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Abstract. In this paper we study the soft proximity spaces. First, we investigate the relation between
proximity spaces and soft proximity spaces. Also, we define the notion of a soft δ−neighborhood in the
soft proximity spaces which offer an alternative approach to the study of soft proximity spaces. Later, we
show how a soft proximity space is derived from a soft uniform space. Finally, we obtain the initial soft
proximity space determined by a family of soft proximity spaces.

1. Introduction

In 1999, Molodtsov [20] initiated the concept of soft set theory as a new approach for coping with
uncertainties and also presented the basic results of the new theory. This new theory does not require the
specification of a parameter. We can utilize any parametrization with the aid of words, sentences, real
numbers and so on. This implies that the problem of setting the membership function does not arise.
Hence, soft set theory has compelling applications in several diverse fields, most of these applications was
shown by Molodtsov [20].

Maji et al. [19] gave the first practical application of soft sets in decision making problems. Chen et al.
[4] presented a novel concept of parameterization reduction in soft sets. Kong et al. [15] introduced the
notion of a normal parameter reduction and presented an algorithm for normal parameter reduction. Then,
Ma et al. [17] proposed a simpler and more easily comprehensible algorithm. Pei and Miao [24] showed
that soft sets are a class of special information systems. Maji et al. [18] studied on soft set theory in detail.
Ali et al. [2] presented some new algebraic operations on soft sets. Aktaş and Çağman [1] introduced the
soft group and also compared soft sets to fuzzy set and rough set. Feng et al. [8] worked on soft semirings,
soft ideals and idealistic soft semirings. Shabir and Naz [25] initiated the study of soft topological spaces.
Studies on the soft topological spaces have been accelerated [3, 5, 9, 16, 22, 23, 26].

Proximity structure was introduced by Efremovic in 1951 [6, 7]. It can be considered either as axiomati-
zations of geometric notions or as suitable tools for an investigation of topology. Moreover, this structure
has a very significant role in many problems of topological spaces such as compactification and extension
problems etc. The most comprehensive work on the theory of proximity spaces was done by Naimpally
and Warrack [21]. Then, many authors have obtained the concept of a proximity in both the fuzzy setting
and soft setting.
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Extension of proximity structures to the soft sets has been studied by some authors. Hazra et al. [10]
defined the notion of a proximity in soft setting for the first time, which is termed as soft proximity. Also,
by using soft sets, Hazra et al. [11] introduced the different notion of a proximity on the lines of basic
proximity and called it proximity of soft sets. Then, Kandil et al. [12] defined soft proximity spaces on
the base of the axioms suggested by Efremovic. Moreover, Kandil et al. [13] studied on soft I-proximity
spaces, where I is an ideal. All these works have generalized versions of many of the well known results
on proximity spaces.

In this work, we continue investigating the properties of soft proximity spaces in Kandil et al.’s sense.
Also, we give the notion of a soft δ−neighborhood in soft proximity spaces and obtain a few results
analogous to the ones that hold for δ-neighborhood in proximity spaces. Moreover, we show that each soft
uniform space on X induces a soft proximity space on the same set. Finally, we prove the existences of
initial soft proximity spaces.

2. Preliminaries

In this section, we recollect some basic notions regarding soft sets. Throughout this work, let X be an
initial universe, P(X) be the power set of X and E be a set of parameters for X.

Definition 2.1. ([20]) A soft set F on the universe X with the set E of parameters is defined by the set of
ordered pairs

F = {(e,F(e)) : e ∈ E,F(e) ∈ P(X)}

where F is a mapping given by F : E→ P(X).

Throughout this paper, the family of all soft sets over X is denoted by S(X,E) [3].

Definition 2.2. ([2, 18, 24]) Let F,G ∈ S(X,E). Then:
(i) The soft set F is called null soft set, denoted by Φ, if F(e) = ∅ for every e ∈ E.
(ii) If F(e) = X for all e ∈ E, then F is called absolute soft set, denoted by X̃.
(iii) F is a soft subset of G if F(e) ⊆ G(e) for every e ∈ E. It is denoted by F v G.
(iv) F and G are equal if F v G and G v F. It is denoted by F = G.
(v) The complement of F is denoted by Fc, where Fc : E→ P(X) is a mapping defined by Fc(e) = X − F(e)

for all e ∈ E. Clearly, (Fc)c = F.
(vi) The union of F and G is a soft set H defined by H(e) = F(e)∪G(e) for all e ∈ E. H is denoted by FtG.
(vii) The intersection of F and G is a soft set H defined by H(e) = F(e) ∩ G(e) for all e ∈ E. H is denoted

by F u G.

Definition 2.3. ([5, 16, 22]) A soft set P over X is said to be a soft point if there exists e ∈ E such that P(e) = {x}
for some x ∈ X and P(e′) = ∅ for all e′ ∈ E\{e}. The soft point denoted as xe.

From now on, let SP(X) be the family of all soft points over X.

Definition 2.4. ([5, 22]) A soft point xe is said to belongs to a soft set F, denoted by xe
∈̃F, if x ∈ F(e).

