Filomat 31:7 (2017), 2093–2101 DOI 10.2298/FIL1707093B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Fixed Points for (G, ϕ) -Contractions in Vector Metric Spaces Endowed with a Graph

Rakesh Batra^a, Sachin Vashistha^b, Rajesh Kumar^b

^aDepartment of Mathematics, Hans Raj College, University of Delhi, Delhi-110007, India ^bDepartment of Mathematics, Hindu College, University of Delhi, Delhi-110007, India

Abstract. In this work, we will prove some fixed point results for the class of (G, ϕ) -contractions on vector metric spaces endowed with a graph. Our results extend and unify many known results for (G, ϕ) -contractions on metric spaces with a graph and for ϕ -contractions on vector metric spaces. We apply our results to obtain an existence theorem for the solution of an integral equation.

1. Introduction

In 2007, Jachymski [5] introduced the concept of *G*-contraction on a metric space endowed with a graph *G*. Further, in 2010, Bojor [2] extended the work of Jachymski for (G, ϕ) -contraction mapping on a metric space endowed with a graph *G*. Recently, in 2012, Petre[7] proved a fixed point theorem for ϕ -contractions on vector metric spaces. In this article, we present some fixed point results for (G, ϕ) -contractions on vector metric spaces endowed with a graph *G*, thereby, extend many results in the area of fixed point theory, in particular, the work of above mentioned authors.

Throughout the article \mathbb{N} , \mathbb{R} , \mathbb{R}^+ and \mathbb{R}^- will denote the set of natural numbers, real numbers, positive real numbers and negative real numbers respectively.

2. Preliminaries

The following notations, concepts and results may be found in [1, 3, 4]. A set *E* equipped with a partial order " \leq " is called a partially ordered set. In a partially ordered set (*E*, \leq), the notation *x* < *y* means *x* \leq *y* and *x* \neq *y*. By an order interval [*x*, *y*] in *E* we mean, a set {*z* \in *E* : *x* \leq *z* \leq *y*}. We note that [*x*, *y*] = ϕ if *x* \leq *y*. An element *z* \in *E* is said to be an upper bound of a subset *S* of *E* if *x* \leq *z* for all *x* \in *S* and a lower bound if *z* \leq *x* for all *x* \in *S*. A subset *S* of *E* is said to be bounded above if it has an upper bound and bounded below if it has a lower bound. Further, an element *z* \in *E* is said to be a supremum of *S* if (i) *z* is an upper bound of *S* and (ii) for any upper bound *t* \in *E* of *S* we have *z* \leq *t*. We say that *z* is a least upper bound of *S* in this case. Similarly, infimum of *S* can be defined as a greatest lower bound of *S* in *E*. Supremum (or infimum) of a non empty set may or may not exist, but, if it exists, it is unique. A partially ordered

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10; Secondary 05C40, 47H04, 54H25, 55M20)

Keywords. vecor metric, fixed point, *E*-Picard operator, (G, ϕ) -contraction, connected graph

Received: 18 December 2014; Accepted: 29 November 2015

Communicated by Ljubomir Ćirić

Email addresses: rakeshbatra.30@gmail.com (Rakesh Batra), vashistha_sachin@rediffmail.com (Sachin Vashistha),

rajeshhctm@rediffmail.com (Rajesh Kumar)

