Filomat 31:7 (2017), 2073–2080 DOI 10.2298/FIL1707073C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On [*m*, *C*]-Isometric Operators

Muneo Chō^a, Ji Eun Lee^b, Haruna Motoyoshi^a

^a Kanagawa University, Department of Mathematics ^b Sejong University, Department of Mathematics-Applied Statistics

Abstract. In this paper we introduce an [m, C]-isometric operator T on a complex Hilbert space \mathcal{H} and study its spectral properties. We show that if T is an [m, C]-isometric operator and N is an n-nilpotent operator, respectively, then T + N is an [m + 2n - 2, C]-isometric operator. Finally we give a short proof of Duggal's result for tensor product of m-isometries and give a similar result for [m, C]-isometric operators.

1. Introduction

Let \mathcal{H} be a complex Hilbert space and $\mathcal{L}(\mathcal{H})$ be the set of bounded linear operators on \mathcal{H} . For an integer $m \in \mathbb{N}$ and an operator $T \in \mathcal{L}(\mathcal{H})$ is said to be an *m*-isometric operator if

$$\sum_{j=0}^{m} (-1)^{j} \binom{m}{j} T^{*m-j} T^{m-j} = 0.$$

In 1995, J. Agler and M. Stankus [1] introduced an *m*-isometric operator and showed nice results. An antilinear operator *C* on \mathcal{H} is said to be *conjugation* if *C* satisfies $C^2 = I$ and $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be *complex symmetric* if $CTC = T^*$. In [11], S. Jung, E. Ko, M. Lee and J. Lee studied spectral properties of complex symmetric operators. In [4], M. Chō, E. Ko and J. Lee introduced (m, C)-isometric operators with conjugation *C* as follows; For an operator $T \in \mathcal{L}(\mathcal{H})$ and an integer $m \ge 1$, *T* is said to be an (m, C)-isometric operator if there exists some conjugation *C* such that

$$\sum_{j=0}^{m} (-1)^{j} \binom{m}{j} T^{*m-j} \cdot CT^{m-j}C = 0.$$

According to definitions of *m*-isometry, (m, C)-isometry and complex symmetric, we define an [m, C]-isometry *T* as follows; An operator *T* is said to be an [m, C]-isometric operator if there exists some conjugation *C* such that

$$\sum_{j=0}^{m} (-1)^{j} \binom{m}{j} C T^{m-j} C \cdot T^{m-j} = 0.$$

²⁰¹⁰ Mathematics Subject Classification. Primary 47A11; Secondary 47B25, 47B99

Keywords. Hilbert space, linear operator, conjugation, [m, C]-isometry, m-isometry, spectrum.

Received: 15 October 2015; Accepted: 19 August 2016

Communicated by Dragan S. Djordjević

This is partially supported by Grant-in-Aid Scientific Research No.15K04910. The second author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2016R1A2B4007035)

Email addresses: chiyom01@kanagawa-u.ac.jp (Muneo Chō), jieun7@ewhain.net; jieunlee7@sejong.ac.kr (Ji Eun Lee), r201303226ej@jindai.jp (Haruna Motoyoshi)

It is easy to see that if *T* is complex symmetric and an [m, C]-isometry, then *T* is an *m*-isometry. Throughout the paper, let *I* be the identity operator on H.

1 \

2. Example

(i) Let
$$\mathcal{H} = \mathbb{C}^2$$
 and let C be a conjugation on \mathcal{H} given by $\binom{x}{y} = \binom{y}{\overline{x}}$.
If $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ on \mathbb{C}^2 , then $CTC = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = T^*$. Since $T^{*2} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$, it follows that
 $\sum_{j=0}^2 (-1)^j \binom{2}{j} T^{*2-j} \cdot CT^{2-j}C = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} + I = 0.$

Therefore, *T* is a (2, *C*)-isometric operator. On the other hand, *T* is not a [2, *C*]-isometric operator due to the fact that

$$\sum_{j=0}^{2} (-1)^{j} \binom{2}{j} CT^{2-j} C \cdot T^{2-j} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} - 2 \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} + I = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \neq 0.$$