Definition 2.5. ([5]) Two soft points x1
e1 , x2

e2 are said to be equal if e1 = e2 and x1 = x2. Thus, x1
e1 , x2

e2 ⇔

x1 , x2 or e1 , e2.

Definition 2.6. ([14]) Let S(X,E) and S(Y,K) be the families of all soft sets over X and Y, respectively. Let
ϕ : X → Y and ψ : E → K be two mappings. Then, the mapping ϕψ is called a soft mapping from X to Y,
denoted by ϕψ : S(X,E)→ S(Y,K).

(i) Let F ∈ S(X,E). Then ϕψ(F) is the soft set over Y defined as follows:

ϕψ(F)(k) =

{ ⋃
e∈ψ−1(k) ϕ(F(e)), if ψ−1(k) , ∅;
∅, otherwise.
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for all k ∈ K.
ϕψ(F) is called a soft image of a soft set F.
(ii) Let G ∈ S(Y,K). Then ϕ−1

ψ (G) is the soft set over X defined as follows:

ϕ−1
ψ (G)(e) = ϕ−1(G(ψ(e)))

for all e ∈ E.
ϕ−1
ψ (G) is called a soft inverse image of a soft set G.

The soft mapping ϕψ is called injective, if ϕ and ψ are injective. The soft mapping ϕψ is called surjective,
if ϕ and ψ are surjective [3, 26].

Theorem 2.7. ([14]) Let Fi ∈ S(X,E) and Gi ∈ S(Y,K) for all i ∈ J where J is an index set. Then, for a soft mapping
ϕψ : S(X,E)→ S(Y,K), the following conditions are satisfied.

(i) If F1 v F2, then ϕψ(F1) v ϕψ(F2).
(ii) If G1 v G2, then ϕ−1

ψ (G1) v ϕ−1
ψ (G2).

(iii) ϕψ
(⊔

i∈J Fi

)
=

⊔
i∈J ϕψ(Fi).

(iv) ϕ−1
ψ

(⊔
i∈J Gi

)
=

⊔
i∈J ϕ

−1
ψ (Gi).

(v) ϕ−1
ψ

(�
i∈J Gi

)
=
�

i∈J ϕ
−1
ψ (Gi).

(vi) ϕ−1
ψ (Ỹ) = X̃, ϕ−1

ψ (Φ) = Φ and ϕψ(Φ) = Φ.

Theorem 2.8. ([3, 26]) Let F,Fi ∈ S(X,E) for all i ∈ J where J is an index set and let G ∈ S(Y,K). Then, for a soft
mapping ϕψ : S(X,E)→ S(Y,K), the following conditions are satisfied.

(i) F v ϕ−1
ψ (ϕψ(F)), the equality holds if ϕψ is injective.

(ii) ϕψ(ϕ−1
ψ (G)) v G, the equality holds if ϕψ is surjective.

Definition 2.9. ([3]) Let F ∈ S(X,E),G ∈ S(Y,K) and let pX : X × Y → X, qE : E × K → E and pY : X × Y →
Y, qK : E × K→ K be the projection mappings in classical meaning. The soft mappings (pX)qE and (pY)qK are
called soft projection mappings from X × Y to X and from X × Y to Y, respectively, where (pX)qE (F × G) = F
and (pY)qK (F × G) = G.

Definition 2.10. ([25]) Let τ be a collection of soft sets over X, then τ is said to be a soft topology on X if:
(st1) Φ, X̃ belong to τ.
(st2) the union of any number of soft sets in τ belongs to τ.
(st3) the intersection of any two soft sets in τ belongs to τ.

(X, τ,E) is called a soft topological space. The members of τ are called soft open sets in X. A soft set F over
X is called a soft closed in X if Fc

∈ τ.

Definition 2.11. ([26]) Let (X, τ,E) be a soft topological space and F ∈ S(X,E). The soft interior of F is the
soft set Fo =

⊔
{G : G is so f t open set and G v F}.

Definition 2.12. ([25]) Let (X, τ,E) be a soft topological space and F ∈ S(X,E). The soft closure of F is the
soft set F =

�
{G : G is so f t closed set and F v G}.

Theorem 2.13. ([22]) Let us consider an operator associating with each soft set F on X another soft set F such that
the following properties hold:

(so1) F v F,

(so2) F = F,
(so3) F u G = F u G,
(so4) Φ = Φ.

Then the family τ = {F ∈ S(X,E) : Fc = Fc
} defines a soft topology on X and for every F ∈ S(X,E), the soft set F is

the soft closure of F in the soft topological space (X, τ,E).
This operator is called the soft closure operator.
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Definition 2.14. ([23]) Let (X, τ1,E) and (Y, τ2,K) be two soft topological spaces andϕψ : (X, τ1,E)→ (Y, τ2,K)
be a soft mapping. Then ϕψ is called soft continuous at xe

∈̃ X̃ if for every soft neighborhood G of ϕψ(xe) in
Y, there exists a soft neighborhood F of xe in X such that ϕψ(F) v G.

A soft mapping ϕψ is called soft continuous on X if it is soft continuous at each xe
∈̃ X̃.