set (E, \leq) is a lattice if each pair of elements $x, y \in E$ has a supremum and an infimum in E. We use the notations $x \lor y$ and $x \land y$ to denote sup{x, y} and inf{x, y} respectively. A real linear space E together with an order relation " \leq " which is compatible with the algebraic structure of *E* via the properties (i) for each $x, y, z \in E$ we have $x \leq y \Rightarrow x + z \leq y + z$ and (ii) for each $x, y \in E$ and $t \in \mathbb{R}^+$ we have $x \leq y \Rightarrow tx \leq ty$ is called an ordered linear space. The set $E^+ = \{x \in E : 0 \le x\}$ is called the positive cone of an ordered linear space (E, \leq) . An ordered linear space *E* for which (E, \leq) is a lattice is called a Riesz space or linear lattice. For detail study about Riesz spaces one may refer to [1]. The space \mathbb{R}^n with usual order defined by $x = (x_1, x_2, ..., x_n) \le y = (y_1, y_2, ..., y_n)$ in \mathbb{R}^n whenever $x_i \le y_i$ for each i = 1, 2, ..., n is a Riesz space [1]. Here $x \lor y = (\max\{x_1, y_1\}, \max\{x_2, y_2\}, ..., \max\{x_n, y_n\})$ and $x \land y = (\min\{x_1, y_1\}, \min\{x_2, y_2\}, ..., \min\{x_n, y_n\})$. Both the vector space C(X) of all continuous real functions and the vector space $C_b(X)$ of all bounded continuous real functions on the topological space X are Riesz spaces when the ordering is defined pointwise. That is, $f \leq q$ whenever $f(x) \leq q(x)$ for each $x \in X$. The lattice operations are: $(f \vee q)(x) = \max\{f(x), q(x)\}$ and $(f \land g)(x) = \min\{f(x), g(x)\}$. For any sequence (x_n) in a Riesz space $E, x_n \downarrow x$ means x_n is a decreasing sequence and $\inf\{x_n\} = x$ and for any sequence (x_n) in a Riesz space $E, x_n \uparrow x$ means x_n is an increasing sequence and $\sup\{x_n\} = x$. For any two decreasing sequences (x_n) and (y_n) in a Riesz space E, following properties are satisfied. (i) $x_n \downarrow x$ and $y_m \downarrow y$ imply $x_n + y_m \downarrow x + y$, (ii) $x_n \downarrow x$ implies $tx_n \downarrow tx$ for all $t \in \mathbb{R}^+$ and $tx_n \uparrow tx$ for all $t \in \mathbb{R}^-$ and (iii) $x_n \downarrow x$ and $y_m \downarrow y$ imply $x_n \lor y_m \downarrow x \lor y$ and $x_n \land y_m \downarrow x \land y$. Now we present some more definitions and examples useful for our main results and that may be found in [1, 3, 4]. Let E denote a Riesz space and $|x| := x \lor (-x)$ for all $x \in E$. A sequence $\{x_n\}$ in a Riesz space *E* is said to be an order convergent (or o-convergent) to x (we write $x_n \xrightarrow{\circ} x$), if there exists a sequence $\{y_n\}$ in E satisfying $y_n \downarrow 0$ and $|x_n - x| \le y_n$ for all $n \in \mathbb{N}$. Here are some simple properties of order convergence. (i) A sequence $\{x_n\}$ in a Riesz space has at most one order limit, (ii) if $x_n \xrightarrow{\circ} x$ and $y_n \xrightarrow{\circ} y$ then $x_n + y_n \xrightarrow{\circ} x + y$, (iii) $\alpha x_n \xrightarrow{\circ} \alpha x$ for all $\alpha \in \mathbb{R}$, (iv) $|x_n| \xrightarrow{\circ} |x|$, (v) $x_n \vee y_n \xrightarrow{\circ} x \vee y$ and $x_n \wedge y_n \xrightarrow{\circ} x \wedge y$ and (vi) if $x_n \leq y_n$ for all $n \geq n_0$ then $x \leq y$. Let *E* and *F* be any two Riesz spaces. A function $f: E \to F$ is order continuous (or o-continuous) if $x_n \xrightarrow{\circ} x$ in *E* implies $f(x_n) \xrightarrow{\circ} f(y)$ in *F*. A sequence $\{x_n\}$ in a Riesz space is said to be an order Cauchy (or o-Cauchy), if there exists a sequence $\{y_n\}$ in *E* such that $y_n \downarrow 0$ and $|x_n - x_{n+p}| \le y_n$ for all $n, p \in \mathbb{N}$. A Riesz space *E* is called o-complete if every o-Cauchy sequence in E is o-convergent in E. Let X be a nonempty set and E be a Riesz space. A function $d: X \times X \to E$ is said to be an *E*-metric or a vector metric on X if (i) d(x, y) = 0 if and only if x = y (ii) $d(x, y) \le d(x, z) + d(y, z)$ for all $x, y, z \in X$. Also the triplet (X, d, E) is said to be a vector metric space or an E-metric space. Vector metric spaces generalize the notion of metric spaces and for arbitrary elements x, y, z, w of a vector metric space, the following properties hold:(i) $0 \le d(x, y)$ (ii) d(x, y) = d(y, x)(iii) $|d(x,z) - d(y,z)| \le d(x,y)$ (iv) $|d(x,z) - d(y,w)| \le |d(x,y) - d(z,w)|$. A Riesz space *E* is a vector metric space with respect to $d: E \times E \to E$ defined by d(x, y) = |x - y|. This Vector metric is called an absolute valued metric on E. \mathbb{R}^2 is a Riesz space with respect to coordinatewise ordering of its elements. It is a vector metric space with respect to the vector metric $d : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ defined by $d((x, y), (z, w)) = (\alpha |x - z|, \beta |y - w|)$, where $\alpha, \beta \in \mathbb{R}^+$. \mathbb{R} is a vector metric space with respect to the vector metric $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^2$ defined by $d(x, y) = (\alpha | x - y|, \beta | x - y|)$, where $\alpha, \beta \in \mathbb{R}^+ \cup \{0\}$ with $\alpha + \beta \in \mathbb{R}^+$. Let (X, d, E) be a vector metric space. A

sequence $\{x_n\}$ in *X* is said to be *E*-convergent or vectorially convergent to some $x \in X$, written as $x_n \xrightarrow{d,E} x$, if there exists a sequence $\{a_n\}$ in *E* such that $a_n \downarrow 0$ and $d(x_n, x) \le a_n$ for all $n \in \mathbb{N}$.

Lemma 2.1. Let (X, d, E) be a vector metric space and $x_n \xrightarrow{d,E} x$. Then

- *(i) the limit x is unique,*
- (ii) any subsequence of $\{x_n\}$ is vectorial convergent to x and
- (iii) if $y_n \xrightarrow{d,E} y$, then, $d(x_n, y_n) \xrightarrow{\circ} d(x, y)$.

Let (X, d, E) be a vector metric space. A sequence $\{x_n\}$ in X is said to be an E-Cauchy if there exists a sequence $\{a_n\}$ in E with $a_n \downarrow 0$ and $d(x_n, x_{n+p}) \le a_n$ for all $n, p \in \mathbb{N}$. A vector metric space (X, d, E) is said to be E-complete if every E-Cauchy sequence in X is E-convergent to a limit in X. A subset Y of X is said to be E-closed if for any sequence $\{y_n\}$ in Y which is E-convergent to some $y \in X$, we have $y \in Y$.

Remark 2.2. If $E = \mathbb{R}$ then the concepts of *E*-convergence and of *E*-Cauchy sequence are same as that of metric convergence and Cauchy sequence respectively. Further, if X = E and *d* is the absolute valued metric, then, the concepts of *E*-convergence and o-convergence are the same.

Let (X, d, E) and (Y, ρ, F) be vector metric spaces. A function $f : X \to Y$ is said to be vectorial continuous (or *E*-continuous) at $x \in X$ if for every sequence $\{x_n\}$ in X with $x_n \xrightarrow{d,E} x$ we have $f(x_n) \xrightarrow{\rho,F} f(x)$. Further, f is said to be vectorial continuous on X if f is vectorial continuous at every $x \in X$.

For the following concepts about a graph, one may refer to [5]. Let (X, d, E) be a vector metric space and $\Delta = \{(x, x) : x \in X\}$. Consider a directed graph *G* with the set *V*(*G*) of its vertices equal to *X* and the set *E*(*G*) of its edges as a superset of Δ . Assume that *G* has no parallel edges. Now we can identify *G* with the pair (V(G), E(G)). The graph *G* can be converted to a weighted graph by assigning to each edge a weight equal to the distance between its vertices.