(ii) Under the same space \mathcal{H} and the same conjugation C to (i), let S be an operator given by $S = \begin{pmatrix} i & \sqrt{2} \\ \sqrt{2} & -i \end{pmatrix}$. Then $CSC = \begin{pmatrix} i & \sqrt{2} \\ \sqrt{2} & -i \end{pmatrix}$ and $CSC = S \neq S^*$. Moreover, it holds $CSC \cdot S - I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - I = 0$ and hence S is a [1, C]-isometry. But $S^* \cdot CSC - I = \begin{pmatrix} 2 & -2\sqrt{2}i \\ 2\sqrt{2}i & 2 \end{pmatrix} \neq 0$ and hence S is not a (1, C)-isometry. (iii) Let F and J be conjugations on a Hilbert space \mathcal{H} such that $JF \neq I$. Define T and C by $T = \begin{pmatrix} 0 & FJ \\ I & 0 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & J \\ 0 & JF \end{pmatrix} \neq \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$. Then it is easy to see that C is a conjugation on $\mathcal{H} \oplus \mathcal{H}$, $CTC \cdot T = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$ and $T^* \cdot CTC = \begin{pmatrix} JF & 0 \\ 0 & JF \end{pmatrix} \neq \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$. Hence T is a [1, C]-isometric operator and not a (1, C)-isometric operator.

3. [m, C]-Isometric Operators

For an operator $T \in \mathcal{L}(\mathcal{H})$ and a conjugation *C*, we define the operator $\lambda_m(T; C)$ by

$$\lambda_m(T;C) = \sum_{j=0}^m (-1)^j \binom{m}{j} C T^{m-j} C \cdot T^{m-j}.$$

Then *T* is an [*m*, *C*]-isometry if and only if $\lambda_m(T; C) = 0$. Moreover, it holds that

$$CTC \cdot \lambda_m(T;C) \cdot T - \lambda_m(T;C) = \lambda_{m+1}(T;C).$$
⁽¹⁾

Hence if *T* is an [m, C]-isometry, then *T* is an [n, C]-isometry for every $n \ge m$.

Let *C* be a conjugation on \mathcal{H} . Then *C* satisfies ||Cx|| = ||x|| and $C(\alpha x) = \overline{\alpha}Cx$ for all $x \in \mathcal{H}$ and all $\alpha \in \mathbb{C}$. Moreover, since $C^2 = I$, it follows that $(CTC)^n = CT^nC$ and $(CTC)^* = CT^*C$ for every positive integer *n* (see [10] for more details). For an operator $T \in \mathcal{L}(\mathcal{H})$, let $\sigma_p(T)$ and $\sigma_a(T)$ be the point spectrum and the approximate point spectrum of *T*, respectively. We denote the range of *T* by R(T). Then we have **Theorem 3.1.** Let $T \in \mathcal{L}(\mathcal{H})$ be an [m, C]-isometric operator. Then the following statements hold: (i) *T* is bounded below.

- (ii) $0 \notin \sigma_a(T)$.
- (iii) T is injective and R(T) is closed.

Proof. If $0 \in \sigma_a(T)$, then there exists a sequence of unit vectors $\{x_n\}$ of \mathcal{H} such that $\lim_{n \to \infty} Tx_n = 0$. Since T is an [m, C]-isometric operator, it follows that

$$\sum_{j=0}^{m-1} (-1)^j \binom{m}{j} C T^{m-j} C \cdot T^{m-j} = (-1)^{m+1} I.$$
⁽²⁾

Moreover, since $\lim_{n \to \infty} \left(\sum_{j=0}^{m-1} (-1)^j \binom{m}{j} CT^{m-j} C \cdot T^{m-j} \right) x_n = 0$, it follows from (2) that $\lim_{n \to \infty} x_n = 0$, which is a contradiction. Hence $0 \notin \sigma_a(T)$. Since (i), (ii), and (iii) are equivalent, this completes the proof. \Box

Theorem 3.2. Let $T \in \mathcal{L}(\mathcal{H})$ be an [m, C]-isometric operator. If $\alpha \in \sigma_a(T)$, then $\overline{\alpha}^{-1} \in \sigma_a(T)$. In particular, if α is an eigenvalue of T, then $\overline{\alpha}^{-1}$ is an eigenvalue of T.

