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On Moduli Spaces for Finite-Order Jets of Linear Connections
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Abstract. We describe the ringed–space structure of moduli spaces of jets of linear connections (at a point)
as orbit spaces of certain linear representations of the general linear group.

Then, we use this fact to prove that the only (scalar) differential invariants associated to linear connec-
tions are constant functions, as well as to recover various expressions appearing in the literature regarding
the dimensions of generic strata of these moduli spaces.

Introduction

The aim of this paper is to study the classification of finite-order jets of linear connections at a point. This
problem, as well as similar ones regarding local classifications of other geometric structures, have already
been widely discussed in the literature ([1], [2], [4], [5], [6], [10] or [12]).

A classical approach to these type of questions consists on developing “normal forms” for the geometric
objects under consideration; that is to say, trying to find suitable coordinate charts where the expression of
the objects is particularly simple (e.g., [1],[11]).

Another point of view tries to construct moduli spaces; i.e., to determine the structure of the orbit
space for the action of the Lie pseudo-group of “changes of coordinates” on the space of objects to classify.
Usually, this goal is exceedingly difficult, so that, to tackle it, one restricts his attention to infinitesimal
neighbourhoods, and hence to jets of the objects under study (see the programme outlined in [2], Sect. 1,
and the development carried out in [4], [6] or [10]).

In this paper we adopt this latest approach, and hence study the structure of the quotient Jr
xC/Diffx,

where Jr
xC denotes the smooth manifold of r-jets of linear connections at a point, and Diffx stands for the

group of germs of diffeomorphisms leaving the point fixed.
Our Theorem 3.9 establishes an isomorphism of ringed spaces between this quotient and the orbit

space of a linear representation of the general linear group Gln. Such a representation is worked out
using the so-called normal tensors associated to linear connections. These tensors were already used in
the early developments of Riemannian geometry ([14]) as well as in the theory of natural operations in
Riemannian geometry ([8], [13]). More recently, it was realized that they are particularly well-behaved in
order to construct moduli spaces and they have been used to study the classification of certain G−structures,
including jets of Riemannian metrics ([6], [10]). This paper applies these techniques to the case of linear
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connections, and obtains the aforementioned result as a corollary of an orbit-reduction-type statement
(Theorem 3.6).

In the last section, we use these results to prove the absence of non-trivial differential invariants associ-
ated to linear connections (Proposition 4.3). As far as we know, this esentially known statement has never
been rigorously proved in the literature. Finally, we also make some comments on how to apply Theo-
rem 3.9 to recover certain formulae already appearing elsewhere ([4]), where they were obtained through
lengthy computations.

1. Preliminaries

1.1. Ringed spaces
Apart from trivial cases, the moduli space to be studied throughout this paper is never a smooth

manifold. Nevertheless, it can be endowed with certain geometric structure.
To be precise, it will be considered as a ringed space in the following sense:

Definition 1.1. Let X be a topological space. A sheaf of continuous functions OX on X is a sub-sheaf of the
sheaf C of real-valued, continuous functions on X.

In other words, a sheaf of continuous functions on X is a map OX which assigns a subalgebra OX(U) ⊆
C(U,R) to every open subset U ⊆ X , with the following condition:

For every open subset U ⊆ X , every open cover U =
⋃

Ui and every function f : U→ R , it is verified

f ∈ OX(U) ⇐⇒ f |Ui ∈ OX(Ui) , ∀ i .

Definition 1.2. We will call ringed space the pair (X,OX) formed by a topological space X and a sheaf of continuous
functions OX on X .

Given two ringed spaces X and Y , a morphism of ringed spaces ϕ : X → Y is a continuous map such that,
for every open subset V ⊆ Y , the following condition is held:

f ∈ OY(V) =⇒ f ◦ ϕ ∈ OX(ϕ−1(V)) .

A morphism of ringed spaces ϕ : X → Y is said to be an isomorphism if it has an inverse morphism, that is, there
exists a morphism of ringed spaces φ : Y→ X verifying ϕ ◦ φ = IdY , φ ◦ ϕ = IdX .

Example 1.3. (Smooth manifolds) The space Rn , endowed with the sheaf C∞Rn of smooth functions, is an example
of ringed space. An n−smooth manifold is precisely a ringed space in which every point has an open neighbourhood
isomorphic to (Rn,C∞Rn ) . Smooth maps between smooth manifolds are nothing but morphisms of ringed spaces.

