Commutativity of Banach Algebras Characterized by Primitive Ideals and Spectra

Amin Hosseini ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Kashmar Higher Education Institute, Kashmar, Iran

This paper is dedicated to Dr. Mehdi Mohammadzadeh Karizaki

Abstract

This study is an attempt to prove the following main results. Let \mathcal{A} be a Banach algebra and $\mathfrak{H}=\mathcal{A} \bigoplus \mathbb{C}$ be its unitization. By $\prod_{c}(\mathfrak{H})$, we denote the set of all primitive ideals \mathcal{P} of \mathfrak{A} such that the quotient algebra $\frac{\mathscr{U}}{\mathcal{P}}$ is commutative. We prove that if \mathcal{A} is semi-prime and $\operatorname{dim}\left(\bigcap_{\mathcal{P} \in \Pi_{c}(2)} \mathcal{P}\right) \leq 1$, then \mathcal{A} is commutative. Moreover, we prove the following: Let \mathcal{A} be a semi-simple Banach algebra. Then, \mathcal{A} is commutative if and only if $\subseteq(a)=\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\} \bigcup\{0\}$ or $\mathfrak{S}(a)=\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\}$ for every $a \in \mathcal{A}$, where $\subseteq(a)$ and $\Phi_{\mathcal{A}}$ denote the spectrum of an element $a \in \mathcal{A}$, and the set of all non-zero multiplicative linear functionals on \mathcal{A}, respectively.

1. Introduction and Preliminaries

Throughout this paper, \mathcal{A} denotes a Banach algebra over the complex field \mathbb{C}. If \mathcal{A} is unital, then 1 stands for its unit element. We denote the center of \mathcal{A} by $Z(\mathcal{A})$, i.e. $Z(\mathcal{A})=\{x \in \mathcal{A} \mid$ ax $=$ xa for all $a \in \mathcal{A}\}$. Moreover, \mathcal{A} is called semi-prime if $a \mathcal{A} a=\{0\}$ implies that $a=0$. Recall that a linear mapping $d: \mathcal{A} \rightarrow \mathcal{A}$ is called a derivation if it satisfies the Leibnitz rule $d(a b)=d(a) b+a d(b)$ for all $a, b \in \mathcal{A}$. We call d an inner derivation if there exists an element $x \in \mathcal{A}$ such that $d(a)=[x, a]=x a-a x$ for all $a \in \mathcal{A}$.

A non-zero linear functional φ on \mathcal{A} is called a character if $\varphi(a b)=\varphi(a) \varphi(b)$ holds for every $a, b \in \mathcal{A}$. By $\Phi_{\mathcal{A}}$ we denote the set of all characters on \mathcal{A}. It is well known that, $\operatorname{ker} \varphi$ the kernel of φ is a maximal ideal of \mathcal{A}, where φ is an arbitrary element of $\Phi_{\mathcal{A}}$. If \mathcal{A} is a Banach $*$-algebra, then we denote the set of all projections in \mathcal{A} by $\mathcal{P}_{\mathcal{A}}$ (,i.e. $\mathcal{P}_{\mathcal{A}}=\left\{p \in \mathcal{A} \mid p^{2}=p, p^{*}=p\right\}$), and by $\mathcal{S}_{\mathcal{A}}$ we denote the set of all self-adjoint elements of \mathcal{A} (,i.e. $\mathcal{S}_{\mathcal{A}}=\left\{a \in \mathcal{A} \mid a^{*}=a\right\}$). The set of those elements in \mathcal{A} which can be represented as finite real-linear combinations of mutually orthogonal projections, is denoted by $O_{\mathcal{A}}$. Hence, we have $\mathcal{P}_{\mathcal{A}} \subseteq O_{\mathcal{A}} \subseteq \mathcal{S}_{\mathcal{A}}$. Note that if \mathcal{A} is a von Neumann algebra, then $O_{\mathcal{A}}$ is norm dense in $\mathcal{S}_{\mathcal{A}}$. More generally, the same is true for $A W^{*}$-algebras. Recall that a W^{*}-algebra is a weakly closed self-adjoint algebra of operators on a Hilbert space, and an $A W^{*}$-algebra is a C^{*}-algebra satisfying:
(i) In the partially ordered set of projections, any set of orthogonal projections has a least upper bound (LUB),
(ii) Any maximal commutative self-adjoint subalgebra is generated by its projections. That is, it is equal to

[^0]the smallest closed subalgebra containing its projections.
The above-mentioned definitions and results can be found in [6, 10, 17]. This paper, has been motivated by [7, 8, 15]. An algebra \mathcal{A} can always be embedded into an algebra with identity as follows. Let \mathfrak{A} denote the set of all pairs $(x, \lambda), x \in \mathcal{A}, \lambda \in \mathbb{C}$, that is, $\mathfrak{H}=\mathcal{A} \bigoplus \mathbb{C}$. Then \mathfrak{A} becomes an algebra if the linear space operations and multiplication are defined by $(x, \lambda)+(y, \mu)=(x+y, \lambda+\mu), \mu(x, \lambda)=(\mu x, \mu \lambda)$ and $(x, \lambda)(y, \mu)=(x y+\lambda y+\mu x, \lambda \mu)$ for $x, y \in \mathcal{A}$ and $\lambda, \mu \in \mathbb{C}$. A simple calculation shows that the element $\mathbf{e}=(0,1) \in \mathfrak{A}$ is an identity for \mathfrak{A}. Moreover, the mapping $x \rightarrow(x, 0)$ is an algebra isomorphism of \mathcal{A} onto an ideal of codimension one in \mathfrak{A}. Obviously, \mathfrak{A} is commutative if and only if \mathcal{A} is commutative.

Now suppose that \mathcal{A} is a normed algebra. We introduce a norm on \mathfrak{A} by $\|(x, \lambda)\|=\|x\|+|\lambda|$, for $x \in \mathcal{A}$, $\lambda \in \mathbb{C}$. It is straightforward that this turns \mathfrak{A} into a normed algebra. Clearly, if \mathcal{A} is a Banach algebra, then \mathfrak{A} is a Banach algebra, too. Some authors call \mathfrak{A} the unitization of \mathcal{A}.