Proof. Let $\{x_n\}$ be a sequence of unit vectors such that $\lim_{n\to\infty} (T - \alpha)x_n = 0$. Since *T* is an [m, C]-isometric operator, *C* is bounded, and $\lim_{n\to\infty} (T^k - \alpha^k)x_n = 0$ for all $k \in \mathbb{N}$, it holds that

$$0 = \lim_{n \to \infty} \left(\sum_{j=0}^{m} (-1)^{j} {m \choose j} C T^{m-j} C \cdot T^{m-j} x_n \right)$$

= $C \lim_{n \to \infty} \left(\sum_{j=0}^{m} (-1)^{j} {m \choose j} T^{m-j} \overline{\alpha}^{m-j} \right) C x_n = C \lim_{n \to \infty} (\overline{\alpha} T - 1)^m C x_n.$

Moreover, since $C^2 = I$, it holds $\lim_{n \to \infty} (\overline{\alpha} T - 1)^m C x_n = 0$. Since $||C x_n|| = 1$ and $\alpha \neq 0$ by Theorem 3.1, it follows that $\lim_{n \to \infty} (T - \overline{\alpha}^{-1})^m C x_n = 0$ and hence $\overline{\alpha}^{-1} \in \sigma_a(T)$. \Box

Corollary 3.3. Let $T \in \mathcal{L}(\mathcal{H})$ be an [m, C]-isometric operator. Then $||T|| \ge 1$.

Proof. If 0 < ||T|| < 1, then there exists $\alpha \in \sigma(T)$ and a sequence $\{x_n\}$ of unit vectors such that $0 < |\alpha| < 1$ and $||(T - \alpha)x_n|| \longrightarrow 0$. By Theorem 3.2, it holds $\overline{\alpha}^{-1} \in \sigma(T)$. Since $|\overline{\alpha}^{-1}| > 1$, it is a contradiction. \Box

Theorem 3.4. Let C be a conjugation on \mathcal{H} and let $T \in \mathcal{L}(\mathcal{H})$. Then the following assertions hold. (i) If T is an invertible, then T is an [m, C]-isometric operator if and only if so is T^{-1} . (ii) If T is an [m, C]-isometric operator, then T^n is also an [m, C]-isometric operator for any $n \in \mathbb{N}$.

Proof. (i) Suppose that *T* is invertible and an [m, C]-isometry. Since $C^2 = I$, it follows that

$$0 = (CT^{-m}C) \left[\sum_{j=0}^{m} (-1)^{j} {m \choose j} (CT^{m-j}C)T^{m-j} \right] T^{-m}$$
$$= \sum_{j=0}^{m} (-1)^{j} {m \choose j} (C(T^{-1})^{j}C) (T^{-1})^{j}.$$

Since

$$\sum_{j=0}^{m} (-1)^{j} \binom{m}{j} (C(T^{-1})^{m-j}C)(T^{-1})^{m-j} = 0$$

is equivalent to

$$\sum_{j=0}^{m} (-1)^{j} \binom{m}{j} (C(T^{-1})^{j}C)(T^{-1})^{j} = 0,$$

 T^{-1} is an [*m*, *C*]-isometry. Hence the statement (i) holds.