Example 1.4. (Quotients by the action of a Lie group) Let G × X→ X be a smooth action of a Lie group G on
a smooth manifold X , and let π : X→ X/G be the canonical quotient map.

We will consider on the quotient topological space X/G the following sheaf C∞X/G of “differentiable” functions:
For every open subset V ⊆ X/G , C∞X/G(V) is defined to be

C
∞

X/G(V) := { f : V −→ R : f ◦ π ∈ C∞(π−1(V))} .

Note that there exists a canonical R−algebra isomorphism:

C
∞

X/G(V) C
∞(π−1(V))G

f 7−→ f ◦ π .

The pair (X/G,C∞X/G) is an example of ringed space, which we will call quotient ringed space of the action of G
on X .

As it would be expected, this space verifies the universal quotient property: Every morphism of ringed spaces
ϕ : X → Y , which is constant on every orbit of the action of G on X , factors uniquely through the quotient map
π : X→ X/G , that is, there exists a unique morphism of ringed spaces ϕ̃ : X/G→ Y verifying ϕ = ϕ̃ ◦ π .
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1.2. Invariant theory of the general linear group
Let V be an R-vector space of finite dimension n, and let Gln be the Lie group of itsR-linear automor-

phisms.
The Main Theorem of the invariant theory for the general linear group (e. g., [7], Sect. 24) states:

Theorem 1.5. Let HomGln

(
V∗⊗ p. . . ⊗V∗ ⊗ V⊗ q. . . ⊗V , R

)
denote the vector space of Gln-invariant, linear maps:

V∗⊗ p. . . ⊗V∗ ⊗ V⊗ q. . . ⊗V −→ R .

It holds:

• If p = q, then it is spanned by total contractions:

φσ(ω1 ⊗ . . . ⊗ ep) := ω1(eσ(1)) · . . . · ωp(eσ(p)) , σ ∈ Sp .

• If p , q, then that vector space is zero.

We will also need the following general fact:

Proposition 1.6. Let E and F be (algebraic) linear representations of Gln, and let E′ ⊂ E be a sub-representation.
Any equivariant linear map E′ → F is the restriction of an equivariant linear map E→ F.

Finally, let us mention that we will be interested in computing smooth, invariant functions on a linear
representation of Gln. To this end, the following theorem, which is a particular case of a general result due
to Luna ([9]), assures that we can always find a system of generators made of polynomial, invariant maps.

Theorem 1.7. Let E be an algebraic linear representation of Gln, and let AGln denote the finitely generated algebra
of polynomial, Gln-invariant functions E → R. Let p1, . . . , pk be a system of generators of AGln and let us write1)

p = (p1, . . . , pk) : E→ Rk.
Then,

C
∞(E)Gln = p∗C∞(Rk) .

2. Moduli Spaces of Jets of Linear Connections

In the remainder of the paper, X will always be an n−dimensional smooth manifold.
Let C → X be the bundle of linear connections over X, and let C̃ → X be the bundle of symmetric,

linear connections.
Let us denote by Jr

C → X the fiber bundle of r−jets of linear connections on X. Its fiber over a point
x ∈ X will be denoted Jr

xC .
Let Diffx be the group of germs of local diffeomorphisms of X leaving x fixed, and let Diffr

x be the Lie
group of r−jets at x of local diffeomorphisms of X leaving x fixed. We have the following exact sequence
of groups:

1 −→ Hr
x −→ Diffx −→ Diffr

x −→ 1 ,

Hr
x being the subgroup of Diffx made up of those diffeomorphisms whose r−jet at x coincides with that

of the identity.
The group Diffx acts on Jr

xC: if τ ∈ Diffx and jrx∇ ∈ Jr
xC, then τ · ( jrx∇) is the r-jet at x of the linear

connection τ · ∇, defined as:

(τ · ∇)DD̄ := τ−1
∗

(
∇τ∗D(τ∗D̄)

)
.

Note that the subgroup Hr+2
x acts trivially on Jr

xC, so the action of Diffx factors through an action of
Diffr+2

x .

1)Let us remark that p : E→ Rk may not be surjective, its image being defined by syzygies among the generators p1, . . . , pk.
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Definition 2.1. Two r−jets jrx∇ , jrx∇̄ ∈ Jr
xC are said to be equivalent if there exists a local diffeomorphism τ ∈ Diffx

such that jrx∇̄ = jrx(τ · ∇) .