Let G^{-1} denote conversion of the graph *G* obtained from the graph *G* by reversing the direction of edges. Thus we have $V(G^{-1}) = V(G)$ and $E(G^{-1}) = \{(x, y) \in X \times X : (y, x) \in E(G)\}$. By \tilde{G} we denote the undirected graph obtained from *G* by ignoring the direction of edges. It is convenient to treat \tilde{G} as a directed graph for which the set of its edges is symmetric. That is

$$E(\tilde{G}) = E(G) \cup E(G^{-1}). \tag{1}$$

By a subgraph of *G* we mean a graph *H* satisfying $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ such that V(H) contains the vertices of all edges of E(H).

Definition 2.3. Let (X, d, E) be a vector metric space equipped with a graph G. A mapping $f : X \to X$ is orbitally *E*-continuous if for all $x, y \in X$ and any sequence $(k_n)_{n \in \mathbb{N}}$ of positive integers $f^{k_n}x \xrightarrow{d_e} y \Rightarrow f(f^{k_n}x) \xrightarrow{d_e} fy$ as $n \to \infty$, (G, E)-continuous if given $x \in X$ and a sequence $(x_n)_{n \in \mathbb{N}}$ with $x_n \xrightarrow{d_e} x$ as $n \to \infty$ and $(x_n, x_{n+1}) \in E(G)$ for all $n \in \mathbb{N}$, we have $fx_n \xrightarrow{d_e} fx$ and orbitally (G, E)-continuous if for all $x, y \in X$ and any sequence $(k_n)_{n \in \mathbb{N}}$ of positive integers, $f^{k_n}x \xrightarrow{d_e} y$ together with $(f^{k_n}x, f^{k_{n+1}}x) \in E(G)$ implies $f(f^{k_n}x) \xrightarrow{d_e} fy$ as $n \to \infty$.

Clearly we have the following relations.

E-Continuity \Rightarrow (*G*, *E*)-continuity \Rightarrow orbital (*G*, *E*)-continuity and

E-Continuity \Rightarrow orbital *E*-continuity \Rightarrow orbital (*G*, *E*)-continuity.

If *x* and *y* are vertices in a graph *G* then a path in *G* from *x* to *y* (of length $n(n \in \mathbb{N} \cup \{0\})$) is a finite sequence $(x_i)_{i=0}^n$ of n + 1 vertices such that $x_0 = x$, $x_n = y$ and $(x_{i-1}, x_i) \in E(G)$ for all i = 1, 2, ..., n. A graph *G* is connected if there is a path between any two vertices. *G* is weakly connected if \tilde{G} is connected. If *G* is such that E(G) is symmetric and $x \in V(G)$ then the subgraph G_x consisting of all edges and vertices that are contained in some path in *G* beginning at *x* is called the component of *G* containing *x*. In this case $V(G_x) = [x]_G$ where $[x]_G$ is the equivalence class of the relation *R* defined on V(G) by the rule yRz if there is a path in *G* from *y* to *z*. Clearly G_x is connected for all $x \in G$.

Definition 2.4. [7] Let *E* be a Riesz space. A function $\phi : E^+ \to E^+$ is said to be an o-comparison function if (i) ϕ is increasing, that is, $x_1, x_2 \in E^+$ and $x_1 \leq x_2$ imply $\phi(x_1) \leq \phi(x_2)$, (ii) $\phi(t) < t$ for any t > 0, and (iii) $\phi^n(t) \stackrel{\circ}{\to} 0$ for any t > 0.

Let Φ be the set of all ϕ described in Definition 2.4.

Definition 2.5. [7] Let (X, d, E) be a vector metric space and $\phi \in \Phi$ be an o-comparison function. A function $T: X \to X$ is said to be a nonlinear ϕ -contraction if and only if $d(Tx, Ty) \le \phi(d(x, y))$ for any $x, y \in X$.

Definition 2.6. [5] Let (X, d) be a metric space and G is a directed graph with V(G) = X and $\Delta \subseteq E(G)$. A mapping $T : X \to X$ is said to be a G-contraction if (i) $(x, y) \in E(G) \Rightarrow (Tx, Ty) \in E(G)$ for all $x, y \in X$ and (ii) there exists a number $k \in [0, 1)$ such that for all $x, y \in X$ with $(x, y) \in E(G)$ we have

$$d(Tx, Ty) \le kd(x, y)$$

(2)

3. Main Results

Throughout this section we assume that $X \equiv (X, d, E)$ is a vector metric space with an *E*-metric *d* and $\mathcal{G} = \{G : G \text{ is a directed graph with } V(G) = X \text{ and } \Delta \subseteq E(G) \}$. The set of all fixed points of a self map *T* on *X* will be denoted by Fix(*T*).

Definition 3.1. Let T be a self map on a vector metric space (X, d, E). T is an E-Picard operator (abbr., EPO) if T has a unique fixed point x_* and $T^n x \xrightarrow{d,E} x_*$ for all $x \in X$.

Definition 3.2. Let *T* be a self map on a vector metric space (*X*, *d*, *E*). *T* is a weakly *E*-Picard operator (abbr., WEPO) if for any $x \in X$, $\lim_{n\to\infty} T^n x$ exists (it may depend on x) and is a fixed point of *T*.

Following Definition 2.5 and Definition 2.6 we introduce *G*-contraction and (G, ϕ) -contraction in the following manner.

