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U(X) as a Ring for Metric Spaces X

Javier Cabello Sáncheza

aDepartamento de Matemáticas de la Universidad de Extremadura

Abstract. In this short paper, we will show that the space of real valued uniformly continuous functions
defined on a metric space (X, d) is a ring if and only if every subset A ⊂ X has one of the following properties:

• A is Bourbaki-bounded, i.e., every uniformly continuous function on X is bounded on A.

• A contains an infinite uniformly isolated subset, i.e., there exist δ > 0 and an infinite subset F ⊂ A such that
d(a, x) ≥ δ for every a ∈ F, x ∈ X \ {a}.

1. Introduction

Even when it is quite surprising, it seems that there is no characterization of metric spaces whose real
valued uniformly continuous functions have ring structure. Everybody knows that C(X) is a ring whenever
X is a topological space, as well as Lip(X) is a ring if and only if X has finite diametre. The main result in
this paper solves this lack of information about U(X), but with a somehow disgusting statement. Recall the
Atsuji characterization of UC spaces, where X′ is the set of accumulation points in X ([1]):

Theorem 1.1. ([1]) Let X be a metric space. Then U(X) = C(X) if and only if X′ is compact and every closed
I ⊂ X \ X′ is uniformly isolated.

An alternative way to state this result is:

Theorem 1.2. Let X be a metric space. Then U(X) = C(X) if and only if X′ is compact and, for every δ > 0, the set
I = {x ∈ X : d(x,X′) ≥ δ} is uniformly isolated.

Our ideal statement would be entirely analogous to the second one, writing “X′ is Bourbaki-bounded”
instead of “X′ is compact”, but we cannot ensure that X \ X′ will have this property. Namely, we have
found two main problems. The first one is that there may be some sequences near X′ formed by isolated
points which do not affect to its Bourbaki-boundedness – we will put an example (see 2.8). This could be
solved by changing X′ by another Bourbaki-bounded A, and stating it as follows:
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Conjecture 1.3. Let X be a metric space. Then U(X) is a ring if and only if there exists a Bourbaki-bounded subset
A such that for every δ > 0, the set {x ∈ X : d(x,A) ≥ δ} is uniformly isolated.

The second problem is that we have not been able to show that this is true, we have just shown that if
there exists such an A, then U(X) is a ring – even this seems to be new since, in the recent paper [7], it is
shown that U(X) is a ring whenever X = F ∪ I, where F is Bourbaki-bounded and I uniformly isolated.

The main problem in this paper has been widely studied (see, e.g., [1, 7, 8]) along with problems about
characterizing the couples of uniformly continuous functions whom product remains uniformly continuous
(again [1], but also [2, 3]).

2. Bourbaki-Bounded (Sub)spaces

We are about to explain some properties of Bourbaki-bounded spaces before coming up to the main
result.

2.1. Given a metric space X, we will denote by U(X) the set of real valued, uniformly continuous functions
defined on X. The subset of bounded functions in U(X) will be denoted by U∗(X). Recall that U∗(X) is
always a ring.

Definition 2.2. A metric space X is said to be Bourbaki-bounded if U(X) = U∗(X). A ⊂ X is a Bourbaki-
bounded subset if the map f|A : A→ R, f|A(x) = f (x) is bounded for every f ∈ U(X).

2.3. Given A ⊂ X and γ > 0, we will denote by Aγ the set of points whom distance to A is not greater than
γ: A1,γ = Aγ = {x ∈ X : d(x,A) ≤ γ}. Inductively, Ak,γ = {x ∈ X : d(x,Ak−1,γ) ≤ γ}

2.4. {U j : j ∈ J} is a uniform covering of X whenever there exists ε > 0 such that, for every x ∈ X there is
j ∈ J such that B(x, ε) ⊂ U j.

2.5. A covering {U j : j ∈ J} is said to be star-finite if {i ∈ J : Ui ∩U j , ∅} is finite for every j ∈ J.

Let us recall some characterizations of Bourbaki-bounded spaces:

Theorem 2.6. Let (X, d) be a metric space. Then the following statements are equivalent:

1. X is a Bourbaki-bounded metric space;
2. For every metric space Y and every uniformly continuous function f : X→ Y, f (X) is bounded in Y ([1]);
3. X is d′-bounded for every metric d′ uniformly equivalent to d ([5]);
4. Every star-finite uniform cover of X is finite ([9]);
5. Every countable B ⊂ X is a Bourbaki-bounded subset in X ([4]);
6. For every γ > 0, there exist M1,M2 ∈N, x1, x2, . . . , xM1 ∈ X such that X = {x1, x2, . . . , xM1 }

M2,γ ([1]).