Equivalence classes of r−jets of linear connections constitute a ringed space. To be precise:

Definition 2.2. We call moduli space of r−jets of linear connections the quotient ringed space

Cr
n := Jr

xC/Diffx = Jr
xC/Diffr+2

x .

In the case of symmetric connections, the moduli space will be denoted C̃r
n .

The moduli space depends neither on the point x nor on the chosen n−dimensional manifold.

Example 2.3. If n = 1 , any linear connection is locally isomorphic to the standard, flat connection on R. Hence, all
moduli spaces Cr

1 reduce to a single point, for any r ∈N ∪ {0}.
If ∇ is a symmetric connection around x, there always exists a chart in which Γk

i j(x) = 0. Therefore, the moduli

space of 0-jets of symmetric connections C̃0
n also reduces to a single point, on any dimension.

3. Description via Normal Tensors

Definition 3.1. Let m ≥ 0 be a fixed integer and let x ∈ X be a point. The space of normal tensors of order m at
x , which we will denote by Cm , is the vector space of (1,m + 2)−tensors T at x having the following symmetries:

- they are symmetric in the last m covariant indices:

Tl
i jk1...km

= Tl
i jkσ(1)...kσ(m)

, ∀ σ ∈ Sm ; (1)

- the symmetrization over the m + 2 covariant indices is zero:∑
σ∈Sm+2

Tl
σ(i)σ( j)σ(k1)...σ(km) = 0 . (2)

When dealing with symmetric connections, we will consider a slightly different definition of normal tensors of
order m at x . The corresponding vector space will be denoted by C̃m, and it will consist of all (1,m + 2)−tensors T at
x verifying symmetries 1, 2 and that of being symmetric in the first two covariant indices:

Tl
i jk1...km

= Tl
jik1...km

. (3)

Due to this additional symmetry, it is easily checked that C̃0 = 0.

To show how a germ of linear connection ∇ around x produces a sequence of normal tensors Γm at x ,
let us briefly recall some definitions and results.

Definition 3.2. A chart (x1, . . . , xn) in a neighbourhood of x is said to be a normal system for ∇ at the point x
if the geodesics passing through x at t = 0 are precisely the “straight lines” {x1(t) = λ1t, . . . , xn(t) = λnt} , where
λi ∈ R .

A simple, standard calculation allows to prove that, if (x1, . . . , xn) is a chart centred at x ∈ X , and Γk
i j are

the Christoffel symbols of a linear conection ∇ in those coordinates, then it holds:

(x1, . . . , xn) is a normal system for ∇ ⇔

n∑
i, j=1

xix jΓ
k
i j = 0 , k = 1, . . . ,n. .
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Recall the exponential map exp
∇

: TxX → X is a diffeomorphism around the origin. Let ∇ be the germ
of linear connection around x that corresponds, via the exponential map, to the canonical flat connection of
TxX.

Let us also consider the difference tensor between ∇ and ∇:

T(ω,D1,D2) := ω
(
∇D1 D2 − ∇D1 D2

)
.

If (x1, . . . , xn) is a normal chart for ∇ around x, then:

T :=
∑
i, j,k

Γk
i j
∂
∂xk
⊗ dxi

⊗ dx j .

Definition 3.3. For each m ≥ 0, the m−th normal tensor of the connection ∇ at the point x is:

Γm
x := ∇

m
x T .

If (x1, . . . , xn) is a normal chart for ∇ around x, then:

Γm
x =

∑
i, j,k,a1,...am

Γk
i j;a1...am

(x)
∂
∂xk
⊗ dxi

⊗ dx j
⊗ dxa1 ⊗ . . . ⊗ dxam ,

where

Γk
i j;a1...am

:=
∂Γk

i j

∂xa1 . . . ∂xam

.

Proposition 3.4. For each m ≥ 0, the tensor Γm
x belongs to Cm.

Proof. We only have to check that the symmetrization of the m + 2-covariant indices of Γm
x is zero. To this

end, let (x1, . . . , xn) be a normal chart for∇ around x, so that the Christoffel symbols of∇ in these coordinates
satisfy:

n∑
i, j=1

xix jΓ
k
i j = 0 .

If we differentiate m+2 times this equality and evaluate at x , it follows that, for any a1, . . . am+2 ∈ {1, . . . ,n}:∑
Γk

aia j;a1...am+2
(x) + Γk

a jai;a1...am+2
(x) = 0 (4)

where the sum is over all the possible i ≤ j, taken among {1, . . . ,m+2}. As the functions Γk
i j;l1...lm

are symmetric
in the last m indices, the thesis follows.

