Fixed Points for (G, ϕ)-Contractions in Vector Metric Spaces Endowed with a Graph

Rakesh Batra ${ }^{\text {a }}$, Sachin Vashistha ${ }^{\text {b }}$, Rajesh Kumar ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Hans Raj College, University of Delhi, Delhi-110007, India
${ }^{b}$ Department of Mathematics, Hindu College, University of Delhi, Delhi-110007, India

Abstract

In this work, we will prove some fixed point results for the class of (G, ϕ)-contractions on vector metric spaces endowed with a graph. Our results extend and unify many known results for $(G, \phi)-$ contractions on metric spaces with a graph and for ϕ-contractions on vector metric spaces. We apply our results to obtain an existence theorem for the solution of an integral equation.

1. Introduction

In 2007, Jachymski [5] introduced the concept of G-contraction on a metric space endowed with a graph G. Further, in 2010, Bojor [2] extended the work of Jachymski for (G, ϕ)-contraction mapping on a metric space endowed with a graph G. Recently, in 2012, Petre[7] proved a fixed point theorem for ϕ-contractions on vector metric spaces. In this article, we present some fixed point results for (G, ϕ)-contractions on vector metric spaces endowed with a graph G, thereby, extend many results in the area of fixed point theory, in particular, the work of above mentioned authors.

Throughout the article $\mathbb{N}, \mathbb{R}, \mathbb{R}^{+}$and \mathbb{R}^{-}will denote the set of natural numbers, real numbers, positive real numbers and negative real numbers respectively.

2. Preliminaries

The following notations, concepts and results may be found in $[1,3,4]$. A set E equipped with a partial order " \leq "is called a partially ordered set. In a partially ordered set (E, \leq), the notation $x<y$ means $x \leq y$ and $x \neq y$. By an order interval $[x, y]$ in E we mean, a set $\{z \in E: x \leq z \leq y\}$. We note that $[x, y]=\phi$ if $x \not \leq y$. An element $z \in E$ is said to be an upper bound of a subset S of E if $x \leq z$ for all $x \in S$ and a lower bound if $z \leq x$ for all $x \in S$. A subset S of E is said to be bounded above if it has an upper bound and bounded below if it has a lower bound. Further, an element $z \in E$ is said to be a supremum of S if (i) z is an upper bound of S and (ii) for any upper bound $t \in E$ of S we have $z \leq t$. We say that z is a least upper bound of S in this case. Similarly, infimum of S can be defined as a greatest lower bound of S in E. Supremum (or infimum) of a non empty set may or may not exist, but, if it exists, it is unique. A partially ordered