Definition 3.3. Let (X, d, E) be a vector metric space and G be a directed graph with V(G) = X and $\Delta \subseteq E(G)$. A mapping $T : X \to X$ is said to be a G- contraction if

(i) for all
$$x, y \in X$$
,
 $(x, y) \in E(G) \Rightarrow (Tx, Ty) \in E(G)$
(3)

(ii) There exists a number $k \in [0, 1)$ such that for all $x, y \in X$ with $(x, y) \in E(G)$,

$$d(Tx, Ty) \le kd(x, y) \tag{4}$$

Definition 3.4. Let (X, d, E) be a vector metric space, $\phi \in \Phi$ be an o-comparison function and $G \in \mathscr{G}$ be given. A mapping $T : X \to X$ is said to be a (G, ϕ) -contraction if

(i) for all
$$x, y \in X$$
,
 $(x, y) \in E(G) \Rightarrow (Tx, Ty) \in E(G)$
(5)

(ii) for all $x, y \in X$ with $(x, y) \in E(G)$,

$$d(Tx, Ty) \le \phi(d(x, y)) \tag{6}$$

Remark 3.5. Let $G \in \mathscr{G}$ be arbitrary. Then every *G*-contraction on (X, d, E) is a (G, ϕ) -contraction for ϕ given by $\phi(a) = ka$ for all $a \in E^+$. Here $k \in [0, 1)$ is as in Definition 3.3.

Remark 3.6. It follows from (5) that $(T(V(G)), (T \times T)(E(G)))$ is a subgraph of G where $(T \times T)(x, y) = (Tx, Ty)$ for all $x, y \in X$.

Example 3.7. Any constant function $T : X \to X$ is a (G, ϕ) -contraction for every $\phi \in \Phi$ and $G \in \mathscr{G}$. This follows because E(G) contains all loops.

Example 3.8. Let $\phi \in \Phi$ be arbitrary. Then every ϕ -contraction is an (G_0, ϕ) -contraction for the complete graph G_0 given by $V(G_0) = X$ and $E(G_0) = X \times X$.

Example 3.9. Let \leq be a partial order on X. Define the graph G_1 by $E(G_1) = \{(x, y) \in X \times X : x \leq y\}$. Then $G_1 \in \mathcal{G}$ and for any $\phi \in \Phi$, a self map $T : X \to X$ is a (G_1, ϕ) -contraction if it satisfies

- (i) T is non decreasing w.r.t. \leq and
- (ii) for all $x, y \in X$ with $(x, y) \in E(G_1)$,

$$d(Tx,Ty) \leq \phi(d(x,y))$$

(7)

We say that *T* is an order ϕ -contraction if *T* satisfies (ii) in Example 3.9. That is, if (7) is satisfied for all $x, y \in X$ with $x \leq y$.

Remark 3.10. Conditions (i) and (ii) in Definition 3.4 are independent. For example, identity mapping on any vector metric space (X, d, E) endowed with a graph G preserves edges but (6) is not satisfied for any $k \in [0, 1)$ if there is at least one $(x, y) \in E(G) - \Delta$. Further, a mapping $T : E \to E$ given by $Tx = -\frac{1}{2}x$ for all $x \in E$ is an order ϕ -contraction for $\phi(a) = \frac{1}{2}a$ for all $a \in E^+$ and with respect to absolute valued metric on any Riesz space E but T is not increasing if E has at least two elements x and y with x < y.

Remark 3.11. Let G_d be the graph given by $V(G_d) = X$ and $E(G_d) = \Delta$. Then (3) and (4) are satisfied for every mapping $T : X \to X$. Thus every $T : X \to X$ is a (G_d, ϕ) -contraction for every $\phi \in \Phi$. Consequently, given $\phi \in \Phi$, there is no self mapping on X which is not a (G, ϕ) -contraction for all $G \in \mathscr{G}$. But for a fixed $G \in \mathscr{G}$ it is possible to find a $\phi \in \Phi$ and a mapping $T : X \to X$ such that T is a (G, ϕ) -contraction but not a G-contraction.

Example 3.12. Let $S_n = \frac{n(n+1)}{2}$, $n \in \mathbb{N} \cup \{0\}$ and $X = \{S_n : n \in \mathbb{N} \cup \{0\}\}$. Let $E = \mathbb{R}$ and d(x, y) = |x - y| for all $x, y \in X$. Define $T : X \to X$ by $TS_0 = S_0$ and $TS_n = S_{n-1}$ for all $n \in \mathbb{N}$. Take $\phi(t) = S_n$ if $S_n < t \leq S_{n+1}$, $n \in \mathbb{N} \cup \{0\}$ and $\phi(S_0) = \phi(0) = 0$. Then ϕ becomes an o-comparison function on E^+ . Let G be a graph given by V(G) = X and $E(G) = \{(S_n, S_n) : n \in \mathbb{N} \cup \{0\}\} \cup \{(S_0, S_n) : n \in \mathbb{N}\}$. It is easy to see that T preserves edges. We show that T satisfies (6) but not (2). Clearly $(x, y) \in E(G)$ with $Tx \neq Ty$ if and only if $x = S_0$ and $y = S_n$ for some n > 1. Further for n > 1 we have $d(TS_0, TS_n)/\phi(d(S_0, S_n)) = S_{n-1}/\phi(S_n) = S_{n-1}/S_{n-1} = 1$. Thus T is a (G, ϕ) -contraction. Now for n > 1 we have $d(TS_0, TS_n)/d(S_0, S_n) = (S_{n-1} - S_0)/(S_n - S_0) = S_{n-1}/S_n = (n-1)/(n+1)$ which tends to 1 as $n \to \infty$. Thus T does not satisfy (2). Hence T is a (G, ϕ) -contraction which is not a G-contraction.

Example 3.13. Let $X = [0,1] \times [0,1] \subseteq \mathbb{R}^2$ and $E = \mathbb{R}^2$ with componentwise ordering. Let $d((x_1, y_1), (x_2, y_2)) = (|x_1 - x_2|, |y_1 - y_2|)$ be a vector metric on X. Let

$$T(x, y) = \begin{cases} (1/4, 1/4) & \text{if } (x, y) \neq (1, 1) \\ (1/8, 1/8) & \text{if } (x, y) = (1, 1) \end{cases}$$

T is not a ϕ -contraction for any $\phi \in \Phi$ as it is not an *E*-continous mapping. As discussed in Remark 3.11, *T* is a (G_d, ϕ) -contraction for every $\phi \in \Phi$.