Theorem 2.15. ([23]) Let (X, τ1,E) and (Y, τ2,K) be two soft topological spaces and ϕψ : (X, τ1,E)→ (Y, τ2,K) be a
soft mapping. Then the following conditions are equivalent:

(i) ϕψ is soft continuous.
(ii) For every soft open set G in (Y, τ2,K), ϕ−1

ψ (G) is soft open in (X, τ1,E).

(iii) For every soft closed set F in (Y, τ2,K), ϕ−1
ψ (F) is soft closed in (X, τ1,E).

(iv) For every F ∈ S(X,E), ϕψ(F) v ϕψ(F).

Definition 2.16. ([23]) The non-empty family U ⊆ S(SP(X) × SP(X),E) is called a soft uniformity for X if
the following axioms are satisfied:

(su1) If U ∈ U, then ∆ v U.
(su2) If U ∈ U, then there exists a V ∈ U such that V ◦ V v U.
(su3) If U ∈ U, then there exists a V ∈ U such that V−1

v U.
(su4) If U,V ∈ U, then U u V ∈ U.
(su5) If U ∈ U and U v V, then V ∈ U.
The triplet (X,U,E) is called a soft uniform space on X.

Definition 2.17. ([23]) (i) The soft set ∆ ∈ S(SP(X)×SP(X),E) is said to be diagonal soft set which is defined
by ∆(e) = {(xα, xα) : xα ∈ SP(X)}, for every e ∈ E.

(ii) Let U ∈ S(SP(X) × SP(X),E). Then,

U−1(e) = {(xe1
1 , x

e2
2 ) : (xe2

2 , x
e1
1 ) ∈ U(e)}

for every e ∈ E. If U = U−1, then U is said to be symmetric.
(iii) Let U,V ∈ S(SP(X) × SP(X),E). Then,

U ◦ V(e) = {(xe1
1 , x

e2
2 ) : f or some zα ∈ SP(X), (xe1

1 , z
α) ∈ V(e) and (zα, xe2

2 ) ∈ U(e)}

for every e ∈ E.

Theorem 2.18. ([23]) Let (X,U,E) be a soft uniform space.
(i) If U ∈ U then U−1

∈ U.
(ii) The conjunction of axioms (su2) and (su3) is equivalent to the following axiom:

For every U ∈ U there exists V ∈ U such that V ◦ V−1
v U

(iii) The family B consisting of the symmetric soft sets inU form a soft base forU.

Definition 2.19. ([23]) Let (X,U,E) be a soft uniform space and xe
∈̃ X̃. Then, for every U ∈ U

U[xe] =
⊔{

zβ ∈̃ X̃ : (xe, zβ) ∈ U(α),∀α ∈ E
}

is a soft set on X. This is extended to the soft set F on X, denoted by

U[F] =
⊔
xe∈̃F

U[xe] =
⊔{

zβ ∈̃ X̃ : f or some xe
∈̃ F, (xe, zβ) ∈ U(α),∀α ∈ E

}
.
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Recall that a binary relation δ on the power set of a set X is called a proximity on X if the following
axioms are satisfied (see, [21])

(p1) ∅δA,
(p2) If A ∩ B , ∅, then AδB,
(p3) If AδB, then BδA,
(p4) Aδ(B ∪ C) if and only if AδB or AδC,
(p5) If AδB, then there exists a subset C of X such that AδC and Bδ(X − C),

where δ means negation of δ.
The pair (X, δ) is called a proximity space; two subsets A and B of the set X are close with respect to δ if
AδB, otherwise they are remote with respect to δ.

3. Soft Proximity Spaces

In this section, we study some basic properties of soft proximity spaces. Also, we give an alternative
description of the concept of soft proximity spaces, which is called soft δ-neighborhood.

Definition 3.1. ([12]) A binary relation δ on S(X,E) is called a proximity of soft sets on X if for any F,G,H ∈
S(X,E), the following conditions are satisfied:

(sp1) Φ δF,
(sp2) If F u G , Φ, then FδG,
(sp3) If FδG, then GδF,
(sp4) Fδ(G tH) if and only if FδG or FδH,
(sp5) If FδG, then there exists an H ∈ S(X,E) such that FδH and Gδ(X̃ −H).
A soft proximity space is a triple (X, δ,E) consisting of a set X, a set of parameters E and a proximity

relation on S(X,E). We shall write FδG if the soft sets F,G ∈ S(X,E) are δ-related, otherwise we shall write
FδG.

Example 3.2. (i) On any set X, let us define FδG iff F , Φ and G , Φ. This defines a proximity relation on
S(X,E).

(ii) On any set X, let us define FδG iff F u G , Φ. This defines a proximity relation on S(X,E).

We obtain the connection between proximity spaces and soft proximity spaces as shown in the following
theorem.

Theorem 3.3. Let (X, δ) be a proximity space. By letting for F,G ∈ S(X,E)
FδiG iff there exist subsets A,B of X such that F v Ã, G v B̃ and AδB

we define a proximity relation on S(X,E).
(Here, for every A ⊆ X, Ã is the soft set over X defined by Ã(e) = A for all e ∈ E).