(ii) Since

$$a^{n} - 1)^{m} = (a - 1)^{m} \left(a^{n-1} + a^{n-2} + a^{n-3} + \dots + a + 1 \right)^{m}$$

= $(a - 1)^{m} \left(\xi_{0} a^{m(n-1)} + \xi_{1} a^{m(n-1)-1} + \xi_{2} a^{m(n-1)-2} + \dots + \xi_{m(n-1)} \right)$

where ξ_i are coefficients (i = 0, ..., m(n - 1)), it follows that

$$\lambda_m(T^n; C) = \sum_{i=0}^{m(n-1)} \xi_i C T^{m(n-1)-i} C \cdot \lambda_m(T; C) \cdot T^{m(n-1)-i}.$$
(3)

From (3), if $\lambda_m(T; C) = 0$, then $\lambda_m(T^n; C) = 0$. Hence T^n is an [m, C]-isometric operator for any $n \in \mathbb{N}$. So this completes the proof. \Box

An operator $N \in \mathcal{L}(\mathcal{H})$ is said to be *n*-nilpotent if $N^n = 0$ ($n \in \mathbb{N}$). In [2] T. Bermúdes, A. Martinón, V. Müller and A.J. Noda proved the following.

Proposition 3.5. (Theorem 3.1, [2]) Let T be an m-isometry on \mathcal{H} and N be an n-nilpotent operator such that TN = NT. Then T + N is an (m + 2n - 2)-isometry.

We have following similar result.

Theorem 3.6. Let *T* be an [m, C]-isometric operator on \mathcal{H} and *N* be an *n*-nilpotent operator such that TN = NT. Then T + N is an [m + 2n - 2, C]-isometry.

Proof. In the proof, we denote $\lambda_m(T; C)$ by $\lambda_m(T)$ simply. First we show

$$\lambda_m(T+N) = \sum_{i+j+k=m} \binom{m}{(i,j,k)} C(T+N)^i C \cdot CN^j C \cdot \lambda_k(T) \cdot T^j \cdot N^i,$$
(4)

where $\binom{m}{i, j, k} = \frac{m!}{i! \cdot j! \cdot k!}$ and $\lambda_0(*) = I$. It is easy to see that (4) holds for m = 1. Assume that (4) holds for m. Then by (1) we have

$$\begin{split} \lambda_{m+1}(T+N) &= C(T+N)C \cdot \lambda_m(T+N) \cdot (T+N) - \lambda_m(T+N) \\ &= (C(T+N)C) [\sum_{i+j+k=m} \binom{m}{i, j, k} C(T+N)^i C \, CN^j C \, \lambda_k(T) \, T^j \, N^i] (T+N) \\ &- \sum_{i+j+k=m} \binom{m}{i, j, k} C(T+N)^i C \, CN^j C \, \lambda_k(T) \, T^j \, N^i \\ &= \sum_{i+j+k=m} \binom{m}{i, j, k} C(T+N)^i C \, CN^j C \, \Big(CTC \, \lambda_k(T) \, T - \lambda_k(T) \Big) T^j \, N^i \\ &+ \sum_{i+j+k=m} \binom{m}{i, j, k} C(T+N)^i C \, CN^{j+1} C \, \lambda_k(T) \, T^{j+1} \, N^i \\ &+ \sum_{i+j+k=m} \binom{m}{i, j, k} C(T+N)^{i+1} C \, CN^j C \, \lambda_k(T) \, T^j \, N^{i+1} \end{split}$$

2076

$$= \sum_{i+j+k=m} \binom{m}{(i, j, k)} C(T+N)^{i} C CN^{j} C \lambda_{k+1}(T) T^{j} N^{i} + \sum_{i+j+k=m} \binom{m}{(i, j, k)} C(T+N)^{i} C CN^{j+1} C \lambda_{k}(T) T^{j+1} N^{i} + \sum_{i+j+k=m} \binom{m}{(i, j, k)} C(T+N)^{i+1} C CN^{j} C \lambda_{k}(T) T^{j} N^{i+1} = \sum_{i+j+k=m+1} \binom{m+1}{(i, j, k)} C(T+N)^{i} C CN^{j} C \lambda_{k}(T) T^{j} N^{i}.$$

Hence (4) holds for m + 1 and holds for any $m \in \mathbb{N}$. By (4) it holds

$$\lambda_{m+2n-2}(T+N) = \sum_{i+j+k=m+2n-2} \binom{m+2n-2}{i, j, k} C(T+N)^{i} C C N^{j} C \lambda_{k}(T) T^{j} N^{i}.$$

(i) If $\max\{i, j\} \ge n$, then $CN^jC = 0$ or $N^i = 0$.