Definition 3.14. Two sequences $\{x_n\}$ and $\{y_n\}$ in a vector metric space (X, d, E) are equivalent if $d(x_n, y_n) \xrightarrow{\circ} 0$ as $n \to \infty$.

Proposition 3.15. Let (X, d, E) be a vector metric space equipped with a graph G. If a mapping $T : X \to X$ is such that (5) (resp. (6)) holds, then (5) (resp. (6)) is also satisfied for G^{-1} and \tilde{G} . Hence if T is a (G, ϕ) -contraction then T is both a (G^{-1}, ϕ) -contraction and a (\tilde{G}, ϕ) -contraction.

Proof. This is an obvious consequence of symmetry of *d* and (1). \Box

Lemma 3.16. Let $T : X \to X$ be a (G, ϕ) -contraction on a vector metric space (X, d, E) equipped with a graph G. For $x \in X$ and $y \in [x]_{\tilde{G}}$, we have $d(T^nx, T^ny) \xrightarrow{\circ} 0$ as $n \to \infty$.

Proof. Let $x \in X$ and $y \in [x]_{\tilde{G}}$. Then there exists a path $(x_i)_{i=0}^N$ in \tilde{G} from x to y. That is, $x_0 = x$, $x_N = y$ and $(x_{i-1}, x_i) \in E(\tilde{G})$ for all i = 1, 2, ..., N. By Proposition 3.15, T is a (\tilde{G}, ϕ) -contraction. So inductively $(T^n x_{i-1}, T^n x_i) \in E(\tilde{G})$ for all $n \in \mathbb{N}$, i = 1, 2, ..., N and

$$d(T^{n}x_{i-1}, T^{n}x_{i}) \le \phi^{n}(d(x_{i-1}, x_{i}))$$
(8)

for all i = 1, 2, ..., N and $n \in \mathbb{N}$. If $x_{i-1} = x_i$ for some i = 1, 2, ..., N, then $d(T^n x_{i-1}, T^n x_i) = 0$ for all $n \in \mathbb{N}$. Consider the case when $x_{i-1} \neq x_i$ for all i = 1, 2, ..., N. Letting $n \to \infty$ in (8) we get $d(T^n x_{i-1}, T^n x_i) \stackrel{\circ}{\to} 0$ as $n \to \infty$ for all i = 1, 2, ..., N. By triangular inequality we get $d(T^n x, T^n y) \leq \sum_{i=1}^N d(T^n x_{i-1}, T^n x_i) \stackrel{\circ}{\to} 0$ as $n \to \infty$. \Box **Theorem 3.17.** The following statements are equivalent in a vector metric space (X, d, E) equipped with a graph G.

- (*i*) *G* is weakly connected.
- (ii) For any (G, ϕ) -contraction $T : X \to X$ and $x, y \in X$, the sequences $\{T^n x\}$ and $\{T^n y\}$ are E-Cauchy and equivalent.
- (iii) For any (G, ϕ) -contraction $T : X \to X$, $Card(Fix T) \le 1$.

Proof. (i) \Rightarrow (ii):

Let *G* be weakly connected. Let $T : X \to X$ be a (G, ϕ) -contraction and $x, y \in X$. Then $X = [x]_{\tilde{G}}$. Take $y = Tx \in [x]_{\tilde{G}}$ in Lemma 3.16. Then $d(T^nx, T^{n+1}x) \xrightarrow{\circ} 0$ as $n \to \infty$. So $d(T^nx, T^mx) \leq \sum_{i=1}^{n-m} d(T^{m+i-1}, T^{m+i}) \xrightarrow{\circ} 0$ as $n \to \infty$. Thus (T^nx) is *E*-Cauchy. By Lemma 3.16, (T^nx) and (T^ny) are equivalent. So (T^ny) is also *E*-Cauchy.

 $(ii) \Rightarrow (iii)$ Let $T : X \to X$ be a (G, ϕ) -contraction and $x, y \in Fix(T)$. By $(ii), (T^n x)$ and $(T^n y)$ are *E*-Cauchy and equivalent. This gives x = y.

 $(iii) \Rightarrow (i)$ Let *G* be not weakly connected. Then \tilde{G} is disconnected. Let $x_0 \in X$. Then both $[x_0]_{\tilde{G}}$ and $X \setminus [x_0]_{\tilde{G}}$ are non empty. Choose $y_0 \in X \setminus [x_0]_{\tilde{G}}$. Define

$$T(x) = \begin{cases} x_0 & \text{if } x \in [x_0] \\ y_0 & \text{if } x \in X \setminus [x_0]_{\tilde{G}} \end{cases}$$

Then $Fix(T) = \{x_0, y_0\}$. We now show that *T* is a (G, ϕ) -contraction. Let $(x, y) \in E(G)$ be arbitrary. Then $[x]_{\tilde{G}} = [y]_{\tilde{G}}$. So $x, y \in [x_0]_{\tilde{G}}$ or $x, y \in X \setminus [x_0]_{\tilde{G}}$. In both cases we have Tx = Ty. This shows that $(Tx, Ty) \in E(G)$ because $\Delta \subseteq E(G)$. Consequently, (5) and (6) are satisfied. Thus *T* is a (G, ϕ) -contraction having two fixed points which violates (*iii*). Hence *G* must be weakly connected. \Box

Corollary 3.18. Let (X, d, E) be a complete vector metric space. Then the following statements are equivalent.

- (*i*) *G* is weakly connected.
- (ii) for any (G, ϕ) -contraction $T : X \to X$, there exists an $x^* \in X$ such that $\lim_{n\to\infty} T^n x = x^*$ for all $x \in X$.