Proof. We shall show that δi satisfies axioms (sp1) − (sp5).
(sp1) From Φ v ∅̃, F v X̃ and ∅δX it follows that Φ δi F.
(sp2) Let FδiG. Then, there are subsets A and B of X such that F v Ã, G v B̃ and AδB. By AδB, we have

A ∩ B = ∅, so that Ã u B̃ = Φ. Thus, we get F u G = Φ.
(sp3) It is clear because AδB implies BδA.
(sp4) It is easy to see that if Fδi(G t H) then FδiG and FδiH. Conversely, suppose that FδiG and FδiH.

Then, there exist subsets A and B of X such that F v Ã, G v B̃ and AδB. Likewise, there exist subsets C and D
of X such that F v C̃, H v D̃ and CδD. Since F v Ãu C̃ = Ã ∩ C, GtH v B̃t D̃ = B̃ ∪D and (A∩C)δ(B∪D),
we conclude that Fδi(G tH).

(sp5) If FδiG, then there are subsets A and B of X such that F v Ã, G v B̃ and AδB. Since AδB, by (p5)
there is a C ⊆ X such that AδC and Bδ(X − C). Therefore, for a soft set C̃, we obtain F δi C̃ and G δi (X̃ − C̃),
which completes the proof.
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Lemma 3.4. ([12]) Let (X, δ,E) is a soft proximity space. If FδG and F v H1, G v H2, then H1δH2.

Theorem 3.5. ([12]) Let (X, δ,E) be a soft proximity space. Then, the mapping F→ F, where

F =
⊔
{ xe
∈̃ X̃ : xeδF }

satisfies the conditions (so1) − (so4). Therefore, the collection

τ(δ) = {F ∈ S(X,E) : Fc = Fc
}

is a soft topology on X.

Trivially, the soft proximity spaces defined in Example 3.2 (i) and (ii) induce the soft topological spaces
τ(δ) = {Φ, X̃} and τ(δ) = S(X,E), respectively.

Corollary 3.6. Let (X, δ,E) is a soft proximity space and F ∈ S(X,E). Then,

F ∈ τ(δ) i f f xeδ(X̃ − F) f or every xe
∈̃F.

Proof. Let xe
∈̃F. Then, xe <̃ (X̃ − F). Since (X̃ − F) = (X̃ − F), by Theorem 3.5, we have xeδ(X̃ − F).

Conversely, for every xe
∈̃F, let xeδ(X̃− F). Therefore, xe <̃ (X̃ − F). From the fact that (X̃ − F) = (X̃− Fo) it

follows that xe
∈̃Fo. Thus, we have F v Fo, that is, F ∈ τ(δ).

Definition 3.7. If δ1 and δ2 are two proximities of soft sets on X, we define

δ1 < δ2 i f f Fδ2G implies Fδ1G.

The above is expressed by saying that δ2 is finer than δ1, or δ1 is coarser than δ2.

The following theorem shows that a finer soft proximity structure induces a finer soft topology:

Theorem 3.8. Let δ1 and δ2 be two proximities of soft sets on X. Then,

δ1 < δ2 implies τ(δ1) ⊆ τ(δ2).

Proof. Let F ∈ τ(δ1). It follows from Corollary 3.6 that xeδ1(X̃ − F) for every xe
∈̃F. Since δ1 < δ2, we get

xeδ2(X̃ − F) for every xe
∈̃F. Hence, F ∈ τ(δ2).

Definition 3.9. Let (X, δ,E) be a soft proximity space. For F,G ∈ S(X,E), the soft set G is said to be a soft
δ-neighborhood of F if Fδ(X̃ − G); we write this in symbols as F b G.

Theorem 3.10. Let (X, δ,E) be a soft proximity space. Then the relation b satisfies the following properties:
(spn1) Φ b F.
(spn2) F b G implies (X̃ − G) b (X̃ − F).
(spn3) F b G implies F v G.
(spn4) F b (G uH) if and only if F b G and F b H.
(spn5) F1 v F b G v G1 implies F1 b G1.
(spn6) F b G implies there is an H ∈ S(X,E) such that F b H b G.

Proof. (spn1) is obvious.
(spn2) If F b G, then Fδ(X̃ − G). By (sp3), (X̃ − G)δF, that is, (X̃ − G) b (X̃ − F).

(spn3) Let F b G. Then from (sp2) it follows that F u Gc = Φ. Thus, we have F v G.
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(spn4) F b (G uH) ⇐⇒ Fδ
(
X̃ − (G uH)

)
⇐⇒ Fδ(X̃ − G) and Fδ(X̃ −H)
⇐⇒ F b G and F b H.

(spn5) If F1 bG1, where b means negation of b, then F1δ(X̃ − G1). Since F1 v F and (X̃ − G1) v (X̃ − G),
we have Fδ(X̃ − G). Therefore, FbG, which is a contradiction.

(spn6) F b G implies Fδ(X̃ − G). Then by (sp5), there exists an H ∈ S(X,E) such that Fδ(X̃ − H) and
Hδ(X̃ − G). Hence, F b H b G.

Theorem 3.11. Let b be a relation on S(X,E) satisfying (spn1) − (spn6). Then, δ is a proximity relation on S(X,E)
defined as follows:

FδG i f f F b (X̃ − G).

Also, according to this proximity relation, G is a soft δ-neighbourhood of F if and only if F b G.