Let B be a subset of \mathcal{A}, the commutant of B is denoted by B^{\prime} and defined by $B^{\prime}=\{a \in \mathcal{A} \mid a b=b a$ for every $b \in$ $B\}$. The double commutant of B is denoted by $B^{\prime \prime}$, and we have $B^{\prime \prime}=\left\{a \in \mathcal{A} \mid a x=\right.$ xa for every $\left.x \in B^{\prime}\right\}$. A straightforward verification shows that B^{\prime} is a closed subalgebra of $\mathcal{A}, B \subseteq B^{\prime \prime}$, and if B is a commutative set, then so is $B^{\prime \prime}$. Indeed, if B is commutative, then $B^{\prime \prime}$ is a commutative Banach algebra (see p. 293 of [16]).

The spectrum of an element a is the set $\subseteq(a)=\{\lambda \in \mathbb{C} \mid \lambda \mathbf{1}-a$ is not invertible $\}$. The spectral radius of a is $r(a)=\sup \{|\lambda|: \lambda \in \mathbb{S}(a)\}$. The element a is said to be quasi-nilpotent if $r(a)=0$. We shall henceforth find it convenient to write $\lambda \mathbf{1}$ simply as λ.

Let \mathcal{A} be a commutative Banach algebra. It follows from Theorem 1.3.4 of [14] that
(1) if \mathcal{A} is unital, then $\mathfrak{S}(a)=\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\}$,
(2) if \mathcal{A} is non-unital, then $\subseteq(a)=\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\} \bigcup\{0\}$.

In this article, we are going to study the converse of this result. Indeed, we will show that if \mathcal{A} is a semisimple Banach algebra, then \mathcal{A} is commutative if and only if $\mathfrak{S}(a)=\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\}$ or $\mathfrak{S}(a)=\{\varphi(a) \mid \varphi \in$ $\left.\Phi_{\mathcal{A}}\right\} \bigcup\{0\}$ for every $a \in \mathcal{A}$. Moreover, we prove that if $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a bounded derivation such that $\mathfrak{S}(\delta(a))=\left\{\varphi(\delta(a)) \mid \varphi \in \Phi_{\mathcal{A}}\right\}$ or $\subseteq(\delta(a))=\left\{\varphi(\delta(a)) \mid \varphi \in \Phi_{\mathcal{A}}\right\} \cup\{0\}$ for every $a \in \mathcal{A}$, then $\delta(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$, where $\operatorname{rad}(\mathcal{A})$ denotes the Jacobson radical of \mathcal{A}. By $\prod_{c}(\mathfrak{H})$, we denote the set of all primitive ideals \mathcal{P} of \mathfrak{A} such that the quotient algebra $\frac{\mathfrak{U}}{\mathcal{P}}$ is commutative. Moreover, the set of all maximal ideals \mathcal{M} of \mathfrak{H} such that the quotient algebra $\frac{\mathscr{H}}{\mathcal{M}}$ is commutative, is denoted by $\mathfrak{M}_{c}(\mathfrak{H})$. We prove that if \mathcal{A} is semi-prime and $\operatorname{dim}\left(\bigcap_{\mathcal{P}_{\in} \Pi_{c}(\mathbb{2})} \mathcal{P}\right) \leq 1$, then \mathcal{A} is commutative.

2. Results and Proofs

We begin with the following theorems which will be used to prove our main results.
Theorem 2.1. [[19], Theorem 4.4] Let \mathcal{A} be a commutative Banach algebra and $\delta: \mathcal{A} \rightarrow \mathcal{A}$ be a derivation. Then, $\delta(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$.

Theorem 2.2. [[11], page 246] Let d be a derivation on a Banach algebra \mathcal{A}. Then, the following three conditions are equivalent:
(i) $[a, d(a)] \in \operatorname{rad}(\mathcal{A})$ for all $a \in \mathcal{A}$;
(ii) d is spectrally bounded;
(iii) $d(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$;

Note that each member of $\Phi_{\mathcal{A}}$ is continuous (see Proposition 5.1.1 of [5]). In this study, we assume that $\Phi_{\mathcal{A}}$ is a non-empty set. The following theorem is motivated by $[7,8,15]$.
 In particular, if \mathcal{A} is semi-prime and $\operatorname{dim}\left(\bigcap_{\mathcal{P} \in \Pi_{c}(2)} \mathcal{P}\right) \leq 1$, then $\delta=0$.