When X fulfills any of the previous conditions, it is also said that X is finitely chainable, because of the
last condition.

The following translations to Bourbaki-bounded subsets are easy to check:

Theorem 2.7. Let A ⊂ X. Then the following statements are equivalent:

1. A is a Bourbaki-bounded subset;
2. For every metric space Y and every uniformly continuous function f : X→ Y, f (A) is bounded in Y;
3. A is d′-bounded for every metric d′ uniformly equivalent to d on X;
4. Every countable B ⊂ A is a Bourbaki-bounded subset in X;
5. For every γ > 0, there exist M1,M2 ∈N, x1, x2, . . . , xM1 ∈ X such that A ⊂ {x1, x2, . . . , xM1 }

M2,γ.

Example 2.8. Consider B, the closed unit ball of l2 and {en : n ∈ N} its usual basis. Let X ⊂ l2 be given by
X = B

⋃
{xm

n : n ∈N,m = 1, . . . ,n}, where xm
n =

(
1 + m

n

)
en. Then, X is Bourbaki-bounded.
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Proof. We will show that X is finitely chainable. Let γ > 0 and k ∈ N such that 1
k ≤ γ <

1
k−1 . Then, there

are finitely many points in X such that I(x) > 1
k –namely, {xm

n : n < k,m = 1, . . . ,n}. So we just need to chain
Xk = {x ∈ X : I(x) ≤ 1

k }. Now, beginning at the origin 0, we have:
A0 = 0,A1,1/k = B

[
0, 1

k

]
,A2,1/k = B

[
0, 2

k

]
, . . . ,Ak,1/k = B [0, 1] ,Ak+1,1/k = B ∪

{
xm

n : d(xm
n ,B) ≤ 1

k

}
,

Ak+2,1/k =
{
xm

n : d(xm
n ,Ak+1,1/k) ≤ 1

k

}
, . . . ,A3k = Xk.

Here, the worst subset to chain is {xm
2k−1 : m = 1, . . . , 2k − 1}, since every enlargement gives us just one

more point than what we had. So, after Ak, we still need 2k − 1 enlargements to cover the whole space. In
any case, we do not need more than 3k steps to get to any point in Xk from the origin. As X \ Xk contains
finitely many points, X is Bourbaki-bounded.

Remark 2.9. Please note that whenever X is a Bourbaki-bounded space, it is Bourbaki-bounded when
considered as a subset of another metric space, but not every Bourbaki-bounded subset A ⊂ X is a Bourbaki-
bounded space.

Example 2.10. Let, again, {en : n ∈ N} be the usual basis of l2. As shown in the previous example, it is a
Bourbaki-bounded subset of X (every subset is), but it is not a Bourbaki-bounded space.

3. The Main Result

It is time to state everything properly.

3.1. For the sake of clarity, we must explicitly recall the notion of Atsuji isolation index: I(x) = d(x,X\{x}) =
inf{d(x, y) : y ∈ X, y , x} for every x ∈ X.

Definition 3.2. A ⊂ X is uniformly isolated if inf{I(a) : a ∈ A} > 0. This is equivalent to the existence of
ε > 0 such that d(a, x) ≥ ε for every a ∈ A, x ∈ X \ {a}.

Lemma 3.3. ([6]) For any A ⊂ X and any f0 ∈ U∗(A), there exists f ∈ U∗(X) such that f|A = f0.

Remark 3.4. For any couple of sequences (xn), (yn) ⊂ X such that d(xn, xm) ≥ ε > 0, 0 < d(yn, xn) ≤
min{ε/3, 1/n} for every n , m ∈N and any αn → 0, the function
10 : {xn : n ∈N} ∪ {yn : n ∈N} → R, 10(xn) = αn, 10(yn) = 0

is uniformly continuous. As it is bounded, too, the previous lemma shows that we can extend 10 to
1 ∈ U∗(X). This extension will be useful in the proof of the following result.

Theorem 3.5. Let (X, d) be a metric space. Then, U(X) is a ring if and only if every non Bourbaki-bounded A ⊂ X
contains an infinite uniformly isolated subset.