Proof. We first need to verify axioms (sp1) − (sp5).
(sp1) Let F ∈ S(X,E). By (spn1), we have Φ b (X̃ − F) and thus Φ δF.
(sp2) Let FδG. Then, F b (X̃ − G) and from (spn3) it follows that F u G = Φ.
(sp3) If FδG, then F b (X̃ − G). By (spn2), G b (X̃ − F) and hence GδF.
(sp4) Fδ(G tH) ⇐⇒ F b

(
X̃ − (G tH)

)
⇐⇒ F b (X̃ − G) and F b (X̃ −H)
⇐⇒ FδG and FδH.

(sp5) Let FδG. Then F b (X̃ − G). Therefore, by (spn6), there is a soft set H such that F b H b (X̃ − G).
Thus, Fδ(X̃ −H) and HδG.

Hence δ is a proximity of soft sets on X. From the definitions of the terms involved it follows easily that
G is a soft δ-neighbourhood of F if and only if F b G.

Lemma 3.12. Let (X, δ,E) be a soft proximity space. For F,G ∈ S(X,E),

FδG i f f FδG,

where the soft closure is taken with respect to τ(δ).

Proof. Necessity follows immediately from Lemma 3.4. For sufficiency, suppose that FδG. Then, by (sp5),
there is an H ∈ S(X,E) such that FδH and Gδ(X̃ − H). We claim that G v H. Indeed, let xe <̃H. Then, we
have xe

v (X̃ −H). From Lemma 3.4, we see that xeδG. Therefore, xe <̃G and our claim is proved. From this
and FδH we obtain F δG. Repeating the argument shows that F δG.

Theorem 3.13. Let (X, δ,E) be a soft proximity space and F,G ∈ S(X,E). Then, the following statements are satisfied:
(i) F b G if and only if F b G.
(ii) If FδG, then there exist soft sets F1,G1 such that F b F1, G b G1 and F1δG1.
(iii) If F b G, then there is an H ∈ τ(δ) such that F b H v H b G.

Proof. (i) It is clear from Lemma 3.12.
(ii) If FδG, then from (sp5), there is a soft set G1 such that FδG1 and Gδ(X̃ − G1). Because G1δF, there is a

soft set F1 such that G1δF1 and Fδ(X̃ − F1). Thus, there exist soft sets F1 and G1 such that F b F1, G b G1 and
F1δG1.

(iii) Let F b G. Then, by (ii) there exist soft sets F1,G1 such that F b F1, (X̃−G) b G1 and F1 uG1 = Φ. By
virtue of (spn2), we have F1 v (X̃ −G1) b G. Therefore, F1δ(X̃ −G). Since Fδ(X̃ − F1), it follows from Lemma

3.12 that F δ (X̃ − F1), i.e., Fδ(X̃ − (F1)o). Letting H = (F1)o, we get F b H v F1. Because F1δ(X̃ − G), we have
Hδ(X̃ − G). This means that H δ(X̃ − G), i.e., H b G.
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Theorem 3.14. If (X, δ,E) is a soft proximity space and F ∈ S(X,E), then

F =
�
{G : F b G}.

Proof. Let us take a soft set G such that F b G. Therefore, F b G and by (spn3) we obtain F v G. Hence,

F v
�
{G : F b G}.

On the other hand, suppose that xe <̃F. Then, xe δF. Therefore, by Theorem 3.13 (ii), there exist soft sets
F1,G1 such that F b F1, xe

∈̃G1 and F1 u G1 = Φ. Thus, F has a soft δ-neighbourhood F1 not containing xe.
This implies that xe<̃

�
{G : F b G}.

Definition 3.15. Let (X, δ1,E) and (Y, δ2,K) be two soft proximity spaces. A soft mapping ϕψ : (X, δ1,E) →
(Y, δ2,K) is a soft proximity mapping if it satisfies

Fδ1G⇒ ϕψ(F) δ2 ϕψ(G)

for every F,G ∈ S(X,E).

Using the above definition, we can easily prove the following propositions.

Proposition 3.16. Let (X, δ1,E) and (Y, δ2,K) be two soft proximity spaces. A soft mapping ϕψ : (X, δ1,E) →
(Y, δ2,K) is a soft proximity mapping if and only if

F1δ2G1 ⇒ ϕ−1
ψ (F1)δ1ϕ

−1
ψ (G1),

or in other form

F1 b2 G1 ⇒ ϕ−1
ψ (F1) b1 ϕ

−1
ψ (G1),

for every F1,G1 ∈ S(Y,K).

Proposition 3.17. The composition of two soft proximity mappings is a soft proximity mapping.

Theorem 3.18. A soft proximity mapping ϕψ : (X, δ1,E) → (Y, δ2,K) is soft continuous with respect to τ(δ1) and
τ(δ2).

Proof. Let ϕψ : (X, δ1,E) → (Y, δ2,K) be a soft proximity mapping. To show ϕψ is soft continuous, it is
enough to show that ϕψ(F) v ϕψ(F) for every F ∈ S(X,E). Let yk

∈̃ϕψ(F). Then, there is a soft point xe
∈̃ X̃

such that xe
∈̃F and ϕψ(xe) = yk. Therefore, xeδ1F and it follows from our hypothesis that ykδ2ϕψ(F). Thus,

yk
∈̃ϕψ(F).