Proof. First, we define $\Delta: \mathfrak{A} \rightarrow \mathfrak{A}$ by $\Delta(a, \alpha)=(\delta(a), 0)=\delta(a)$. Clearly, Δ is a bounded derivation. Hence, if \mathcal{P} is an arbitrary primitive ideal of \mathfrak{M}, then $\Delta(\mathcal{P}) \subseteq \mathcal{P}$ (see Theorem 6.2.3 of [5]). Assume that \mathcal{P} is an arbitrary element of $\prod_{c}(\mathfrak{A})$. It means that $\frac{\mathfrak{U}}{\mathcal{P}}$ is commutative. Furthermore, according to Proposition 1.4.44
(ii) of [6], $\frac{\mathfrak{L}}{\mathcal{P}}$ is a primitive algebra, and so $\frac{\mathfrak{N}}{\mathcal{\rho}}$ is semi-simple. Now, we define the linear map $D: \frac{\mathfrak{U}}{\mathcal{P}} \rightarrow \frac{\mathfrak{U}}{\mathcal{P}}$ by $D((a, \alpha)+\mathcal{P})=\Delta(a, \alpha)+\mathcal{P}$. If $(a, \alpha)+\mathcal{P}=(b, \beta)+\mathcal{P}$, then $(a-b, \alpha-\beta) \in \mathcal{P}$. Since $\Delta(\mathcal{P}) \subseteq \mathcal{P}, \Delta(a-b, \alpha-\beta) \in \mathcal{P}$. Hence, $\Delta(a, \alpha)+\mathcal{P}=\Delta(b, \beta)+\mathcal{P}$ and it means that D is well-defined. For convenience, (a, λ) is denoted by a_{λ} for all $a \in \mathcal{A}, \lambda \in \mathbb{C}$. A straightforward verification shows that D is a derivation. It follows from Theorem
 ideal of \mathfrak{A} is a (maximal) modular ideal (see the last paragraph of page 4 of [14]). Moreover, it follows from Proposition 1.4.34 (iv) of [6] that each maximal modular ideal in \mathfrak{A} is a primitive ideal. Therefore, $\mathfrak{M}_{c}(\mathfrak{H}) \subseteq \Pi_{c}(\mathfrak{H})$ and it implies that $\bigcap_{\mathcal{P}_{\in} \in \Pi_{c}(\mathfrak{Y})} \mathcal{P} \subseteq \bigcap_{\mathcal{M} \in \mathfrak{M}_{c}(\mathfrak{2 l})} \mathcal{M}$, where $\Pi_{c}(\mathfrak{H})$ and $\mathfrak{M}_{c}(\mathfrak{H})$ were introduced in the introduction. According to Proposition 3.1.2 of [5], $\operatorname{ker} \widetilde{\varphi}$ is a maximal ideal of \mathfrak{A} for every $\widetilde{\varphi} \in \Phi_{\mathfrak{A}}$. Note that $\widetilde{\varphi}\left(a_{\alpha} b_{\beta}\right)=\widetilde{\varphi}\left(a_{\alpha}\right) \widetilde{\varphi}\left(b_{\beta}\right)=\widetilde{\varphi}\left(b_{\beta}\right) \widetilde{\varphi}\left(a_{\alpha}\right)=\widetilde{\varphi}\left(b_{\beta} a_{\alpha}\right)$ for all $a_{\alpha}, b_{\beta} \in \mathfrak{H}$. Hence, $a_{\alpha} b_{\beta}-b_{\beta} a_{\alpha} \in \operatorname{ker} \widetilde{\varphi}$. Thus, $\left(a_{\alpha}+\operatorname{ker} \widetilde{\varphi}\right)\left(b_{\beta}+\operatorname{ker} \widetilde{\varphi}\right)=\left(b_{\beta}+\operatorname{ker} \widetilde{\varphi}\right)\left(a_{\alpha}+\operatorname{ker} \widetilde{\varphi}\right)$, and it means that $\frac{\mathscr{2}}{\operatorname{ker} \widetilde{\varphi}}$ is a commutative algebra. Hence, $\left\{\operatorname{ker} \widetilde{\varphi} \mid \widetilde{\varphi} \in \Phi_{\mathfrak{t}\}}\right\} \subseteq \mathfrak{M}_{c}(\mathfrak{H})$ and it is concluded that $\bigcap_{\mathcal{P}_{\in \Pi_{c}(\mathfrak{N l})} \mathcal{P} \subseteq \bigcap_{\mathcal{M} \in \mathfrak{M}_{c}(\mathfrak{N})} \mathcal{M} \subseteq \bigcap_{\widetilde{\varphi} \in \Phi_{\mathcal{F}}} \operatorname{ker} \widetilde{\varphi} \text {. Therefore, we }}$ have $\Delta(\mathfrak{H}) \subseteq \bigcap_{\mathcal{P}_{\in \Pi_{c}(\mathfrak{Y l}} \mathcal{P} \subseteq \bigcap_{\mathcal{M} \in \mathfrak{M}_{c}(\mathfrak{Y l})} \mathcal{M} \subseteq \bigcap_{\widetilde{\varphi} \in \Phi_{\mathscr{I}}} \operatorname{ker} \widetilde{\varphi} \text {. Based on the offered discussion in the first paragraph }}$ of page 15 of [14], we obtain that $\bigcap_{\widetilde{\varphi} \in \Phi_{\mathscr{I}}} \operatorname{ker} \widetilde{\varphi}=\bigcap_{\varphi \in \Phi_{\mathcal{A}}} \operatorname{ker} \varphi$. Hence, $\delta(\mathcal{A}) \subseteq \bigcap_{\mathcal{P}_{\in \Pi_{c}(2)}} \mathcal{P} \subseteq \bigcap_{\mathcal{M} \in \mathfrak{M}_{c}(2)} \mathcal{M} \subseteq$ $\bigcap_{\varphi \in \Phi_{\mathcal{A}}} \operatorname{ker} \varphi$, and it completes the first part of our proof.

Suppose that \mathcal{A} is semi-prime and $\operatorname{dim}\left(\bigcap_{\mathcal{P} \in \Pi_{c}(2)} \mathcal{P}\right) \leq 1$. It is obvious that if $\operatorname{dim}\left(\bigcap_{\mathcal{P} \in \Pi_{c}(2)} \mathcal{P}\right)=0$, then $\delta(\mathcal{A})=\{0\}$. Now, assume that $\operatorname{dim}\left(\bigcap_{\left.\mathcal{P}_{\in \Pi_{c}(2)} \mathcal{P}\right)}=1\right.$. Since $\operatorname{dim}\left(\bigcap_{\left.\mathcal{P}_{\in \Pi_{c}(2)} \mathcal{P}\right)} \mathcal{P}=1\right.$, there exists a non-zero
 $\psi: \mathcal{A} \rightarrow \mathbb{C}$ such that $\delta(a)=(\delta(a), 0)=\psi(a) x_{\lambda}=\psi(a)(x, \lambda)=(\psi(a) x, \psi(a) \lambda)$ for all $a \in \mathcal{A}$. So, $\psi(a) \lambda=0$, and it implies that either $\psi(a)=0$ or $\lambda=0$. If $\lambda \neq 0$, then $\psi(a)=0$ for every $a \in \mathcal{A}$, and consequently, δ is zero. In this case, our goal is achieved. Now, we suppose $\lambda=0$. We want to show that δ is identically zero. To obtain a contradiction, assume δ is a non-zero derivation. Therefore, there is an element a_{0} of \mathcal{A} such that $\delta\left(a_{0}\right) \neq 0$. Clearly, $\psi\left(a_{0}\right) \neq 0$, too. Thus, we have $\delta\left(a_{0}\right)=\psi\left(a_{0}\right) x$. Putting $b=\frac{1}{\psi\left(a_{0}\right)} a_{0}$, we obtain $\delta(b)=\delta\left(\frac{1}{\psi\left(a_{0}\right)} a_{0}\right)=\frac{1}{\psi\left(a_{0}\right)} \psi\left(a_{0}\right) x=x$ and it implies that $\psi(b)=1$. We will show that $a x+x a$ is a scalar multiple of x for any a in \mathcal{A}. Let a be an arbitrary element of \mathcal{A}. Then, $\left.\delta\left(a^{2}\right)=\psi\left(a^{2}\right) x \quad{ }^{*}\right)$. On the other hand, we have $\delta\left(a^{2}\right)=\delta(a) a+a \delta(a)=\psi(a) x a+a \psi(a) x=\psi(a)(x a+a x) \quad\left({ }^{* *}\right)$. Comparing $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$, we find that $\psi\left(a^{2}\right) x=\psi(a)(a x+x a)$. If $\psi(a) \neq 0$, then $a x+x a=\frac{\psi\left(a^{2}\right)}{\psi(a)} x$. If $\psi(a)=0$, then