3.0.1. Reduction theorem
If ∇ is a germ of linear connection around x, let us denote (Γ0

x, . . . ,Γ
m
x , . . .) the sequence of its normal

tensors at the point x. Observe that Γm
x only depends on jmx ∇.

Lemma 3.5 (Orbit reduction). Let G be a Lie group acting on a smooth manifold X, and let f : X → Y be a
surjective regular submersion.

If the orbits of G are precisely the fibres of f , then the quotient X/G is a smooth manifold, and the map
[x] 7−→ f (x) establishes an isomorphism of smooth manifolds:

X/G ∼
−−→ Y .
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Proof. The universal quotient property assures that f factors through a unique morphism of ringed spaces
f̄ : X/G→ Y, [x]→ f (x), that is clearly bijective. Moreover, any local section s of f induces, when projected
to the quotient, a morphism of ringed spaces that is a (local) inverse for f̄ . That is to say, the map f̄ is in
fact an isomorphism of smooth manifolds.

Theorem 3.6 (Reduction). For each r ∈N ∪ {0}, the map

Jr
xC

πr
−−−−→ C0× . . . ×Cr , jrx∇ → (Γ0

x, . . . ,Γ
r
x)

is a surjective regular submersion, whose fibers are the orbits of H1
x.

Therefore, πr induces an isomorphism of smooth manifolds:

(Jr
xC) /H1

x C0 × . . . × Cr .

Proof. To check it is a regular submersion, let us construct a global section passing through any point of
Jr
xC. Such a section depends on a choice of coordinates, and its image will be those jets having the chosen

coordinates as a normal chart.
So let (x1, . . . , xn) be coordinates around x. Let us define a map

sr : C0 × . . . × Cr −→ Jr
xC , sr(T0, . . . ,Tr) := jrx∇ ,

where ∇ is the linear connection whose Christoffel symbols on the chosen coordinates are the following
polynomial functions:

Γk
i j := (T0)k

i j +
∑

a1

(T1)k
i j,a1

xa1 + . . . +
1
r!

∑
a1...ar

(Tr)k
i j,a1...ar

xa1 . . . xar .

This map sr is clearly smooth and satisfies:

• It is a section of πr: the chart (x1, . . . , xn) is a normal system for ∇ around x , because the functions
xix jΓk

i j vanish, due to the symmetries of the Tm. Therefore, the r first normal tensors associated to
jrx∇ at the point x are precisely T0, . . . ,Tr.

• This section can pass through any point jrx∇, by simply choosing (x1, . . . , xn) to be a normal system
for ∇̄.

Let us now check that the fibres of πr are the orbits of H1
x. On the one hand, normal tensors are natural

(i.e., independent of choices of coordinates), so that πr is Diffr+2
x -equivariant. Hence, as H1

x acts trivially
on the spaces of normal tensors C0 × . . . × Cr, the orbits of H1

x are inside the fibres of πr.
On the other hand, let jrx∇ and jrx∇ be two jets of linear connections with the same normal tensors

Γ0, . . . ,Γr at the point x.
Let us fix a basis of TxX and let (x1, . . . , xn) and (x1, . . . xn) be the corresponding normal systems induced

by those jets.
Let τ the diffeomorphism carrying one chart to the other, τ(xi) := xi. As dxxi = dxxi, because both

coincide with the chosen basis, it follows that jr+2
x τ ∈ H1

x.
Now, an easy computation in coordinates allows to conclude that τ∗

(
jrx∇

)
= jrx∇, so that both jets are in

the same orbit of H1
x.

Remark 3.7. A similar argument proves that, for each r ∈N ∪ {0}, the map

Jr
xC̃

πr
−−−−→ C̃0× . . . ×C̃r , jrx∇ → (Γ0

x, . . . ,Γ
r
x)

is a surjective regular submersion, whose fibers are the orbits of H1
x.

Therefore, πr induces an isomorphism of smooth manifolds:

(Jr
xC̃) /H1

x C̃0 × . . . × C̃r .
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Remark 3.8. Fix a chart (x1, . . . , xn) be a chart around x, and let N r
x ⊂ Jr

xC be the submanifold formed by those jets
for which (x1, . . . , xn) are normal coordinates.

The proof of the previous Theorem also says that Nx is a slice of the action of H1
x on Jr

xC.