Lemma 3.19. Let (X,U,E) be a soft uniform space and F,G ∈ S(X,E). Then, there exists a U ∈ U such that
U[F] uU[G] = Φ if and only if there exists a U ∈ U such that U[F] u G = Φ.

Proof. The necessity is clear since F v U[F] for every F ∈ S(X,E) and every U ∈ U. For the sufficiency, take
a U ∈ U such that U[F]uG = Φ. By Theorem 2.18, there is a symmetric soft set V ∈ U such that V ◦V v U.
We shall show that V[F] u V[G] = Φ, which will complete the proof. Suppose xe

∈̃V[F] and xe
∈̃V[G] for

some xe
∈ SP(X). From the definition of symmetric soft set and Definition 2.19, it follows that there exist an

xe1
1 ∈̃F and an xe2

2 ∈̃G with (xe1
1 , x

e) ∈ V(α) and (xe, xe2
2 ) ∈ V−1(α) = V(α) for each α ∈ E. Since

(xe1
1 , x

e2
2 ) ∈ (V ◦ V)(α) ⊆ U(α) f or each α ∈ E

we obtain xe2
2 ∈̃U[F]. Therefore, U[F] u G , Φ, which is a contradiction.
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Lemma 3.20. Let (X,U,E) be a soft uniform space and F,G ∈ S(X,E). Then, the following results hold:
(i) (U u V)[F] v U[F] for every U,V ∈ U.
(ii) U[F t G] = U[F] tU[G] for every U ∈ U.

Proof. (i) It is clear from Definition 2.19.
(ii) Let xe

∈̃U[F t G]. Then, there exists an xe1
1 ∈̃ (F t G) such that (xe1

1 , x
e) ∈ U(α) for each α ∈ E. Suppose

xe1
1 ∈̃F. Therefore, we get xe

∈̃U[F], and so xe
∈̃U[F] t U[G]. Thus, we have U[F t G] v U[F] t U[G]. By a

similar argument, we can show that U[F] tU[G] v U[F t G], completing the proof.

Theorem 3.21. Let (X,U,E) be a soft uniform space. Then, we define a proximity of soft sets on X by

FδG i f f there exists a U ∈ U such that U[F] uU[G] = Φ.

Proof. To show that δ is a proximity of soft sets on X it suffices to prove that (sp4) and (sp5) is satisfied, since
the other proximity axioms are easily verified.

(sp4) It follows from Lemma 3.20 (ii) that if Fδ(G t H), then FδG and FδH. Conversely, let FδG and
FδH. Then, there exist U1,U2 ∈ U such that U1[F] u U1[G] = Φ and U2[F] u U2[H] = Φ. By (su4), we have
U3 = U1 uU2 ∈ U. Using Lemma 3.20 (i), we obtain

U3[F] uU3[G] = Φ and U3[F] uU3[H] = Φ.

Since

U3[F] uU3[G tH] = (U3[F] uU3[G]) t (U3[F] uU3[H]) = Φ

it follows that Fδ(G tH), as required.
(sp5) If FδG, then there is a U ∈ U such that U[F] u U[G] = Φ. By Theorem 2.18, there is a symmetric

soft set V ∈ U such that V ◦ V v U. We first verify that V[U[G]] u F = Φ. Suppose instead that there exists
an xe

∈̃V[U[G]] u F. Then, there exists an xe1
1 ∈̃U[G] such that (xe1

1 , x
e) ∈ V(α) for each α ∈ E. Because V

is symmetric soft set and V v U, we obtain xe1
1 ∈̃U[F]. But this contradicts the fact that U[F] u U[G] = Φ.

Hence, from Lemma 3.19 it follows that FδU[G]. Now, we verify that V[X̃ −U[G]] u G = Φ. Supposing the
contrary, we find an xe

∈̃V[X̃ −U[G]] uG. Then, there exists an xe1
1 ∈̃ (X̃ −U[G]) such that (xe1

1 , x
e) ∈ V(α) for

each α ∈ E. Therefore, we have (xe, xe1
1 ) < U(α) for some α ∈ E, because otherwise we would have xe1

1 ∈̃U[G].
Since V is symmetric soft set and V v U, we get (xe1

1 , x
e) < V(α) for some α ∈ E, a contradiction. Thus,

applying Lemma 3.19, we infer that Gδ(X̃ −U[G]).

4. Initial Soft Proximity Spaces

We prove the existences of initial soft proximity space. Based on this fact, we define the product of soft
proximity spaces.

Definition 4.1. Let X be a set, {(Xα, δα,Eα) : α ∈ ∆} be a family of soft proximity spaces, and for each α ∈ ∆
let (ϕψ)α : S(X,E) → (Xα, δα,Eα) be a soft mapping. The initial structure δ is the coarsest proximity of soft
sets on X for which all mappings (ϕψ)α : (X, δ,E)→ (Xα, δα,Eα) (α ∈ ∆) are soft proximity mapping.