$$
\begin{aligned}
\psi(a b+b a) x & =\delta(a b+b a) \\
& =\delta(a) b+a \delta(b)+\delta(b) a+b \delta(a) \\
& =\psi(a) x b+a \psi(b) x+\psi(b) x a+b \psi(a) x \\
& =a x+x a
\end{aligned}
$$

and this proves that $a x+x a$ is a scalar multiple of x for any a in \mathcal{A}. Next, it will be shown that $x^{2}=0$. Suppose that $\psi(x)=0$. We have $\psi\left(b^{2}\right) x=\delta\left(b^{2}\right)=\delta(b) b+b \delta(b)=\psi(b) x b+b \psi(b) x=x b+b x$. Applying δ on this equality and then using the fact that $\delta(x)=\psi(x) x=0$, we obtain that $x^{2}=0$. Now, suppose $\psi(x) \neq 0$. Therefore, we have

$$
\begin{equation*}
\psi\left(x^{2}\right) x=\delta\left(x^{2}\right)=\delta(x) x+x \delta(x)=\psi(x) x^{2}+\psi(x) x^{2}=2 \psi(x) x^{2} \tag{1}
\end{equation*}
$$

If $\psi\left(x^{2}\right)=0$, then it follows from previous equality that $x^{2}=0$. Assume that $\psi\left(x^{2}\right) \neq 0$; so $x^{2}=\frac{\psi\left(x^{2}\right)}{2 \psi(x)} x$. Simplifying the notation, we put $\gamma=\frac{\psi\left(x^{2}\right)}{2 \psi(x)}$. Replacing x^{2} by γx in $2 \psi(x) x^{2}=\delta\left(x^{2}\right)$, we have $2 \psi(x) \gamma x=\gamma \delta(x)=$ $\gamma \psi(x) x$. Since $\psi(x) \neq 0, \gamma x=0$ and it implies that either $\gamma=0$ or $x=0$, which is a contradiction. This contradiction shows that $\psi\left(x^{2}\right)=0$ and by using (1) it is obtained that $x^{2}=0$. We know that $x a+a x=\mu x$, where $\mu \in \mathbb{C}$. Multiplying the previous equality by x and using the fact that $x^{2}=0$, we see that $x a x=0$ for any a in \mathcal{A}. Since \mathcal{A} is semi-prime, $x=0$. This contradiction shows that δ must be zero.

We are now ready for the following conclusions.

Corollary 2.4. Let \mathcal{A} be a Banach algebra and $\delta: \mathcal{A} \rightarrow \mathcal{A}$ be a bounded derivation. If $\subseteq(\delta(a))=\left\{\varphi(\delta(a)) \mid \varphi \in \Phi_{\mathcal{A}}\right\}$ or $\mathfrak{G}(\delta(a))=\left\{\varphi(\delta(a)) \mid \varphi \in \Phi_{\mathcal{A}}\right\} \bigcup\{0\}$ for every $a \in \mathcal{A}$, then $\delta(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$. In particular, if \mathcal{A} is semi-simple, then δ is zero.

Proof. It follows from Theorem 2.3 that $\delta(\mathcal{A}) \subseteq \bigcap_{\varphi \in \Phi_{\mathcal{A}}} \operatorname{ker} \varphi$. This fact and our assumption concerning $\mathbb{S}(\delta(a))$ imply that $\mathbb{S}(\delta(a))=\{0\}$ for every $a \in \mathcal{A}$. It means that δ is spectrally bounded. At this moment, Theorem 2.2 completes the proof.

Remark 2.5. Let $\left\{d_{n}\right\}$ be a higher derivation on an algebra \mathcal{A} with $d_{0}=I$, where I is the identity mapping on \mathcal{A}. Based on Proposition 2.1 of [12] there is a sequence $\left\{\delta_{n}\right\}$ of derivations on \mathcal{A} such that

$$
(n+1) d_{n+1}=\sum_{k=0}^{n} \delta_{k+1} d_{n-k}
$$

for each non-negative integer n. Therefore, we have

$$
\begin{aligned}
& d_{0}=I \\
& d_{1}=\delta_{1} \\
& 2 d_{2}=\delta_{1} d_{1}+\delta_{2} d_{0}=\delta_{1} \delta_{1}+\delta_{2}, \\
& d_{2}=\frac{1}{2} \delta_{1}^{2}+\frac{1}{2} \delta_{2} \\
& 3 d_{3}=\delta_{1} d_{2}+\delta_{2} d_{1}+\delta_{3} d_{0}=\delta_{1}\left(\frac{1}{2} \delta_{1}^{2}+\frac{1}{2} \delta_{2}\right)+\delta_{2} \delta_{1}+\delta_{3} \\
& d_{3}=\frac{1}{6} \delta_{1}^{3}+\frac{1}{6} \delta_{1} \delta_{2}+\frac{1}{3} \delta_{2} \delta_{1}+\frac{1}{3} \delta_{3} .
\end{aligned}
$$