Proof. The “only if” implication: Suppose, on the contrary, that there exists a non Bourbaki-bounded A ⊂ X
such that for every δ > 0, {x ∈ A : I(x) ≥ δ} is finite. Now, take f ∈ U(X) unbounded on A and (xn) ⊂ X such
that f (xn) ≥ f (xn−1) + 1 ≥ n, for every n ∈ N. As | f (xn) − f (xm)| ≥ 1 for every m , n ∈ N and f is uniformly
continuous, there exists ε such that d(xn, xm) ≥ ε when m , n. As I(xn) tends to 0, we may take another
sequence (yn) ⊂ X such that d(xn, yn) → 0. The function h0 : {xn : n ∈ N} ∪ {yn : n ∈ N} → [0, 1], defined
by h0(xn) = 1

n , h0(yn) = 0 is uniformly continuous and bounded. So, we may extend h0 to h ∈ U(X) and it is
pretty clear that f · h is not uniformly continuous, since

( f · h)(yn) = 0, ( f · h)(xn) ≥ 1,

so U(X) is not a ring.
The “if” implication: Suppose U(X) is not a ring. Then, there exist f , 1 ∈ U(X) such that f · 1 < U(X),

so there are ε > 0 and sequences (xn), (yn) ⊂ X such that d(xn, yn) ≤ 1
n and |( f · 1)(xn) − ( f · 1)(yn)| ≥ ε.

As f · 1 is uniformly continuous whenever f , 1 ∈ U∗(X), this implies that either f or 1 is unbounded on
A = {xn : n ∈ N} ∪ {yn : n ∈ N}. As both I(xn), I(yn) are not greater than 1

n because d(xn, yn) ≤ 1
n , A is a non

Bourbaki-bounded subset such that A ∩ {x : I(x) > δ} is finite for every δ > 0.
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Corollary 3.6. Suppose there exists a Bourbaki-bounded subset F ⊂ X such that X \ (Fγ) is uniformly isolated for
every γ > 0. Then U(X) is a ring.

Proof. It can be easily deduced from the above theorem, but we will give an alternative proof: we will show
directly that f · 1 is uniformly continuous.

Suppose F is Bourbaki-bounded and such that {x ∈ X : d(x,F) ≥ γ} is uniformly isolated fo every γ and
let f , 1 ∈ U(X). Then, since F is Bourbaki-bounded, there exist M,N ∈ N such that f|F ≤ M and 1|F ≤ N. As
both functions are uniformly continuous, there exist γ f , γ1 such that d(x, y) < γ f implies | f (x) − f (y)| < 1
and d(x, y) < γ1 implies |1(x) − 1(y)| < 1. So, if we take γ = min{γ f , γ1}, we have sup{ f (x) : x ∈ Fγ} ≤ M + 1
and sup{1(x) : x ∈ Fγ} ≤ N + 1.

Now, there exists α > 0 such that, x < Fγ implies I(x) ≥ α so, whenever d(x, y) < α, both x and y must
belong to Fγ.

We need to show that for every ε > 0 exists δ such that d(x, y) < δ implies |1(x) f (x) − 1(y) f (y)| < ε.
So let ε > 0 and take δ f , δ1 such that d(x, y) < δ f implies | f (x) − f (y)| < ε

2(M+1) and d(x, y) < δ1 implies

|1(x) − 1(y)| < ε
2(N+1) . Now, taking δ = min

{
α, δ f , δ1

}
, we obtain, for x, y such that d(x, y) < δ:

| f (x)1(x)− f (y)1(y)| = | f (x)1(x)− f (y)1(x) + f (y)1(x)− f (y)1(y)| ≤ | f (x)1(x)− f (y)1(x)|+ | f (y)1(x)− f (y)1(y)| =

= |1(x)( f (x) − f (y))| + | f (y)(1(x) − 1(y))| ≤ (M + 1)
ε

2(M + 1)
+ (N + 1)

ε
2(N + 1)

= ε,

and so, f1 ∈ U(X).

We will put an example showing that this class of spaces does not agree with that given in [7], where
the author shows that, if X = F ∪ I, where F is Bourbaki-bounded and I is uniformly isolated, then U(X) is
a ring.

Example 3.7. Let X ⊂ l2 be given by X = B[0, 1]∪
{(

1 + 1
m

)
en : n,m ∈N

}
, where {en : n ∈N} is the l2 usual basis.

Then U(X) is a ring, but X is not the union of a Bourbaki-bounded and a uniformly isolated subsets.

Proof. By the previous corollary, it is clear that U(X) is a ring, taking F = B[0, 1].
Now, suppose I is uniformly isolated in X. Then, by the very definition, we see that there exists

n ∈ N such that d(I,B[0, 1]) ≥ 1
N . So, if X = F ∪ I, then F must contain

{(
1 + 1

m

)
en : n ∈N,m > N

}
. This

subset contains infinitely many points with isolation index 1
N2+3N+2 –namely, every

(
1 + 1

N+1

)
en. So, F is not

Bourbaki-bounded in X.

Conjecture 3.8. It remains unclear, but we think the statement in corollary 3.6 is actually an equivalence.
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