Remark 3.19. *Example 3.2 of [5] justifies the fact that we may not improve Corollary 3.18 by adding in (ii) that x* is a fixed point of T. Mapping T in Example 3.2 of [5] is obviously an order F-contraction for F(\alpha) = \ln \alpha for all \alpha > 0.*

Theorem 3.20. Let $T : X \to X$ be a (G, ϕ) -contraction such that $Tx_0 \in [x_0]_{\tilde{G}}$ for some $x_0 \in X$. Let \hat{G}_{x_0} be component of \tilde{G} containing x_0 . Then $[x_0]_{\tilde{G}}$ is T-invariant and $T|_{[x_0]_{\tilde{G}}}$ is a (\tilde{G}_{x_0}, ϕ) -contraction. Moreover, if $x, y \in [x_0]_{\tilde{G}}$ then the sequences $(T^n x)_{n \in \mathbb{N}}$ and $(T^n y)_{n \in \mathbb{N}}$ are E-Cauchy and equivalent.

Proof. Let $x \in [x_0]_{\tilde{G}}$ be arbitrary. Then there exists a path $(x_i)_{i=0}^N$ in \tilde{G} from x_0 to x. That is, $x_N = x$ and $(x_{i-1}, x_i) \in E(\tilde{G})$ for all i = 1, 2, ..., N. By Proposition 3.15, every (G, ϕ) -contraction is a (\tilde{G}, ϕ) -contraction. So T is a (\tilde{G}, ϕ) -contraction. This implies $(Tx_{i-1}, Tx_i) \in E(\tilde{G})$ for all i = 1, 2, ..., N. Consequently $(Tx_i)_{i=0}^N$ is a path in \tilde{G} from Tx_0 to Tx. Thus $Tx \in [Tx_0]_{\tilde{G}}$. But $Tx_0 \in [x_0]_{\tilde{G}}$. So $[Tx_0]_{\tilde{G}} = [x_0]_{\tilde{G}}$. Hence $Tx \in [x_0]_{\tilde{G}}$. This proves that $[x_0]_{\tilde{G}}$ is T-invariant.

Now let $(x, y) \in E(\tilde{G}_{x_0})$ be arbitrary. This means there is a path $(x_i)_{i=0}^N$ in \tilde{G} from x_0 to y such that $x_{N-1} = x$. Repeating the argument from the first part of the proof we infer that $(Tx_i)_{i=0}^N$ is a path in \tilde{G} from Tx_0 to Ty. Since $Tx_0 \in [x_0]_{\tilde{G}}$, therefore we have a path $(y_i)_{i=0}^M$ in \tilde{G} from x_0 to Tx_0 . It follows that $(y_0, y_1, \ldots, y_M, Tx_1, Tx_2, \ldots, Tx_N)$ is a path in \tilde{G} from x_0 to Ty. In particular $(Tx_{N-1}, Tx_N) \in E(\tilde{G}_{x_0})$. That is $(Tx, Ty) \in E(\tilde{G}_{x_0})$. Since $E(\tilde{G}_{x_0}) \subseteq E(\tilde{G})$ and T is a (G, ϕ) -contraction, therefore (6) holds for the graph \tilde{G}_{x_0} as well. Thus $T|_{[x_0]_{\tilde{G}}}$ is a (\tilde{G}_{x_0}, ϕ) -contraction.

Finally Theorem 3.17 and connectedness of \tilde{G}_{x_0} imply that $(T^n x)_{n \in \mathbb{N}}$ and $(T^n y)_{n \in \mathbb{N}}$ are *E*-Cauchy and equivalent for all $x, y \in [x_0]_{\tilde{G}}$. \Box

Theorem 3.21. Let (X, d, E) be a complete vector metric space, $T : X \to X$ be a (G, ϕ) -contraction, $X_T = \{x \in X : (x, Tx) \in E(G)\}$ and (X, d, E, G) satisfy the following property.

For any $x \in X$ with the sequence $T^n x \xrightarrow{d,E} x^*$ and $(T^n x, T^{n+1} x) \in E(G)$ for all $n \in \mathbb{N}$, there exists a subsequence $\{T^{k_n} x\}_{n \in \mathbb{N}}$ of $\{T^n x\}_{n \in \mathbb{N}}$ satisfying $(T^{k_n} x, x^*) \in E(G)$ for all $n \in \mathbb{N}$. (9) Then

- (i) Card Fix $T = Card\{[x]_{\tilde{G}} : x \in X_T\}$.
- (*ii*) Fix $T \neq \phi$ if and only if $X_T \neq \phi$.
- (iii) *T* has a unique fixed point if and only if there exists a point $x_0 \in X_T$ such that $X_T \subseteq [x_0]_{\tilde{G}}$.
- (iv) For any $x \in X_T$, $T|_{[x]_{e}}$ is an EPO.
- (v) If $X_T \neq \phi$ and G is weakly connected then T is an EPO.
- (vi) If $X' = \bigcup \{ [x]_{\tilde{C}} : x \in X_T \}$ then $T|_{X'}$ is a WEPO.
- (vii) If $T \subseteq E(G)$ then T is a WEPO.

Proof. Let us first prove (*iv*) and (*v*). Let $x \in X_T$ be arbitrary. Then $(x, Tx) \in E(G)$. This implies that $Tx \in [x]_{\tilde{G}}$. So by Theorem 3.20, for any $y \in X$ sequences $(T^n x)_{n \in \mathbb{N}}$ and $(T^n y)_{n \in \mathbb{N}}$ are *E*-Cauchy and equivalent. Since (X, d, E) is complete, therefore, there exists an $x^* \in X$ such that $T^n x \xrightarrow{d_E} x^*$ and $T^n y \xrightarrow{d_E} x^*$. Since $(x, Tx) \in E(G)$, (5) yields for all $n \in \mathbb{N}$

$$(T^n x, T^{n+1} x) \in E(G) \tag{10}$$

By (9), it follows that there exists a subsequence $(T^{k_n}x)$ of (T^nx) such that $(T^{k_n}x, x^*) \in E(G)$ for all $n \in \mathbb{N}$. By (10), $(x, Tx, T^2x, ..., T^{k_1}x, x^*)$ is a path in G (and hence in \tilde{G}) from x to x^* . So $x^* \in [x]_{\tilde{G}}$. Now $d(T^{k_n+1}x, Tx^*) \leq d(T^{k_n}x, x^*)$ for all $n \in \mathbb{N}$. Letting $n \to \infty$ we get $d(x^*, Tx^*) = 0$. That is $Tx^* = x^*$. Hence $T|[x]_{\tilde{G}}$ is an EPO.