[^0]set (E, \leq) is a lattice if each pair of elements $x, y \in E$ has a supremum and an infimum in E. We use the notations $x \vee y$ and $x \wedge y$ to denote $\sup \{x, y\}$ and $\inf \{x, y\}$ respectively. A real linear space E together with an order relation " \leq "which is compatible with the algebraic structure of E via the properties (i) for each $x, y, z \in E$ we have $x \leq y \Rightarrow x+z \leq y+z$ and (ii) for each $x, y \in E$ and $t \in \mathbb{R}^{+}$we have $x \leq y \Rightarrow t x \leq t y$ is called an ordered linear space. The set $E^{+}=\{x \in E: 0 \leq x\}$ is called the positive cone of an ordered linear space (E, \leq). An ordered linear space E for which (E, \leq) is a lattice is called a Riesz space or linear lattice. For detail study about Riesz spaces one may refer to [1]. The space \mathbb{R}^{n} with usual order defined by $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ in \mathbb{R}^{n} whenever $x_{i} \leq y_{i}$ for each $i=1,2, \ldots, n$ is a Riesz space [1]. Here $x \vee y=\left(\max \left\{x_{1} y_{1}\right\}, \max \left\{x_{2}, y_{2}\right\}, \ldots, \max \left\{x_{n}, y_{n}\right\}\right)$ and $x \wedge y=\left(\min \left\{x_{1}, y_{1}\right\}, \min \left\{x_{2}, y_{2}\right\}, \ldots, \min \left\{x_{n}, y_{n}\right\}\right)$. Both the vector space $C(X)$ of all continuous real functions and the vector space $C_{b}(X)$ of all bounded continuous real functions on the topological space X are Riesz spaces when the ordering is defined pointwise. That is, $f \leq g$ whenever $f(x) \leq g(x)$ for each $x \in X$. The lattice operations are: $(f \vee g)(x)=\max \{f(x), g(x)\}$ and $(f \wedge g)(x)=\min \{f(x), g(x)\}$. For any sequence $\left(x_{n}\right)$ in a Riesz space $E, x_{n} \downarrow x$ means x_{n} is a decreasing sequence and $\inf \left\{x_{n}\right\}=x$ and for any sequence $\left(x_{n}\right)$ in a Riesz space $E, x_{n} \uparrow x$ means x_{n} is an increasing sequence and $\sup \left\{x_{n}\right\}=x$. For any two decreasing sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in a Riesz space E, following properties are satisfied. (i) $x_{n} \downarrow x$ and $y_{m} \downarrow y$ imply $x_{n}+y_{m} \downarrow x+y$, (ii) $x_{n} \downarrow x$ implies $t x_{n} \downarrow t x$ for all $t \in \mathbb{R}^{+}$and $t x_{n} \uparrow t x$ for all $t \in \mathbb{R}^{-}$and (iii) $x_{n} \downarrow x$ and $y_{m} \downarrow y$ imply $x_{n} \vee y_{m} \downarrow x \vee y$ and $x_{n} \wedge y_{m} \downarrow x \wedge y$. Now we present some more definitions and examples useful for our main results and that may be found in [1,3,4]. Let E denote a Riesz space and $|x|:=x \vee(-x)$ for all $x \in E$. A sequence $\left\{x_{n}\right\}$ in a Riesz space E is said to be an order convergent (or o-convergent) to x (we write $x_{n} \xrightarrow{\circ} x$), if there exists a sequence $\left\{y_{n}\right\}$ in E satisfying $y_{n} \downarrow 0$ and $\left|x_{n}-x\right| \leq y_{n}$ for all $n \in \mathbb{N}$. Here are some simple properties of order convergence. (i) A sequence $\left\{x_{n}\right\}$ in a Riesz space has at most one order limit, (ii) if $x_{n} \xrightarrow{\circ} x$ and $y_{n} \xrightarrow{\circ} y$ then $x_{n}+y_{n} \xrightarrow{\circ} x+y_{\text {, (iii) }} \alpha x_{n} \stackrel{\circ}{\rightarrow} \alpha x$ for all $\alpha \in \mathbb{R}$, (iv) $\left|x_{n}\right| \xrightarrow{\circ}|x|$, (v) $x_{n} \vee y_{n} \xrightarrow{\circ} x \vee y$ and $x_{n} \wedge y_{n} \xrightarrow{\circ} x \wedge y$ and (vi) if $x_{n} \leq y_{n}$ for all $n \geq n_{0}$ then $x \leq y$. Let E and F be any two Riesz spaces. A function $f: E \rightarrow F$ is order continuous (or o-continuous) if $x_{n} \xrightarrow{\circ} x$ in E implies $f\left(x_{n}\right) \xrightarrow{\circ} f(y)$ in F. A sequence $\left\{x_{n}\right\}$ in a Riesz space is said to be an order Cauchy (or o-Cauchy), if there exists a sequence $\left\{y_{n}\right\}$ in E such that $y_{n} \downarrow 0$ and $\left|x_{n}-x_{n+p}\right| \leq y_{n}$ for all $n, p \in \mathbb{N}$. A Riesz space E is called o-complete if every o-Cauchy sequence in E is o-convergent in E. Let X be a nonempty set and E be a Riesz space. A function $d: X \times X \rightarrow E$ is said to be an E-metric or a vector metric on X if (i) $d(x, y)=0$ if and only if $x=y$ (ii) $d(x, y) \leq d(x, z)+d(y, z)$ for all $x, y, z \in X$. Also the triplet (X, d, E) is said to be a vector metric space or an E-metric space. Vector metric spaces generalize the notion of metric spaces and for arbitrary elements x, y, z, w of a vector metric space, the following properties hold:(i) $0 \leq d(x, y)$ (ii) $d(x, y)=d(y, x)$ (iii) $|d(x, z)-d(y, z)| \leq d(x, y)$ (iv) $|d(x, z)-d(y, w)| \leq|d(x, y)-d(z, w)|$. A Riesz space E is a vector metric space with respect to $d: E \times E \rightarrow E$ defined by $d(x, y)=|x-y|$. This Vector metric is called an absolute valued metric on $E . \mathbb{R}^{2}$ is a Riesz space with respect to coordinatewise ordering of its elements. It is a vector metric space with respect to the vector metric $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $d((x, y),(z, w))=(\alpha|x-z|, \beta|y-w|)$, where $\alpha, \beta \in \mathbb{R}^{+} . \mathbb{R}$ is a vector metric space with respect to the vector metric $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by $d(x, y)=(\alpha|x-y|, \beta|x-y|)$, where $\alpha, \beta \in \mathbb{R}^{+} \cup\{0\}$ with $\alpha+\beta \in \mathbb{R}^{+}$. Let (X, d, E) be a vector metric space. A sequence $\left\{x_{n}\right\}$ in X is said to be E-convergent or vectorially convergent to some $x \in X$, written as $x_{n} \xrightarrow{d, E} x$, if there exists a sequence $\left\{a_{n}\right\}$ in E such that $a_{n} \downarrow 0$ and $d\left(x_{n}, x\right) \leq a_{n}$ for all $n \in \mathbb{N}$.