(ii) If $\max\{i, j\} \le n - 1$, then $k \ge m$ and hence $\lambda_k(T) = 0$.

By (i) and (ii), we have $\lambda_{m+2n-2}(T + N) = 0$. Therefore, T + N is an [m + 2n - 2, C]-isometric operator.

Remark 3.7. Let $T \in \mathcal{L}(\mathcal{H})$. If $\beta_m(T)$ is defined by

$$\beta_m(T) = \sum_{j=0}^m (-1)^j \binom{m}{j} T^{*m-j} T^{m-j},$$

then T is an m-isometric operator if and only if $\beta_m(T) = 0$. Since, for any commuting pair (T, S), it follows that

$$\beta_m(T+S) = \sum_{i+j+k=m} \binom{m}{i,j,k} (T+S)^{*i} \cdot S^{*j} \cdot \beta_k(T) \cdot T^j \cdot S^i.$$

So we have other proof of Proposition 3.5.

From Theorem 3.6, we get the following corollary.

Corollary 3.8. *If T is a* [1, *C*]*-isometric operator on* \mathcal{H} *and N is an n-nilpotent operator such that* TN = NT*, then* T + N *is an* [2n - 1, C]*-isometry.*

Example 3.9. Let *C* be a conjugation given by $C(z_1, z_2, z_3) = (\overline{z_3}, \overline{z_2}, \overline{z_1})$ on \mathbb{C}^3 . If $T = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ on \mathbb{C}^3 , then T = I + N where $N = \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Thus we have $T^2 = \begin{pmatrix} 1 & 0 & 2a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $T^3 = \begin{pmatrix} 1 & 0 & 3a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $CTC = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \overline{a} & 0 & 1 \end{pmatrix}$, $CT^2C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2\overline{a} & 0 & 1 \end{pmatrix}$, and $CT^3C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3\overline{a} & 0 & 1 \end{pmatrix}$. Then we have $\lambda_3(T; C) = CT^3CT^3 - 3CT^2CT^2 + 3CTCT - I = 0$.

On the other hand, since $N^2 = 0$, it follows from Theorem 3.6 that *T* is a [3, *C*]-isometric operator.

For an operator $T \in \mathcal{L}(\mathcal{H})$, the numerical range W(T) of T is $W(T) = \{\langle Tx, x \rangle : x \in \mathcal{H}, ||x|| = 1\}$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be *convexoid* if $\overline{W(T)} = \operatorname{co} \sigma(T)$, that is, the closure of W(T) is equal to the convex hull of $\sigma(T)$. An operator T is called *power bounded* if there exists a positive number M such that $||T^n|| \leq M$ for all $n \in \mathbb{N}$.

Theorem 3.10. *Let T* be a [2, C]-isometric operator. If T is power bounded and $CTC \cdot T - I$ *is convexoid, then T is a* [1, C]-*isometric operator.*

Proof. For the proof, we will show that $W(CTC \cdot T - I) = \{0\}$. Assume that $W(CTC \cdot T - I) \neq \{0\}$. Since $CTC \cdot T - I$ is convexoid, it holds $\overline{W(CTC \cdot T - I)} = \operatorname{co} \sigma(CTC \cdot T - I)$. Then there exist a non-zero $a \in \mathbb{C}$ and a sequence $\{x_n\}$ of unit vectors in \mathcal{H} such that $\lim_{n \to \infty} (CTC \cdot T - I - a)x_n = 0$. Since T is a [2, C]-isometric operator, it holds $\lim (CT^2C \cdot T^2 - (1 + 2a))x_n = 0$. Inductively, we have

$$\lim_{n\to\infty} \Big(CT^n C \cdot T^n - (1+na) \Big) x_n = 0.$$

Therefore, it holds that $||CT^nC \cdot T^n|| \ge |1 + na|$. Since $a \ne 0$, it follows that $\lim_{n \to \infty} |1 + na| = \infty$. Since *T* is power bounded, so is $CT^nC \cdot T^n$ and hence it is a contradiction. \Box