Further if *G* is weakly connected and $x \in X_T$ then $X = [x]_{\tilde{G}}$. So *T* is an EPO.

Now (*vi*) is a consequence of (*iv*). To prove (*vii*) observe that $T \subseteq E(G)$ implies that $X = X_T$ which gives X' = X and hence by (*iv*), T becomes a WEPO on X.

To prove (*i*), consider the mapping $\pi : Fix T \to C$ given by $\pi(x) = [x]_{\tilde{G}}$ for all $x \in Fix T$ where $C = \{[x]_{\tilde{G}} : x \in X_T\}$. It suffices to show that π is a bijection. Let $x \in X_T$ be arbitrary. By (*iv*), $T|_{[x]_{\tilde{G}}}$ is an EPO. Let $x^* = \lim_{n\to\infty} T^n x$. Then $x^* \in Fix T \cap [x]_{\tilde{G}}$ and $\pi x^* = [x^*]_{\tilde{G}} = [x]_{\tilde{G}}$. So π is surjective. Now let $x_1, x_2 \in Fix T$ be arbitrary with $[x_1]_{\tilde{G}} = [x_2]_{\tilde{G}}$. Then $x_2 \in [x_1]_{\tilde{G}}$. By (*iv*), $\lim_{n\to\infty} T^n x_2 \in Fix T \cap [x_1]_{\tilde{G}} = \{x_1\}$. But $T^n x_2 = x_2$ for all $n \in \mathbb{N}$. Thus we get $x_1 = x_2$. Hence π is a bijection.

Finally (*ii*) and (*iii*) follows by (*i*). \Box

Corollary 3.22. Let (X, d, E) be a complete vector metric space and (X, d, E, G) satisfy the property (9). Then the following statements become equivalent.

- (*i*) *G* is weakly connected.
- (ii) Every (G, ϕ) -contraction $T : X \to X$ such that $(Tx_0, x_0) \in X$ for some $x_0 \in X$, is an EPO.
- (iii) For any (G, ϕ) -contraction $T : X \to X$, card Fix $T \le 1$.
- *Proof.* (*i*) \Rightarrow (*ii*) follows from Theorem 3.21 (v). (*ii*) \Rightarrow (*iii*):

Let $T : X \to X$ be a (G, ϕ) -contraction. If $X_T = \phi$ then so is *Fix T* as *Fix* $T \subseteq X_T$. In case $X_T \neq \phi$ then by (ii) *Fix T* is singleton. In both cases *card Fix* $T \leq 1$.

 $(iii) \Rightarrow (i):$

Follows by Theorem 3.17. \Box

Theorem 3.23. Let (X, d, E) be complete and $T : X \to X$ be an orbitally (G, E)-continuous (G, ϕ) -contraction. Let $X_T = \{x \in X : (x, Tx) \in E(G)\}$. Then the following statements hold:

- (*i*) Fix $T \neq \phi$ if and only if $X_T \neq \phi$.
- (*ii*) For any $x \in X_T$ and $y \in [x]_{\tilde{G}}$, the sequence $(T^n y)_{n \in \mathbb{N}}$ converges to a fixed point of T and $\lim_{n \to \infty} T^n y$ does not depend on y.
- (iii) If $X_T \neq \phi$ and G is weakly connected, then T is an EPO.
- (iv) If $T \subseteq E(G)$ then T is a WEPO.

Proof. We begin with (ii). Let $x \in X$ satisfy $(x, Tx) \in E(G)$ and $y \in [x]_{\tilde{G}}$. By Theorem 3.20, sequences $(T^n x)_{n \in \mathbb{N}}$ and $(T^n y)_{n \in \mathbb{N}}$ vectorially converge to the same point x_* . Moreover $(T^n x, T^{n+1}x) \in E(G)$ for all $n \in \mathbb{N}$. Since T is orbitally (G, E)-continuous we get $T(T^n x) \xrightarrow{d,E} Tx_*$. This yields $Tx_* = x_*$ since, simultaneously, $T(T^n x) = T^{n+1}x \xrightarrow{d,E} x_*$. Thus we proved (ii) and ' \Leftarrow 'of (i). ' \Rightarrow 'of (i) follows by the assumption that $E(G) \supseteq \triangle$. (iv) is an immediate consequence of (ii) since $T \subseteq E(G)$ means $X_T = X$. To Prove (iii) observe that if $x_0 \in X_T$ then $[x_0]_{\tilde{G}} = X$ so (ii) yields T is an EPO. \Box

Continuity condition on *T* can be strengthened by the following version of Theorem 3.23.

Theorem 3.24. Let (X, d, E) be complete and $T : X \to X$ be an orbitally *E*-continuous (G, ϕ) -contraction. Let $X_T = \{x \in X : (x, Tx) \in E(G)\}$. Then the following statements hold:

- (*i*) FixT $\neq \phi$ if and only if there exists an $x_0 \in X$ with $Tx_0 \in [x_0]_{\tilde{G}}$.
- (ii) If $x \in X$ is such that $Tx \in [x]_{\tilde{G}}$, then for any $y \in [x]_{\tilde{G}}$ the sequence $(T^n y)_{n \in \mathbb{N}}$ converges to a fixed point of T and $\lim_{n \to \infty} T^n y$ does not depend on y.
- (iii) If G is weakly connected, then T is an EPO.
- (iv) If $Tx \in [x]_{\tilde{C}}$ for any $x \in X$ then T is a WEPO.