Theorem 4.2. (Existence of initial structures) Let X be a set, {(Xα, δα,Eα) : α ∈ ∆} be a family of soft proximity
spaces, and for each α ∈ ∆ let (ϕψ)α : S(X,E) → (Xα, δα,Eα) be a soft mapping. For any F,G ∈ S(X,E), define FδG
iff for every finite families {Fi : i = 1, ...,n} and {G j : j = 1, ...,m} where F =

⊔n
i=1 Fi and G =

⊔m
j=1 G j, there exist an

Fi and a G j such that

(ϕψ)α(Fi) δα (ϕψ)α(G j) f or each α ∈ ∆.

Then δ is the coarsest proximity of soft sets on X for which all mappings (ϕψ)α : (X, δ,E)→ (Xα, δα,Eα) (α ∈ ∆) are
soft proximity mapping.
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Proof. We first prove that δ is a proximity of soft sets on X.
(sp1) is obvious.
(sp2) We will show that if FδG, then F u G = Φ. Let FδG. Then, there exist finite covers F =

⊔n
i=1 Fi and

G =
⊔m

j=1 G j of F and G respectively such that (ϕψ)α(Fi)δα(ϕψ)α(G j) for some α = si j ∈ ∆, where i = 1, ...,n
and j = 1, ...,m. Since each δα is a proximity of soft sets on Xα, (ϕψ)α(Fi)u (ϕψ)α(G j) = Φ. From this it follows
that

(ϕψ)α
( n⊔

i=1

Fi

)
u (ϕψ)α

( m⊔
j=1

G j

)
= (ϕψ)α(F) u (ϕψ)α(G) = Φ.

Thus, we have F u G = Φ.
(sp3) Since each δα is a proximity of soft sets on Xα, it is clear that FδG implies GδF.
(sp4) It is easy to verify that if FδG, then FδH for each H w G. Therefore, FδG or FδH implies Fδ(G tH).

Conversely, assume that FδG and FδH. Then, there exist finite covers F =
⊔n

i=1 Fi and G =
⊔m

j=1 G j of F
and G respectively such that (ϕψ)α(Fi)δα(ϕψ)α(G j) for some α = si j ∈ ∆, where i = 1, ...,n and j = 1, ...,m.
In the same way, there are finite covers F =

⊔q
p=1 F′p and H =

⊔m+l
j=m+1 G j of F and H respectively such that

(ϕψ)α(F′p) δα(ϕψ)α(G j) for some α = tpj ∈ ∆, where p = 1, ..., q and j = m + 1, ...,m + l. Now, F =
⊔
{Fi u F′p : i =

1, ...,n; p = 1, ..., q} and G tH =
⊔
{G j : j = 1, ...,m + l} are finite covers of F and G tH, respectively. Hence,

from the fact that (ϕψ)α(Fi u F′p)δα(ϕψ)α(G j) for α = si j or α = tpj it follows that Fδ(G tH).

(sp5) Let us define the set Ω of all pairs (F,G) such that FδG and we have either FδH or Gδ(X̃ − H) for
each H ∈ S(X,E). The validity of (sp5) will follow from the fact that Ω is empty. Suppose, on the contrary,
that (F,G) ∈ Ω. Then, (ϕψ)α(F)δα(ϕψ)α(G) for each α ∈ ∆. Indeed, let H′ ∈ S(Xα,Eα) and H = (ϕψ)−1

α (H′). If
FδH, then (ϕψ)α(F)δα(ϕψ)α(H). Because (ϕψ)α(H) v H′, we have (ϕψ)α(F)δαH′. Similarly, if Gδ(X̃ −H), then
(ϕψ)α(G)δα(X̃α −H′). Hence, since δα is a proximity of soft sets on Xα, we obtain (ϕψ)α(F)δα(ϕψ)α(G). Also,
we observe that for each (F,G) ∈ Ω there are positive integers n,m and covers F =

⊔n
i=1 Fi and G =

⊔m
j=1 G j

such that for every pair (i, j) ∈ {1, ...,n} × {1, ...,m}, there exists an α ∈ ∆ satisfying (ϕψ)α(Fi) δα(ϕψ)α(G j). Let
l = n + m. It easy to see that l > 2. Then, for each (F,G) ∈ Ω let us choose such an integer l. But l is not
uniquely determined by (F,G). Let κ be the set of all integers corresponding to members of Ω and let l be
the smallest member of κ. Take a (F,G) ∈ Ω such that l is the integer corresponding to it. Then, there are
covers F =

⊔n
i=1 Fi and G =

⊔m
j=1 G j such that l = n + m and for every pair (i, j) ∈ {1, ...,n} × {1, ...,m} there

exists an α ∈ ∆ satisfying (ϕψ)α(Fi)δα(ϕψ)α(G j). One of the n, m is greater than 1. Consider n > 1 and let
F′ = F1 t ... t Fn−1. In this case, one of the following conditions should be true:

(i) For every H ∈ S(X,E), either F′δH or Gδ(X̃ −H),
(ii) For every H ∈ S(X,E), either FnδH or Gδ(X̃ −H). In fact, suppose that neither (i) nor (ii) holds. Then,

there are H1,H2 ∈ S(X,E) such that F′δH1,Gδ(X̃ − H1) and FnδH2,Gδ(X̃ − H2). Letting H = H1 u H2, we
obtain FδH and Gδ(X̃ − H), contradicting the fact that (F,G) ∈ Ω. Suppose that (i) holds. Because F′ v F
and FδG, this means that F′δG. Hence by (i), we have (F′,G) ∈ Ω. But this is now a contradiction since
(n − 1) + m = l − 1 ∈ κ, contrary to the choice of l. If (ii) holds, we get a contradiction in a similar way.
Therefore, the set Ω is empty. Thus, δ is a proximity of soft sets on X.