4. Tensor Products of [m, C]-Isometric Operators

For a complex Hilbert space \mathcal{H} , let $\mathcal{H} \otimes \mathcal{H}$ denote the completion of the algebraic tensor product of \mathcal{H} and \mathcal{H} endowed a reasonable uniform cross-norm. For operators $T \in \mathcal{L}(\mathcal{H})$ and $S \in \mathcal{L}(\mathcal{H})$, $T \otimes S \in \mathcal{L}(\mathcal{H} \otimes \mathcal{H})$ denote the *tensor product* operator defined by T and S. Note that $T \otimes S = (T \otimes I)(I \otimes S) = (I \otimes S)(T \otimes I)$. Then B. Duggal in [9] proved the following result.

Proposition 4.1. (Theorem 2.10, [9]) Let T and S be an m-isometry and an n-isometry on \mathcal{H} , respectively. Then $T \otimes S$ is an (m + n - 1)-isometry on $\mathcal{H} \otimes \mathcal{H}$.

Since Duggal's proof is long and difficult, we firstly give a short proof. A pair of operators (*T*, *S*) is said to be *a doubly commuting pair* if (*T*, *S*) satisfies TS = ST and $T^*S = ST^*$. Then, for a doubly commuting pair (*T*, *S*), it holds

$$\beta_m(TS) = \sum_{k=0}^m \binom{m}{k} T^{*k} \cdot \beta_{m-k}(T) \cdot T^k \cdot \beta_k(S).$$
(5)

Equation (5) is a result of Lemma 3.1 of [3]. It comes from the following equation;

$$(ab-1)^{m} = \left((a-1) + a(b-1)\right)^{m} = \sum_{k=0}^{m} \binom{m}{k} (a-1)^{m-k} a^{k} (b-1)^{k}$$

Proposition 4.2. Let T and S be an m-isometry and an n-isometry on \mathcal{H} , respectively. If (T, S) is a doubly commuting pair, then TS is an (m + n - 1)-isometry on \mathcal{H} .

Proof. By Equation (5), we have

$$\beta_{m+n-1}(TS) = \sum_{k=0}^{m+n-1} {m+n-1 \choose k} T^{*k} \cdot \beta_{m+n-1-k}(T) \cdot T^k \cdot \beta_k(S).$$

(i) If $0 \le k \le n - 1$, then $m + n - 1 - k \ge m$ and hence $\beta_{m+n-1-k}(T) = 0$. (ii) If $k \ge n$, then $\beta_k(S) = 0$. Therefore, $\beta_{m+n-1}(TS) = 0$ and so *TS* is an (m + n - 1)-isometry. \Box *Proof of Proposition 4.1.* It is clear that $T \otimes I$ and $I \otimes S$ are an *m*-isometry and an *n*-isometry on $\mathcal{H} \otimes \mathcal{H}$, respectively. Since $(T \otimes I, I \otimes S)$ is a doubly commuting pair, by Proposition 4.2, $(T \otimes I)(I \otimes S) = T \otimes S$ is an (m + n - 1)-isometry on $\mathcal{H} \otimes \mathcal{H}$.

Next we show following similar result of Proposition 4.1. For [m, C]-operators, let (T, S) be a commuting pair and satisfy $S \cdot CTC = CTC \cdot S$, where *C* is a conjugation. Then it holds

$$\lambda_m(TS;C) = \sum_{k=0}^m \binom{m}{k} CT^k C \cdot \lambda_{m-k}(T;C) \cdot T^k \cdot \lambda_k(S;C).$$
(6)

Then, by a similar proof of Proposition 4.2, we have

Theorem 4.3. Let T and S be an [m, C]-isometry and an [n, C]-isometry on \mathcal{H} , respectively. If (T, S) is a commuting pair and satisfies $S \cdot CTC = CTC \cdot S$, then TS is an [m + n - 1, C]-isometry on \mathcal{H} .