Lemma 2.1. Let (X, d, E) be a vector metric space and $x_{n} \xrightarrow{d, E} x$. Then
(i) the limit x is unique,
(ii) any subsequence of $\left\{x_{n}\right\}$ is vectorial convergent to x and
(iii) if $y_{n} \xrightarrow{d, E} y$, then, $d\left(x_{n}, y_{n}\right) \xrightarrow{\circ} d(x, y)$.

Let (X, d, E) be a vector metric space. A sequence $\left\{x_{n}\right\}$ in X is said to be an E-Cauchy if there exists a sequence $\left\{a_{n}\right\}$ in E with $a_{n} \downarrow 0$ and $d\left(x_{n}, x_{n+p}\right) \leq a_{n}$ for all $n, p \in \mathbb{N}$. A vector metric space (X, d, E) is said to be E-complete if every E-Cauchy sequence in X is E-convergent to a limit in X. A subset Y of X is said to be E-closed if for any sequence $\left\{y_{n}\right\}$ in Y which is E-convergent to some $y \in X$, we have $y \in Y$.

Remark 2.2. If $E=\mathbb{R}$ then the concepts of E-convergence and of E-Cauchy sequence are same as that of metric convergence and Cauchy sequence respectively. Further, if $X=E$ and d is the absolute valued metric, then, the concepts of E-convergence and o-convergence are the same.
Let (X, d, E) and (Y, ρ, F) be vector metric spaces. A function $f: X \rightarrow Y$ is said to be vectorial continuous (or E-continuous) at $x \in X$ if for every sequence $\left\{x_{n}\right\}$ in X with $x_{n} \xrightarrow{d, E} x$ we have $f\left(x_{n}\right) \xrightarrow{\rho, F} f(x)$. Further, f is said to be vectorial continuous on X if f is vectorial continuous at every $x \in X$.

For the following concepts about a graph, one may refer to [5]. Let (X, d, E) be a vector metric space and $\Delta=\{(x, x): x \in X\}$. Consider a directed graph G with the set $V(G)$ of its vertices equal to X and the set $E(G)$ of its edges as a superset of Δ. Assume that G has no parallel edges. Now we can identify G with the pair $(V(G), E(G))$. The graph G can be converted to a weighted graph by assigning to each edge a weight equal to the distance between its vertices.