Proof. We begin with (ii). Let $x \in X$ be such that $Tx \in [x]_{\tilde{G}}$ and let $y \in [x]_{\tilde{G}}$. By Theorem 3.20, sequences $(T^n x)_{n \in \mathbb{N}}$ and $(T^n y)_{n \in \mathbb{N}}$ vectorially converge to the same point x_* . Since *T* is orbitally *E*-continuous we get $T(T^n x) \xrightarrow{d,E} Tx_*$. This yields $Tx_* = x_*$ since, simultaneously, $T(T^n x) = T^{n+1}x \xrightarrow{d,E} x_*$. Thus we proved (ii) and ' \Leftarrow ' of (i). ' \Rightarrow ' of (i) follows by the fact that $x \in [x]_{\tilde{G}}$ for any $x \in X$. Now if *G* is weakly connected then $X = [x]_{\tilde{G}}$ for any $x \in X$. In particular $Tx \in [x]_{\tilde{G}}$ for any $x \in X$ and by (ii) we infer that *T* is an EPO. Thus (iii) holds. Finally (iv) is an immediate consequence of (ii). \Box

Corollary 3.25. *Let* (*X*, *d*, *E*) *be complete. Then the following statements are equivalent.*

- *(i) G is weakly connected.*
- (*ii*) Every orbitally E-continous (G, ϕ) -contraction is an EPO.
- (iii) For every orbitally E-continous (G, ϕ) -contraction $T : X \to X$, card Fix $T \le 1$.

Hence if \tilde{G} is disconnected then there exist at least one orbitally *E*- continous (*G*, ϕ)-contraction *T* : *X* \rightarrow *X* which has at least two fixed points.

Proof. Theorem 3.24 (iii) yields that $(i) \Rightarrow (ii)$. $(ii) \Rightarrow (iii)$ is obvious. $(iii) \Rightarrow (i)$ follows by the proof of $(iii) \Rightarrow (i)$ of Theorem 3.17. *T* defined there is orbitally *E*-continuos. \Box

4. Applications

Theorem 4.1. Let I = [a, b] be any interval of the real line, $(B, \|.\|)$ be a partially ordered Banach space satisfying the property that for any sequence $\{b_n\}$ in B with $b_n \leq b_{n+1}$ for all $n \in \mathbb{N}$ and $b_n \to b, b \in B$, we have $b_n \leq b$. Let $E = C(I, \mathbb{R}^+)$ be the space of all continuous functions defined on I taking values in \mathbb{R}^+ , with usual partial order and the usual operations of addition and multiplication. The space E is a Riesz space under the pointwise lattice operations. Let X = C(I, B) be the space of all continuous functions defined on I with values in B and pointwise partial order. Let $d : X \times X \to E$ defined by d(x, y)(.) = ||x(.) - y(.)|| for any $x, y \in X$, be a complete vector metric on X. Let $h : I \times I \times B \to B$ be continuous and $\alpha \in X$. Consider the Fredholm type integral equation

$$x(t) = \int_{I} h(t, s, x(s))ds + \alpha(t), \tag{11}$$

for $t \in I$. Assume that

- (*i*) $h(t, s, .) : B \rightarrow B$ is nondecreasing for each $t, s \in I$,
- (ii) there exists an o-comparison function $\phi : E_+ \to E_+$ and a continuous function $w : I \times I \to \mathbb{R}^+$ such that $||h(t, s, x(s)) h(t, s, y(s))|| \le w(t, s)\phi(d(x, y))(t)$ for each $t, s \in I$ and $x \le y$,
- (iii) $\sup_{t\in I} \int_{I} w(t,s) ds \leq 1$,
- (iv) there exists $x_0 \in X$ such that $x_0(t) \leq \int_I h(t, s, x_0(s))ds + \alpha(t)$ for all $t \in I$.

Then the integral equation (11) has a unique solution in the set $\{x \in X : x \le x_0 \text{ or } x \ge x_0\}$.

Proof. Define a mapping $T : X \to X$ by

$$T(x)(t) := \int_{I} h(t, s, x(s)) ds + \alpha(t)$$

for all $t \in I$. Clearly *T* is a well defined mapping. Consider a graph *G* with V(G) = X and $E(G) = \{(x, y) \in X \times X : x \le y\}$. By the given condition (i), we observe that *T* is nondecreasing. Thus $(x, y) \in E(G)$ implies that $(Tx, Ty) \in E(G)$. Further, *G* satisfies the property (9) because *B* satisfies the same for nondecreasing sequences. Now for any $x, y \in X$ with $(x, y) \in E(G)$, we have $d(T(x), T(y))(t) = ||T(x)(t) - T(y)(t)|| \le \int_{I} ||h(t, s, x(s)) - h(t, s, y(s))||ds \le \int_{I} w(t, s)\phi(d(x, y))(t)ds = \phi(d(x, y))(t) \int_{I} w(t, s)ds \le \phi(d(x, y))(t)$ for all $t \in I$. Thus $d(T(x), T(y)) \le \phi(d(x, y))$ for all $x, y \in X$ with $(x, y) \in E(G)$. So *T* is a (G, ϕ) -contraction. By (iv), we have $(x_0, Tx_0) \in E(G)$. Also, $[x_0]_{\tilde{G}} = \{x \in X : x \le x_0 \text{ or } x \ge x_0\}$. The conclusion follows by Theorem 3.21. \Box

References

- [1] C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis, Springer-Verlag, Berlin, 1999.
- [2] F. Bojor, Fixed point of ϕ -contraction in metric spaces endowed with a graph, Annals of the University of Craiova, Mathematics and Computer Science Series 37(2010), no. 4, 85–92.
- [3] R. Cristescu, Order Structures in Normed Vector Spaces, Editura Științifică și Enciclopedică, București, 1983 (in Romanian).
- [4] C. Evik and I. Altun, Vector metric spaces and some properties, Topological Methods in Nonlinear Analysis 34(2009), 375–382.
- [5] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proceedings of the American Mathematical Society 136(2008), no. 4, 1359–73.
- [6] W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4(2003), no. 1, 79–89.
- [7] I. R. Petre, Fixed Points For ϕ -Contractions In E-Banach Spaces, Fixed Point Theory 13(2012), no. 2, 623–640.