Proof. By Equation (6), it holds

$$\lambda_{m+n-1}(TS;C) = \sum_{k=0}^{m+n-1} \binom{m+n-1}{k} CT^k C \cdot \lambda_{m+n-1-k}(T;C) \cdot T^k \cdot \lambda_k(S;C)$$

Hence *TS* is an [m + n - 1, C]-isometry on \mathcal{H} . \Box

Theorem 4.4. Let T and S be an [m, C]-isometry and an [n, D]-isometry on \mathcal{H} , respectively. Then $T \otimes S$ is an $[m + n - 1, C \otimes D]$ -isometry on $\mathcal{H} \otimes \mathcal{H}$.

For conjugations *C* and *D* on \mathcal{H} , we define $C \otimes D$ on $\mathcal{H} \otimes \mathcal{H}$ by

$$(C \otimes D)(\sum_{j=1}^n \alpha_j x_j \otimes y_j) = \sum_{j=1}^n \overline{\alpha_j} C x_j \otimes D y_j.$$

First we prepare the following lemma.

Lemma 4.5. Let C and D be conjugations on \mathcal{H} . Then $C \otimes D$ is a conjugation on $\mathcal{H} \otimes \mathcal{H}$.

Proof. Let $x = \sum_{i=1}^{n} \alpha_i x_i^1 \otimes x_i^2$ and $y = \sum_{j=1}^{m} \beta_j y_j^1 \otimes y_j^2 \in \mathcal{H} \otimes \mathcal{H}$ where $\alpha_i, \beta_j \in \mathbb{C}$. Since *C* and *D* are isometric, it follows that

$$\langle (C \otimes D)x, (C \otimes D)y \rangle = \langle (C \otimes D)(\sum_{i=1}^{n} \alpha_{i}x_{i}^{1} \otimes x_{i}^{2}), (C \otimes D)(\sum_{j=1}^{m} \beta_{i}y_{j}^{1} \otimes y_{j}^{2}) \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \overline{\alpha_{i}} \langle Cx_{i}^{1}, Cy_{j}^{1} \rangle \cdot \overline{\beta_{j}} \langle Dx_{i}^{2}, Dy_{j}^{2} \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \overline{\alpha_{i}} \langle y_{j}^{1}, x_{i}^{1} \rangle \cdot \overline{\beta_{j}} \langle y_{j}^{2}, x_{i}^{2} \rangle$$

$$= \langle \sum_{j=1}^{m} \overline{\beta_{j}}y_{j}^{1} \otimes y_{j}^{2}, \sum_{i=1}^{n} \overline{\alpha_{i}}x_{i}^{1} \otimes x_{i}^{2} \rangle = \langle y, x \rangle.$$

$$(7)$$

Moreover, since *C* and *D* are involutive, it follows that

$$(C \otimes D)^2 = (C^2 \otimes D^2) = I \otimes I$$
(8)

on the algebraic tensor product of $\mathcal{H} \otimes \mathcal{H}$. Since *C* and *D* are bounded, it follows from (7) and (8) that $C \otimes D$ is a conjugation on $\mathcal{H} \otimes \mathcal{H}$. \Box

Proof of Theorem 4.4. By Lemma 4.5, $C \otimes D$ is a conjugation. It is clear that $T \otimes I$ and $I \otimes S$ are $[m, C \otimes D]$ -isometry and $[n, C \otimes D]$ -isometry on $\mathcal{H} \otimes \mathcal{H}$, respectively. Since $(T \otimes I, I \otimes S)$ is a commuting pair and satisfies

$$(I \otimes S) \cdot \left((C \otimes D)(T \otimes I)(C \otimes D) \right) = \left((C \otimes D)(T \otimes I)(C \otimes D) \right) \cdot (I \otimes S),$$

by Theorem 4.3, $(T \otimes I)(I \otimes S) = T \otimes S$ is an $[m + n - 1, C \otimes D]$ -isometry.