Now, assume that $\left\{d_{n}\right\}$ is a bounded higher derivation (,i.e. d_{n} is a bounded linear map for every non-negative integer n). Obviously, $\delta_{1}=d_{1}$ is bounded. Hence, $\delta_{2}=2 d_{2}-\delta_{1}^{2}$ is also bounded. Based on the d_{3} formula, we have $\delta_{3}=3 d_{3}-\frac{1}{2} \delta_{1}^{3}-\frac{1}{2} \delta_{1} \delta_{2}-\delta_{2} \delta_{1}$. Using the boundedness of d_{3}, δ_{1} and δ_{2}, we obtain that δ_{3} is a bounded derivation. In the next step, we will show that every δ_{n} is a bounded derivation for every $n \in \mathbb{N}$. To reach this aim, we use induction on n. According to the above-mentioned discussion, δ_{1}, δ_{2} and δ_{3} are bounded derivations. Now, suppose that δ_{k} is a bounded derivation for $k \leq n$. We will show that δ_{n+1} is also a bounded derivation. Based on the proof of Theorem 2.3 in [12], we have

$$
\begin{equation*}
\delta_{n+1}=(n+1) d_{n+1}-\sum_{i=2}^{n+1}\left(\sum_{\sum_{j=1}^{i} r_{j}=n+1}(n+1) a_{r_{1}, \ldots, r_{i}} \delta_{r_{1}} \ldots \delta_{r_{i}}\right) \tag{2}
\end{equation*}
$$

where the inner summation is taken over all positive integers r_{j} with $\sum_{j=1}^{i} r_{j}=n+1$. From $\sum_{j=1}^{i} r_{j}=r_{1}+r_{2}+\ldots+r_{i}=$ $n+1$ along with the condition that r_{j} is a positive integer for every $1 \leq j \leq i$, we find that $1 \leq r_{j} \leq n$ for every $1 \leq j \leq i$. Since we are assuming d_{n} and δ_{k} are bounded linear mappings for all non-negative integer n and $k \leq n$, it follows from (2) that δ_{n+1} is a bounded derivation.

Corollary 2.6. Let \mathcal{A} be a Banach algebra such that $\mathcal{S}(a)=\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\} \cup\{0\}$ or $\subseteq(a)=\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\}$ for every $a \in \mathcal{A}$. If $\left\{d_{n}\right\}$ is a bounded higher derivation (that means d_{n} is a bounded linear map for every n), then $d_{n}(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$ for every $n \geq 1$.

Proof. This is an immediate conclusion from Corollary 2.4, Remark 2.5, and Theorem 2.3 of [12].
In the next corollary, we offer a spectrum criterion for the commutativity of Banach algebras.
Corollary 2.7. Let \mathcal{A} be a semi-simple Banach algebra. Then, \mathcal{A} is commutative if and only if $\mathfrak{S}(a)=\{\varphi(a) \mid \varphi \in$ $\left.\Phi_{\mathcal{A}}\right\} \bigcup\{0\}$ or $\subseteq(a)=\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\}$ for every $a \in \mathcal{A}$.

Proof. Suppose that \mathcal{A} is a commutative Banach algebra. It follows from Theorem 1.3.4 of [14] that $\mathcal{S}(a)=$ $\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\} \bigcup\{0\}$ or $\subseteq(a)=\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\}$ for every $a \in \mathcal{A}$. To prove the converse statement we assume that $\mathfrak{G}(a)=\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\} \bigcup\{0\}$ or $\mathfrak{S}(a)=\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\}$ for every $a \in \mathcal{A}$. Evidently, $\delta_{a_{0}}(a)=\left[a, a_{0}\right]$ is a bounded derivation on \mathcal{A}, where a_{0} is an arbitrary fixed element of \mathcal{A}. Corollary 2.4 then yields that δ is zero, and since a_{0} is arbitrary, \mathcal{A} is commutative.

Corollary 2.8. Let $\delta: \mathcal{A} \rightarrow \mathcal{A}$ be a derivation and \mathcal{P} be a primitive ideal of \mathcal{A} such that $\delta(\mathcal{P}) \subseteq \mathcal{P}$. If $\subseteq(a+\mathcal{P})=$ $\left\{\varphi(a+\mathcal{P}) \left\lvert\, \varphi \in \Phi_{\frac{\mathcal{P}}{\mathcal{P}}}\right.\right\} \bigcup\{0\}$ or $\mathfrak{S}(a+\mathcal{P})=\left\{\varphi(a+\mathcal{P}) \left\lvert\, \varphi \in \Phi_{\frac{\mathcal{P}}{\mathcal{P}}}\right.\right\}$ for every $a \in \mathcal{A}$, then $\delta(\mathcal{A}) \subseteq \mathcal{P}$.

Proof. According to Proposition 1.4 .44 (ii) of [6], $\frac{\mathcal{P}}{\mathcal{P}}$ is a primitive algebra, and so $\frac{\mathcal{F}}{\mathcal{P}}$ is semi-simple. Let us define $\Delta: \frac{\mathcal{P}}{\mathcal{P}} \rightarrow \frac{\mathcal{P}}{\mathcal{P}}$ by $\Delta(a+\mathcal{P})=\delta(a)+\mathcal{P}$. One can easily show that Δ is a derivation. It follows from Theorem 2.3.2 of [18] that Δ is a bounded derivation, and so, Corollary 2.4 implies that Δ is zero. Consequently, $\delta(\mathcal{A}) \subseteq \mathcal{P}$.

In the following two corollaries, we extend Corollary 2.5 and Corollary 2.6 in [8] to any semi-prime Banach algebra.

