boundary value problem of nonlinear sequential fractional
differential equations given by (cDα + k cDα−1)x(t) = f (t, x(t)), 1 < α ≤ 2, k ∈ R+, 0 < t < T,

x(a) = −x(T), x′(a) = −x′(T), 0 < a� T,
(12)

where cDα denotes the Caputo fractional derivative of order α, and f is a given continuous function.
Our first result is concerned with the linear variant of (12).

Lemma 4.1. Let 0 < a� T, and h ∈ C([0,T],R). Then the unique solution of the problem: (cDα + k cDα−1)x(t) = h(t), 1 < α ≤ 2, 0 < t < T,

x(a) = −x(T), x′(a) = −x′(T), 0 < a� T,
(13)

is given by

x(t) =

∫ t

0
e−k(t−s)

( ∫ s

0

(s − p)α−2

Γ(α − 1)
h(p)dp

)
ds + ν1(t)

[ ∫ T

0

(T − s)α−2

Γ(α − 1)
h(s)ds +

∫ a

0

(a − s)α−2

Γ(α − 1)
h(s)ds

]
+ν2(t)

[ ∫ T

0
e−k(T−s)

( ∫ s

0

(s − p)α−2

Γ(α − 1)
h(p)dp

)
ds +

∫ a

0
e−k(a−s)

( ∫ s

0

(s − p)α−2

Γ(α − 1)
h(p)dp

)
ds

]
,

(14)

where

ν1(t) =
2e−kt

− (e−kT + e−ka)
2k(e−kT + e−ka)

, ν2(t) =
−e−kt

e−kT + e−ka
. (15)

Proof. As argued in [20], the general solution of the equation (cDα + k cDα−1)x(t) = h(t) can be written as

u(t) = c1e−kt +

∫ t

0
e−k(t−s)(Iα−1h(s))ds + c2, (16)

where c1 and c2 are arbitrary constants and

Iα−1h(t) =

∫ t

0

(t − x)α−2

Γ(α − 1)
h(x)dx.

Using the given boundary conditions in (16), we find that

c1 =
1

k(e−kT + e−ka)

[
Iα−1h(T) + Iα−1h(a) − k

∫ T

0
e−k(T−s)(Iα−1h(s))ds − k

∫ a

0
e−k(a−s)(Iα−1h(s))ds

]
,

c2 = −
1
2k

[
Iα−1h(T) + Iα−1h(a)

]
.
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Substituting the values of c1 and c2 in (16) yields the solution (17). This completes the proof. �
Using Lemma 4.1, we can transform the problem (12) into a fixed point problem: x = Usx, where the

operatorUs : P → P is given by

(Usx)(t) =

∫ t

0
e−k(t−s)

( ∫ s

0

(s − p)α−2

Γ(α − 1)
f (p, x(p))dp

)
ds

+ν1(t)
[ ∫ T

0

(T − s)α−2

Γ(α − 1)
f (s, x(s))ds +

∫ a

0

(a − s)α−2

Γ(α − 1)
f (s, x(s))ds

]
+ν2(t)

[ ∫ T

0
e−k(T−s)

( ∫ s

0

(s − p)α−2

Γ(α − 1)
f (p, x(p))dp

)
ds

+

∫ a

0
e−k(a−s)

( ∫ s

0

(s − p)α−2

Γ(α − 1)
f (p, x(p))dp

)
ds

]
,

(17)

Notice that the problem (12) has solutions if and only if the operator equation x =Usx has fixed points.
In the sequel, we use the following notations:

ν̄1 = max
t∈[0,T]

∣∣∣∣2e−kt
− (e−kT + e−ka)

2k(e−kT + e−ka)

∣∣∣∣, ν̄2 = max
t∈[0,T]

∣∣∣∣ −e−kt

e−kT + e−ka

∣∣∣∣, (18)

δ =
1

kΓ(α)

[
Tα−1(1 − e−kT)(1 + ν̄2) + kν̄1(Tα−1 + aα−1) + ν̄2aα−1(1 − e−ka)

]
. (19)

Theorem 4.2. Let the assumption (H) and the condition δL < 1 hold, where δ is given by (19). Then there exists a
unique solution for the problem (12) on [0,T].