For an (m, C)-isometric operator T, $\Lambda_m(T; C)$ is defined by

$$\Lambda_m(T;C) = \sum_{j=0}^m (-1)^j \binom{m}{j} T^{*m-j} \cdot CT^{m-j}C$$

Let a commuting pair (*T*, *S*) satisfy $S^* \cdot CTC = CTC \cdot S^*$, where *C* is a conjugation. Then it holds

$$\Lambda_m(TS;C) = \sum_{k=0}^m \binom{m}{k} T^{*k} \cdot \Lambda_{m-k}(T;C) \cdot CT^k C \cdot \Lambda_k(S;C).$$
⁽⁹⁾

By similar proofs of Proposition 4.2 and Theorems 4.3 and 4.4, we have following results.

Theorem 4.6. Let *T* and *S* be an (m, C)-isometry and an (n, C)-isometry on \mathcal{H} , respectively. If (T, S) is a commuting pair and satisfies $S^* \cdot CTC = CTC \cdot S^*$, then TS is an (m + n - 1, C)-isometry on \mathcal{H} .

Proof. The proof follows from Equation (9). \Box

Theorem 4.7. Let T and S be an (m, C)-isometry and an (n, D)-isometry on H, respectively. Then $T \otimes S$ is an $(m + n - 1, C \otimes D)$ -isometry on $H \otimes H$.

Proof. Operators $T \otimes I$ and $I \otimes S$ are $(m, C \otimes D)$ -isometry and $(n, C \otimes D)$ -isometry on $\mathcal{H} \otimes \mathcal{H}$, respectively. Since $(T \otimes I, I \otimes S)$ is a commuting pair and satisfies $(I \otimes S)^* \cdot ((C \otimes D)(T \otimes I)(C \otimes D)) = ((C \otimes D)(T \otimes I)(C \otimes D)) \cdot (I \otimes S)^*$, by Theorem 4.6 $(T \otimes I)(I \otimes S) = T \otimes S$ is an $(m + n - 1, C \otimes D)$ -isometry on $\mathcal{H} \otimes \mathcal{H}$. \Box

References

- [1] J. Agler and M. Stankus, m-isometric transformations of Hilbert space I, Intgr. Equat. Oper. Theory 21(1995), 383-429.
- [2] T. Bermúdes, A. Martinón, V. Müller and A.J. Noda, Perturbation of m-isometries and nilpotent operators, Abstr. Appl. Anal. 2, (2014), 313-328.
- [3] M. Chō, C. Gu and W. Y. Lee, *Elementary properties of* ∞-*isometries on a Hilbert space*, Linear Alg. Appl., 511 (2016), 378-402.
- [4] M. Chō, E. Ko and J. Lee, On m-complex symmetric operators, Mediterr. J. Math., 13(2016), 2025-2038.
- [5] M. Chō, E. Ko and J. Lee, On m-complex symmetric operators II, Mediterr. J. Math., 13 (2016), 3255-3264.
- [6] M. Chō, E. Ko and J. Lee, On (m, C)-isometric operators, Complex Anal. Oper. Theory, (2016) 10, 1679-1694.
- [7] M. Chō, E. Ko and J. Lee, *Properties of m-complex symmetric operators*, Studia Math. to appear.
- [8] M. Chō, S. Ota, K. Tanahashi, and M. Uchiyama, Spectral properties of m-isometric operators, Functional Analysis, Application and Computation 4:2 (2012), 33-39.
- [9] B. Duggal, Tensor product of n-isometries, Linear Alg. Appl., 437(2012), 307-318.
- [10] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358(2006), 1285-1315.
- [11] S. Jung, E Ko, M. Lee, and J. Lee, On local spectral properties of complex symmetric operators, J. Math. Anal. Appl. 379(2011), 325-333.
- [12] S.M. Patel, 2-isometric operators, Glasnik Mat., 37(2002), 141-145.