Corollary 2.9. Let \mathcal{A} be a semi-prime Banach algebra such that $\operatorname{dim}\left(\bigcap_{\left.\mathcal{P}_{\in \Pi_{c}(\mathfrak{l l}}\right)} \mathcal{P}\right) \leq 1$. Then \mathcal{A} is commutative.
Proof. Let x_{0} be a non-zero arbitrary fixed element of \mathcal{A}. Define $d_{x_{0}}: \mathcal{A} \rightarrow \mathcal{A}$ by $d_{x_{0}}(a)=a x_{0}-x_{0} a$. Obviously, $d_{x_{0}}$ is a bounded derivation. It follows from Theorem 2.3 that $d_{x_{0}}(a)=0$, i.e. $a x_{0}=x_{0} a$ for all $a \in \mathcal{A}$. Since x_{0} is arbitrary, \mathcal{A} is commutative. This is exactly what we had to prove.

Corollary 2.10. Let \mathcal{A} be a semi-prime Banach algebra, and $\left\{d_{n}\right\}$ be a bounded higher derivation from \mathcal{A} into \mathcal{A}. If $\operatorname{dim}\left(\bigcap_{\mathcal{P} \in \Pi_{c}(2)} \mathcal{P}\right) \leq 1$, then $d_{n}=0$ for all $n \in \mathbb{N}$.

Proof. Let $\left\{d_{n}\right\}$ be the above-mentioned higher derivation. According to Theorem 2.3 of [12] there exists a sequence $\left\{\delta_{n}\right\}$ of derivations on \mathcal{A} such that

$$
d_{n}=\sum_{i=1}^{n}\left(\sum_{\sum_{j=1}^{i} r_{j}=n}\left(\prod_{j=1}^{i} \frac{1}{r_{j}+\ldots+r_{i}}\right) \delta_{r_{1}} \ldots \delta_{r_{i}}\right)
$$

, where the inner summation is taken over all positive integers r_{j} with $\sum_{j=1}^{i} r_{j}=n$. It follows from Remark 2.5 that δ_{n} is a bounded derivation for every positive integer n. At this moment, Theorem 2.3 completes the proof.

The question under which conditions all derivations are zero on a given Banach algebra have attracted much attention of authors (for instance, see [7, 8, 11, 15, 20]). In the following propositions, we also concentrate on this topic.

Proposition 2.11. Let \mathcal{A} be a Banach *-algebra such that $\overline{O_{\mathcal{A}}}=\mathcal{S}_{\mathcal{A}}$ and $\delta: \mathcal{A} \rightarrow \mathcal{A}$ be a bounded derivation. Suppose that $B=\left\{\delta(p) \mid p \in \mathcal{P}_{\mathcal{A}}\right\}$ is a commutative set, and furthermore, if $\varphi \in \Phi_{B^{\prime \prime}}$, then $\varphi(p)$ exists for every $p \in \mathcal{P}_{\mathcal{A}}$. Then, $\delta(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$. In particular, if \mathcal{A} is semi-simple, then δ is zero.

Proof. Since B is commutative, we have $\delta(p) \delta(q)=\delta(q) \delta(p)$ for all $p, q \in \mathcal{P}_{\mathcal{A}}$. Let a_{1} and b_{1} be two arbitrary elements of $\mathcal{S}_{\mathcal{A}}=\overline{O_{\mathcal{A}}}$. Hence, there are two sequences $\left\{x_{r}\right\}$ and $\left\{y_{s}\right\}$ in $O_{\mathcal{A}}$ such that $\lim _{r \rightarrow \infty} x_{r}=a_{1}$ and $\lim _{s \rightarrow \infty} y_{s}=b_{1}$. From this and using the fact that B is a commutative set, we deduce that

$$
\begin{equation*}
\delta\left(a_{1}\right) \delta\left(b_{1}\right)=\delta\left(b_{1}\right) \delta\left(a_{1}\right) \text { for all } a_{1}, b_{1} \in \mathcal{S}_{\mathcal{A}} \tag{3}
\end{equation*}
$$

It is well-known that if a is an arbitrary element of \mathcal{A}, then there exist two self-adjoint elements a_{1}, a_{2} such that $a=a_{1}+i a_{2}$. This fact with (3) imply that $\delta(a) \delta(b)=\delta(b) \delta(a)$ for all $a, b \in \mathcal{A}$. Assume that $a_{1} \in \mathcal{S}_{\mathcal{A}}=\overline{\mathcal{O}_{\mathcal{A}}}$. Then, there is a sequence $\left\{x_{r}\right\} \subseteq O_{\mathcal{A}}$ such that $\lim _{r \rightarrow \infty} x_{r}=a_{1}$. We have

$$
\begin{aligned}
\delta\left(a_{1}\right) & =\delta\left(\lim _{r \rightarrow \infty} x_{r}\right)=\lim _{r \rightarrow \infty} \delta\left(x_{r}\right) \\
& =\lim _{r \rightarrow \infty} \delta\left(\sum_{k_{r}=1}^{n_{r}} \alpha_{k_{r}} p_{k_{r}}\right) \\
& =\lim _{r \rightarrow \infty} \sum_{k_{r}=1}^{n_{r}} \alpha_{k_{r}} \delta\left(p_{k_{r}}\right)
\end{aligned}
$$

It is evident that, $\sum_{k_{r}=1}^{n_{r}} \alpha_{k_{r}} \delta\left(p_{k_{r}}\right)$ is a sequence in $B^{\prime \prime}$ and since $B^{\prime \prime}$ is a commutative Banach algebra, $\lim _{r \rightarrow \infty} \sum_{k_{r}=1}^{n_{r}} \alpha_{k_{r}} \delta\left(p_{k_{r}}\right)=\delta\left(a_{1}\right) \in B^{\prime \prime}$. Hence, $\delta^{n}(a) \in B^{\prime \prime}$ for every natural number n and each $a \in \mathcal{A}$. Since $B^{\prime \prime}$ is a commutative Banach algebra, $\Phi_{B^{\prime \prime}}$ is a non-empty set (see Theorem 2.3.25 of [6]). If we define $d_{n}=\frac{\delta^{n}}{n!}$ with $d_{0}=I$, the identity mapping on \mathcal{A}, then we have

$$
\begin{aligned}
d_{n}(a b) & =\frac{1}{n!} \delta^{n}(a b)=\frac{1}{n!} \sum_{k=0}^{n}\binom{n}{k} \delta^{n-k}(a) \delta^{k}(b) \\
& =\sum_{k=0}^{n} \frac{1}{n!} \cdot \frac{n!}{(n-k)!k!} \delta^{n-k}(a) \delta^{k}(b) \\
& =\sum_{k=0}^{n} d_{n-k}(a) d_{k}(b) .
\end{aligned}
$$