Proof. As in the proof of Theorem 3.1, it can easily be shown that UsBR ⊂ BR, where Us is given by

(17), BR = {x ∈ C([0,T],R) : ‖x‖ ≤ R}, R ≥
Nδ

1 − Lδ
, maxt∈[0,T] | f (t, 0)| = N < ∞ and δ is given by (19). Next we

show that the operatorUs is a contraction. for x, y ∈ C([0,T],R) and t ∈ [0,T], we have

‖Usx −Usy‖ = max
t∈[0,T]

∣∣∣∣∣∣
∫ t

0
e−k(t−s)

( ∫ s

0

(s − p)α−2

Γ(α − 1)
| f (p, x(p)) − f (p, y(p))|dp

)
ds

+ ν1(t)
[ ∫ T

0

(T − s)α−2

Γ(α − 1)
| f (s, x(s)) − f (s, y(s))|ds

+

∫ a

0

(a − s)α−2

Γ(α − 1)
| f (s, x(s)) − f (s, y(s))|ds

]

+ ν2(t)
[ ∫ T

0
e−k(T−s)

( ∫ s

0

(s − p)α−2

Γ(α − 1)
| f (p, x(p)) − f (p, y(p))|dp

)
ds

+

∫ a

0
e−k(a−s)

( ∫ s

0

(s − p)α−2

Γ(α − 1)
| f (p, x(p)) − f (p, y(p))|dp

)
ds

]∣∣∣∣∣∣
≤

1
kΓ(α)

[
Tα−1(1 − e−kT)(1 + ν̄2) + kν̄1(Tα−1 + aα−1) + ν̄2aα−1(1 − e−ka)

]
L‖x − y‖,

which, by (19), can be expressed as ‖Usx −Usy‖ ≤ δL‖x − y‖. In view of the assumption: δL < 1, it is clear
that the operatorUs is a contraction by Banach’s fixed point theorem. In consequence, the problem (12) has
a unique solution on [0,T]. This completes the proof. �
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5. Examples

Example 5.1. Consider the following anti-periodic boundary value problem

cD3/2x(t) = m
(
x + ln(x +

√

x2 + 1)
)

+ (t + 1)2, t ∈ [0, 1], (20)

x(0.01) = −x(1), x′(0.01) = −x′(1). (21)

where the positive real number m will be fixed later. Here q = 3/2, f (t, x) = m(x + ln(x +
√

x2 + 1)) + (t + 1)2, a =
0.01, T = 1. Evidently, | f (t, x) − f (t, y)| ≤ 2m|x − y|. With L1 = 2m, the condition µL < 1 holds with

µ = max
t∈[0,T]

{ (2t + Tq + aq)
2Γ(q + 1)

+
|T − 2t + a|(Tq−1 + aq−1)

4Γ(q)

}
when m < 3000

√
π/15337. Thus, by Theorem 3.1, the problem (20) has a unique solution on [0, 1].

Example 5.2. Consider the fractional boundary value problem:

cD3/2x(t) =
1

(1 + t)2 tan−1 x + sin(t + 2), t ∈ [0, 1], (22)

x(0.01) = −x(1), cD1/2x(0.01) = −cD1/2x(1). (23)

Here q = 3/2, p = 1/2, a = 0.01, T = 1 and f (t, x) = 1
(2+t)2 tan−1 x + sin(t + 2). Clearly | f (t, x) − f (t, y)| ≤ 1

4 |x − y|.
With L = 1/4, and

σ = max
t∈[0,1]

{ (2t + Tq + aq)
2Γ(q + 1)

+
Γ(2 − p)|T + a − 2t|(Tq−p + aq−p)
2T1−p[1 + (a/T)1−p]Γ(q − p + 1)

}
= 1.539682,

we find that σL = 0.384921 < 1. Thus, all the conditions for Theorem 3.2 are satisfied and hence, by its conclusion,
there exists a unique solution for the problem (20) on [0, 1].

Example 5.3. Consider the problem:

(cD3/2 + 5 cD1/2)x(t) =
|x|

(t + 6)(|x| + 1)
+ e−t, 0 < t < 1, (24)

x(0.01) = −x(1), x′(0.01) = −x′(1). (25)

Here α = 3/2, k = 5, a = 0.01, T = 1 and f (t, x) = |x|
(t+2)(|x|+1) + e−t. Clearly f (t, x) satisfies the condition (H) with

L = 1/2. With the given data, it is found that ν̄1 = 0.108775, ν̄2 = 1.043877, δ = 0.594308. In consequence, we
have δL = 0.297154 < 1. Since all the conditions of Theorem 4.2 are satisfied, therefore, its conclusion applies to the
problem (20).

6. Conclusions

In this paper, we have discussed a new kind of nonlocal anti-periodic boundary value problems of
fractional-order. It has been found that the consideration of nonlocal anti-periodic boundary conditions
gives rise to some additional terms in the integral solutions of fractional-order problems at hand. Further,
the results obtained in this paper are flexible and correspond to the situation when a shift in the position
of the anti-periodic phenomena occurs at the left-end of the interval [0,T] by fixing a � T. It is found that
the results for classical anti-periodic boundary conditions [15, 16] follow from the results of this paper in
the limit a → 0+. It is worth-mentioning that the results of Section 4 dealing with sequential fractional
differential equations in the limit a → 0+ are new. In the nutshell, the nonlocal nature of anti-periodic
classical/fractional boundary conditions allows the antiperiodic phenomena to occur at any intermediate
position of the interval under consideration.
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