Taking into account the exact sequence:

1 −→ H1
x −→ Diffr+2

x −→ Gln −→ 1 ,

the Reduction Theorem 3.6 has the following immediate consequence:

Theorem 3.9. The moduli space of jets of linear connections is isomorphic, as a ringed space, to the orbit space of a
linear representation of Gln:

Cr
n ' (C0 × . . . × Cr) /Gln , C̃r

n '
(
C̃0 × . . . × C̃r

)
/Gln.

Compare this result with similar statements obtained for Riemannian metrics ([6]) and other G−structures
([10]).

4. Some Properties of the Moduli Spaces

This last section is devoted to extract some consequences of Theorem 3.9.

4.1. Non-existence of differential invariants
Let us consider the quotient morphism

Jr
xC

π // Jr
xC/Diffx = Cr

n .

Definition 4.1. A (scalar) differential invariant of order ≤ r of linear connections is defined to be a global
differentiable function on some Cr

n .

Taking into account the ringed space structure of Cr
n (see Example 1.4), we can simply write:

{Differential invariants of order ≤ r} = C∞(Cr
n) = C∞(Jr

xC)Diffx .

Lemma 4.2. For all r ∈N ∪ {0}, the algebra of Gln-invariant, polynomial functions

C0 × . . . × Cr −→ R

is trivial; i.e., it consists on constant functions only.

Proof. If a polynomial function is Gln-invariant, then so they are its homogeneous components; hence, it is
enough to argue the case of homogeneous polynomials.

The vector space of Gln-invariant, polynomial functions C0 × . . . × Cr −→ R, homogeneous of degree
k is isomorphic to: ⊕

d0+...+dr=k

HomGln

(
Sd0 C0 ⊗ . . . ⊗ Sdr Cr , R

)
.

By Proposition 1.6, any Gln-invariant linear map Sd0 C0 ⊗ . . . ⊗ Sdr Cr → R is the restriction of a Gln-
invariant linear map

⊗T∗xX⊗ p. . . ⊗T∗xX ⊗ TxX⊗ q. . . ⊗TxX −→ R ,

where p = 2d0 + . . . + (r + 2)dr, and q = d0 + . . . + dr.
If k > 0, then p , q and Theorem 1.5 says that there are no such linear maps. That is to say, if k > 0 the

above vector spaces reduce to zero and the thesis follows.
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Theorem 4.3. (Non-existence of differential invariants) The only differential invariants associated to (symmet-
ric or not) linear connections are constant functions.

That is to say,
C
∞(Cr

n) = R , C∞(C̃r
n) = R .

Proof. By Corollary 3.9 and the universal property of quotient ringed spaces,

C
∞(Cr

n) = C∞ ((C0 × . . . × Cr)/Gln) = C∞(C0 × . . . × Cr)Gln .

Luna’s theorem 1.7 describes such an algebra in terms of a system of generators of the algebra of
polynomial, Gln-invariant functions C0 × . . . × Cr → R.

But the previous Lemma proves that any such a polynomial function is constant, and hence the algebra
under consideration is trivial; i. e. C∞(Cr

n) = R.
An analogous reasoning applies for the case of symmetric connections, and proves C∞(C̃r

n) = R.

Remark 4.4. More generally, any tensorial invariant, not necessarily scalar, is called a natural tensor associated to
linear connections. These natural tensors are usually described in terms of the curvature operator and its covariant
derivatives, see ([7]).

A similar argument to that presented above allows to produce an alternative description, using normal tensors, of
the vector space of (p, q)-natural tensors (of order ≤ r) associated to linear connections:{

Smooth, Diffx-equivariant maps
T : Jr

xC −→ ⊗
pT∗xX ⊗q TxX

}
∥∥∥∥⊕

di

HomGln

(
Sd0 C0 ⊗ · · · ⊗ Sdr Cr , ⊗pT∗xX ⊗q TxX

)
where the summation is over all sequences {d0, . . . , dr} of non-negative integers satisfying:

d0 + 2d1 + . . . + (r + 1) dr = p − q . (5)

As an application of this Remark 4.4, a simple reasoning using Lemma 1.6 and Theorem 1.5 allows
to prove the following characterization of the curvature tensor of symmetric, linear connections (see [7],
Section 28 for related results):

Up to constant multiples, the curvature tensor R is the only natural 2-form with values on End(TX) associated
to symmetric, linear connections.

4.2. A few comments on dimensions of generic strata
Recall that, due to Theorem 3.9, the following isomorphism of ringed spaces holds:

C̃r
n = (Jr

xC̃)/Diffx = (C̃1 × . . . × C̃r)/Gln .