Define $F(t)=\sum_{n=0}^{\infty} d_{n}(p) t^{n}$, where $|t|<1$ and p is an arbitrary, non-trivial fixed element of $\mathcal{P}_{\mathcal{A}}$ (see [13]). Note that

$$
\left\|d_{n}\right\|=\left\|\frac{\delta^{n}}{n!}\right\| \leq \frac{1}{n!}\|\delta\|^{n}<\sum_{n=0}^{\infty} \frac{\|\delta\|^{n}}{n!}=e^{\|\delta\|}
$$

It means that $\left\{d_{n}\right\}$ is a uniformly bounded sequence of linear mappings. Hence, we have

$$
\begin{aligned}
\left\|\sum_{n=0}^{\infty} d_{n}(p) t^{n}\right\| & \leq \sum_{n=0}^{\infty}\left\|d_{n}(p) t^{n}\right\| \\
& =\sum_{n=0}^{\infty}\left\|d_{n}(p)\right\| \| t^{n} \mid \\
& \leq \sum_{n=0}^{\infty}\left\|d_{n}\right\|\left\|| |\left|\| t^{n}\right|\right. \\
& \leq \sum_{n=0}^{\infty} e^{\|\delta\|}\|p\|\left\|t^{n} \mid=e^{\|\delta\|}\right\| p \| \frac{1}{1-|t|}<\infty
\end{aligned}
$$

This fact ensures that F is well-defined. Hence, the m-th derivative of F exists and is given by the formula
$F^{(m)}(t)=\sum_{n=m}^{\infty} \frac{n!}{(n-m)!} d_{n}(p) t^{n-m}$. Furthermore, we have

$$
\begin{aligned}
F(t) F(t)= & \left(\sum_{n=0}^{\infty} d_{n}(p) t^{n}\right)\left(\sum_{n=0}^{\infty} d_{n}(p) t^{n}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} d_{n-k}(p) d_{k}(p)\right) t^{n} \\
& =\sum_{n=0}^{\infty} d_{n}(p) t^{n} \\
& =F(t)
\end{aligned}
$$

Let φ be an arbitrary fixed element of $\Phi_{B^{\prime \prime}}$. It is clear that the function $G=\varphi F:(-1,1) \rightarrow \mathbb{C}$ defined by $G(t)=\varphi F(t)=\varphi(F(t))=\varphi\left(\sum_{n=0}^{\infty} d_{n}(p) t^{n}\right)=\sum_{n=0}^{\infty} \varphi\left(d_{n}(p)\right) t^{n}$ is continuous on $|t|<1$. Hence, $G(t)^{2}=$ $(\varphi(F(t)))^{2}=\varphi(F(t))=G(t)$ implies that $G(t)=0$ or $G(t)=1$. It is observed that $G(t)$ is a power series in \mathbb{C}. Thus, the m-th derivative of G exists and is given by $G^{(m)}(t)=\sum_{n=m}^{\infty} \frac{n!}{(n-m)!} \varphi\left(d_{n}(p)\right) t^{n-m}$. We continue the proof by using the presented argument in Theorem 2.2 of [8]. Since the function G is constant, we have $G^{(m)}(t)=0$ for every $m \in \mathbb{N} \backslash\{0\}$ and every $|t|<1$. So, $\varphi\left(d_{1}(p)\right)+2 \varphi\left(d_{2}(p)\right) t+3 \varphi\left(d_{3}(p)\right) t^{2}+4 \varphi\left(d_{4}(p)\right) t^{3}+\ldots=G^{(1)}(t)=0$. Putting $t=0$ in the former equation, it is obtained that $\varphi\left(d_{1}(p)\right)=0$. Using an argument similar to what was described concerning $\varphi\left(d_{1}(p)\right)$, we conclude that $\varphi\left(d_{2}(p)\right)=0$. By continuing this procedure, it is proved that $\varphi\left(d_{n}(p)\right)=0$ for all $n \geq 1$. Our next task is to show that $\varphi\left(d_{n}(a)\right)=0$ for every $a \in \mathcal{A}$. Let x be an arbitrary element of $\mathcal{O}_{\mathcal{A}}$. Hence, $x=\sum_{i=1}^{m} r_{i} p_{i}$, where $p_{1}, p_{2}, \ldots, p_{m}$ are mutually orthogonal projections and $r_{1}, r_{2}, \ldots, r_{m}$ are real numbers. We have $\varphi\left(d_{n}(x)\right)=\varphi\left(d_{n}\left(\sum_{i=1}^{m} r_{i} p_{i}\right)\right)=\sum_{i=1}^{m} r_{i} \varphi\left(d_{n}\left(p_{i}\right)\right)=0$. Since $\overline{O_{\mathcal{A}}}=\mathcal{S}_{\mathcal{A}}$, $\varphi\left(d_{n}(a)\right)=0$ for every $a \in \mathcal{S}_{\mathcal{A}}$. It is well-known that each a in \mathcal{A} can be represented as $a=a_{1}+i a_{2}, a_{1}, a_{2} \in \mathcal{S}_{\mathcal{A}}$; therefore, $\varphi\left(d_{n}(a)\right)=\varphi\left(d_{n}\left(a_{1}+i a_{2}\right)\right)=\varphi\left(d_{n}\left(a_{1}\right)\right)+i \varphi\left(d_{n}\left(a_{2}\right)\right)=0$ for all $n \geq 1, a \in \mathcal{A}$ and $\varphi \in \Phi_{B^{\prime \prime}}$. It means that $d_{n}(\mathcal{A}) \subseteq \bigcap_{\varphi \in \Phi_{B}^{\prime \prime}} \operatorname{ker} \varphi$. According to Theorem 11.22 of [16] and Theorem 1.3.4 of [14], it is achieved that $\mathfrak{S}_{\mathcal{A}}\left(d_{n}(a)\right)=\mathfrak{S}_{B^{\prime \prime}}\left(d_{n}(a)\right)=\left\{\varphi\left(d_{n}(a)\right) \mid \varphi \in \Phi_{B^{\prime \prime}}\right\} \bigcup\{0\}\left(o r=\left\{\varphi\left(d_{n}(a)\right) \mid \varphi \in \Phi_{B^{\prime \prime}}\right\}\right)=\{0\}$. Hence, $r\left(d_{n}(a)\right)=0$ for all $n \geq 1$ and $a \in \mathcal{A}$. It means that d_{n} is spectrally bounded for every $n \geq 1$. Since $d_{1}=\delta$ is spectrally bounded, Theorem 2.2 shows that $\delta(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$. Evidently, if \mathcal{A} is semi-simple, i.e. $\operatorname{rad}(\mathcal{A})=\{0\}$, then δ is zero.