It is easy to see that all mappings (ϕψ)α : (X, δ,E) → (Xα, δα,Eα) are soft proximity mapping. Let δ∗

be another proximity of soft sets on X making each of the mappings (ϕψ)α : (X, δ∗,E) → (Xα, δα,Eα) soft
proximity mapping. We shall show that δ < δ∗, which will complete the proof. Let Fδ∗G and consider any
covers F =

⊔n
i=1 Fi and G =

⊔m
j=1 G j of F and G respectively. Since F = (F1 t ... t Fn)δ∗G, by (sp4), there is an

i ∈ {1, ..,n} such that Fiδ∗G. In the same way, since Fiδ∗G = (G1 t ...tGm), by (sp4), there is a j ∈ {1, ..,m} such
that Fiδ∗G j. From the fact that all mappings (ϕψ)α : (X, δ∗,E) → (Xα, δα,Eα) are soft proximity mapping it
follows that (ϕψ)α(Fi) δα (ϕψ)α(G j) for each α ∈ ∆. Thus, we get FδG.

Theorem 4.3. A soft mapping ϕψ : (Y, δ∗,K) → (X, δ,E) is a soft proximity mapping if and only if (ϕψ)α ◦ ϕψ :
(Y, δ∗,K)→ (Xα, δα,Eα) is a soft proximity mapping for every α ∈ ∆.
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Proof. The necessity is easy. We prove the sufficiency. Suppose that (ϕψ)α ◦ ϕψ is a soft proximity mapping
for every α ∈ ∆. Let Fδ∗G and let ϕψ(F) =

⊔n
i=1 Fi, ϕψ(G) =

⊔m
j=1 G j. Then, we have

F v
n⊔

i=1

ϕ−1
ψ (Fi) and G v

m⊔
j=1

(ϕψ)−1G j.

Since Fδ∗G, by (sp4), there exist i, j such that ϕ−1
ψ (Fi)δ∗ϕ−1

ψ (G j). Because

(ϕψ)α ◦ ϕψ ◦ ϕ−1
ψ (Fi) v (ϕψ)α(Fi) and (ϕψ)α ◦ ϕψ ◦ ϕ−1

ψ (G j) v (ϕψ)α(G j)

it follows from our hypothesis that (ϕψ)α(Fi)δα(ϕψ)α(G j) for every α ∈ ∆. This shows that ϕψ(F)δϕψ(G).

Definition 4.4. Let {(Xα, δα,Eα) : α ∈ ∆} be a family of soft proximity spaces and let X =
∏

α∈∆ Xα, E =∏
α∈∆ Eα be product sets. An initial proximity structure δ =

∏
α∈∆ δα of soft sets on X with respect to all the

soft projection mappings (pXα )qEα
, where pXα : X → Xα and qEα : E → Eα, is called the product proximity

structure.

The triplet (X, δ,E) is said to be a product soft proximity space.

From Theorem 4.2 and Theorem 4.3, we obtain the following corollary.

Corollary 4.5. {(Xα, δα,Eα) : α ∈ ∆} be a family of soft proximity spaces. Let X =
∏

α∈∆ Xα and E =
∏

α∈∆ Eα be
sets and for each α ∈ ∆ let (pXα )qEα

be a soft mapping. For any F,G ∈ S(X,E), define FδG iff for every finite families
{Fi : i = 1, ...,n} and {G j : j = 1, ...,m} where F =

⊔n
i=1 Fi and G =

⊔m
j=1 G j, there exist an Fi and a G j such that

(pXα )qEα
(Fi)δα(pXα )qEα

(G j) f or each α ∈ ∆. Then:
(i) δ =

∏
α∈∆ δα is the coarsest proximity of soft sets on X for which all mappings (pXα )qEα

(α ∈ ∆) are soft
proximity mapping.

(ii) A soft mappingϕψ : (Y, δ∗,K)→ (X, δ,E) is a soft proximity mapping if and only if (pXα )qEα
◦ϕψ : (Y, δ∗,K)→

(Xα, δα,Eα) is a soft proximity mapping for every α ∈ ∆.

5. Conclusion

Each proximity space determines in a natural way a topological space with beneficial properties. Also,
this theory possesses deep results, rich machinery and tools. With the development of topology, the theory
of proximity makes a great progress. Hence, the concept of proximity have been studied by many authors
in both the fuzzy setting and the soft setting. In the present work, we give some properties of soft proximity
spaces. We present an alternative description of the concept of soft proximity spaces, which is called soft
δ-neighborhood. Also, we have shown that each soft uniform space determines a soft proximity space.
We believe that these notions will help the researchers to advance and promote the further study on soft
proximity spaces.
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