Let us make some comments on what could be called “generic dimension” of this orbit space. To be
precise, we will check that the formula

r∑
m=1

dim C̃m − (dim Gln − i) , (6)

where i denotes the minimum dimension of the isotropy groups for the action of Gln on C̃1 × . . . × C̃r ,
recovers other formulae appearing in the literature regarding the dimension or the Poincaré series of the,
loosely speaking, “strata of generic jets” ([2], [4]).
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If sm+2 denotes the symmetrization operator, then the following sequence is exact:

0 −→ C̃m −→ TxX ⊗ S2T∗xX ⊗ SmT∗xX
sm+2
−−−−−→ TxX ⊗ Sm+2T∗xX −→ 0 .

Using this sequence, a straightforward computation yields the dimension of C̃m :

dim C̃m = n
n(n + 1)

2

(
n + m − 1

m

)
− n

(
n + m + 1

m + 2

)
.

Later we will check that, if dim X = n = 2 , then any 1-jet has, at least, a one-dimensional isotropy group;
in any other case, generic jets have no isotropy. That is to say, we have i = 1 if (n, r) = (2, 1), and i = 0
otherwise.

Therefore, taking into account that dim Gln = n2 , we observe that formula 6 produces the same result
about the generic dimension of the moduli space C̃r

n that can be found in [4] for dimension n ≥ 2 (the trivial
case n = 1 has already been dealt with in Example 2.3):

dim C̃r
n = n

n(n + 1)
2

r∑
m=0

(
n + m − 1

m

)
− n

r∑
m=0

(
n + m + 1

m + 2

)
−

(
n2
− δn

2δ
r
1

)
= n

n(n + 1)
2

r∑
m=0

(
n + m − 1

n − 1

)
− n

r+2∑
m=1

(
n + m − 1

n − 1

)
+ δn

2δ
r
1 .

Isotropy groups of 1-jets in dimension 2
Finally, let us make some comments regarding the isotropy groups of generic 1-jets in dimension 2

(compare with [4], where a similar goal is achieved through direct computation).

Definition 4.5. The vector space of curvature-like tensors is the subspace R ⊆ Λ2T∗xX ⊗ T∗xX ⊗ TxX defined by
the linear Bianchi identity:

Rk
i jl + Rk

li j + Rk
jli = 0 . (7)

These curvature-like tensors are closely related to normal tensors: it is not difficult to check that the
linear map Rk

i jl := Γk
jli − Γk

il j establishes an isomorphism of Gln-modules:

C̃1 ' R ,

whose inverse is Γk
i jl := 1

3

(
Rk

li j + Rk
l ji

)
.

Let us fix some notations: the symmetrization, skew-symmetrization and Ricci maps will be denoted,
respectively,

s : ⊗2 T∗xX→ S2T∗xX , a : ⊗2 T∗xX→ Λ2T∗xX , R
ρ
−→ ⊗

2T∗xX ,

where ρ(R)i j :=
∑n

k=1 Rk
ik j.

Lemma 4.6 ([3], Lemma 4.4.1). If X has dimension 2, then the Ricci map establishes an isomorphism of Gl2-
modules:

R
ρs⊕ρa
−−−−−→ S2(T∗xX) ⊕Λ2(T∗xX) ,

where ρs := s ◦ ρ and ρa := a ◦ ρ.
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This Lemma implies that, if X has dimension 2, the isotropy group of any 1-jet j1x∇ under the action of
Diffx is, at least, 1-dimensional.

In fact, due to the isomorphisms

C̃1
n = C̃1/Gl2 = R/Gl2 = (S2T∗xX ⊕Λ2T∗xX)/Gl2 ,

it is enough to check that any pair (T2, ω2) of a symmetric 2-tensor and a 2-form on a 2-dimensional vector
space has, at least, a 1-dimensional isotropy group under the action of Gl2.

If the metric T2 is non-singular, then its automorphisms have determinant equal to 1, and hence
preserve any 2-form ω2. In this case, the isotropy group of the pair (T2, ω2) is isomorphic to O(2) or
O(1, 1), depending on the signature of T2.

The other cases where T2 is singular are easily analyzed in a similar manner, resulting in larger isotropy
groups.

Analogous arguments, with the corresponding versions of Lemma 4.6, can be applied to check that, if
n > 2 or k > 1, then the isotropy group of a “generic” jet of linear connection is trivial.
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