Before proving Proposition 2.13, we define the socle of \mathcal{A}. Let \mathcal{A} be a semi-simple Banach algebra. Then the sum of all the minimal left ideals of \mathcal{A} coincides with the sum of all the minimal right ideals of \mathcal{A}, is called the socle of \mathcal{A}, and it will be denoted by $\operatorname{soc}(\mathcal{A})$. We refer the reader to [2-4] for more information on the socle of a Banach algebra.

Proposition 2.12. Let \mathcal{A} be a semi-simple Banach algebra, and let d be a derivation on \mathcal{A} satisfying $\# \subseteq(d(a))=1$ for all $a \in \mathcal{A}$. Here, $\sharp \subseteq(x)$ denotes the cardinality of the spectrum of x. Then, d is zero.

Proof. It follows from Theorem 1.2 of [4] that d is an inner derivation induced by an element $u \in \operatorname{soc}(\mathcal{F})$. It means that $d(a)=[u, a]=u a-a u$ for all $a \in \mathcal{A}$. According to the aforementioned assumption, we have $1=\sharp \Im(d(a))=\sharp \subseteq(u a-a u)$ for all $a \in \mathcal{A}$. Now, Theorem 5.2.1 of [1] implies that $u \in Z(\mathcal{A})$, and consequently, d is zero.

Now, the article is ended with a problem which has attracted the author's attention .
Problem 2.13. Let d be a derivation on a given Banach algebra \mathcal{A}. Under which conditions, $\sharp \subseteq(d(a))=1$ for all $a \in \mathcal{A}$?

Acknowledgements The author is greatly indebted to the referee for his/her valuable suggestions and careful reading of the paper.

References

[1] B. Aupetit, A primer on spectral theory, Springer-Verlag, New York, 1991.
[2] M. Brešar and P. Šemrl, Derivations mapping into the socle, Mathematical Proceedings of the Cambridge Philosophical Society. 120 (1996), 339-346.
[3] M. Brešar, Derivations mapping into the socle, II, Proc. Amer. Math. Soc. 126 (1998), 181-187
[4] N. Boudi and Peter S̆emrl, Derivations mapping into the socle, III, Studia Mathematica. 197 (2010), 141-155 .
[5] Dales, H. G., Aiena, P., Eschmeier, J., Laursen, K., Willis, G. A, Introduction to Banach Algebras, Operators and Harmonic Analysis. Cambridge University Press, (2003).
[6] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monographs, New Series, 24, Oxford University Press, New York, 2000.
[7] A. Hosseini, M. Hassani, A. Niknam, On the range of a derivation, Iran. J. Sci. Technol. Trans. A Sci. 38 (2014), 111-115.
[8] A. Hosseini, Some conditions under which derivations are zeroon Banach *-algebras, Demonstr. Math. (to appear inVol. 5, 2017).
[9] Byung-Do Kim, Derivations of semiprime rings and noncommutative Banach algebras, Commun. Korean Math. Soc. 17 (2002), 607-618.
[10] I. Kaplansky, Projections in Banach Algebras, Annals of Mathematics. 53 (2) (1951), 235-249.
[11] M. Mathieu, Where to find the image of a derivation, Banach Center Publ. 30 (1994), 237-249.
[12] M. Mirzavaziri, Characterization of higher derivations on algebras, Communications in algebra. 38 (3) (2010), 981-987.
[13] J. B. Miller, Analytic Structure and Higher Derivations on Commutative Banach Algebras, Aequationes Math. 9 (1973), $171-183$.
[14] G. J. Murphy, C*-Algebras and Operator Theory. Boston Academic Press, (1990).
[15] S. Pedersen, Anticommuting derivations, Proc. Amer. Math. Soc. 127 (1999), 1103-1108.
[16] W. Rudin, Functional analysis, International series in pure and applied mathematics, II. Series, 1991.
[17] K. Saitô, J.D. Maitland Wright, On Defining AW*-algebras and rickart C*-algebras, arXiv: 1501.02434v1 [math. OA] 11 Jan 2015.
[18] S. Sakai, Operator Algebras in Dynamical Systems, Cambridge University Press, Cambridge, 1991.
[19] M. P. Thomas, The image of a derivation is contained in the radical, Ann of Math. 128 (1988), 435-460.
[20] J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992), 877-884.

[^0]: 2010 Mathematics Subject Classification. Primary 46H05; Secondary 46J05, 47B47
 Keywords. Banach algebra; Banach *-algebra; spectrum; primitive ideal; socle.
 Received: 03 October 2015; Accepted: 06 December 2015
 Communicated by Dragan S. Djordjević
 Email address: A.hosseini@mshdiau.ac.ir, hosseini.amin82@gmail.com (Amin Hosseini)