Let G^{-1} denote conversion of the graph G obtained from the graph G by reversing the direction of edges. Thus we have $V\left(G^{-1}\right)=V(G)$ and $E\left(G^{-1}\right)=\{(x, y) \in X \times X:(y, x) \in E(G)\}$. By \tilde{G} we denote the undirected graph obtained from G by ignoring the direction of edges. It is convenient to treat \tilde{G} as a directed graph for which the set of its edges is symmetric. That is

$$
\begin{equation*}
E(\tilde{G})=E(G) \cup E\left(G^{-1}\right) \tag{1}
\end{equation*}
$$

By a subgraph of G we mean a graph H satisfying $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ such that $V(H)$ contains the vertices of all edges of $E(H)$.

Definition 2.3. Let (X, d, E) be a vector metric space equipped with a graph G. A mapping $f: X \rightarrow X$ is orbitally E-continuous if for all $x, y \in X$ and any sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ of positive integers $f^{k_{n}} x \xrightarrow{d, E} y \Rightarrow f\left(f^{k_{n}} x\right) \xrightarrow{d, E} f y$ as $n \rightarrow \infty,(G, E)$-continuous if given $x \in X$ and a sequence $\left(x_{n}\right)_{n \in N}$ with $x_{n} \xrightarrow{d, E} x$ as $n \rightarrow \infty$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in \mathbb{N}$, we have $f x_{n} \xrightarrow{d, E}$ fx and orbitally (G, E)-continuous if for all $x, y \in X$ and any sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ of positive integers, $f^{k_{n}} \xrightarrow{d, E} y$ together with $\left(f^{k_{n}} x, f^{k_{n+1}} x\right) \in E(G)$ implies $f\left(f^{k_{n}} x\right) \xrightarrow{d, E} f y$ as $n \rightarrow \infty$.
Clearly we have the following relations.
E-Continuity $\Rightarrow(G, E)$-continuity \Rightarrow orbital (G, E)-continuity and
E-Continuity \Rightarrow orbital E-continuity \Rightarrow orbital (G, E)-continuity.
If x and y are vertices in a graph G then a path in G from x to y (of length $n(n \in \mathbb{N} \cup\{0\})$) is a finite sequence $\left(x_{i}\right)_{i=0}^{n}$ of $n+1$ vertices such that $x_{0}=x, x_{n}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(G)$ for all $i=1,2, \ldots, n$. A graph G is connected if there is a path between any two vertices. G is weakly connected if \tilde{G} is connected. If G is such that $E(G)$ is symmetric and $x \in V(G)$ then the subgraph G_{x} consisting of all edges and vertices that are contained in some path in G begining at x is called the component of G containing x. In this case $V\left(G_{x}\right)=[x]_{G}$ where $[x]_{G}$ is the equivalence class of the relation R defined on $V(G)$ by the rule $y R z$ if there is a path in G from y to z. Clearly G_{x} is connected for all $x \in G$.

Definition 2.4. [7] Let E be a Riesz space. A function $\phi: E^{+} \rightarrow E^{+}$is said to be an o-comparison function if (i) ϕ is increasing, that is, $x_{1}, x_{2} \in E^{+}$and $x_{1} \leq x_{2}$ imply $\phi\left(x_{1}\right) \leq \phi\left(x_{2}\right)$, (ii) $\phi(t)<t$ for any $t>0$, and (iii) $\phi^{n}(t) \xrightarrow{\circ} 0$ for any $t>0$.

Let Φ be the set of all ϕ described in Definition 2.4.
Definition 2.5. [7] Let (X, d, E) be a vector metric space and $\phi \in \Phi$ be an o-comparison function. A function $T: X \rightarrow X$ is said to be a nonlinear ϕ-contraction if and only if $d(T x, T y) \leq \phi(d(x, y))$ for any $x, y \in X$.

Definition 2.6. [5] Let (X, d) be a metric space and G is a directed graph with $V(G)=X$ and $\Delta \subseteq E(G)$. A mapping $T: X \rightarrow X$ is said to be a G-contraction if $(i)(x, y) \in E(G) \Rightarrow(T x, T y) \in E(G)$ for all $x, y \in X$ and (ii) there exists a number $k \in[0,1)$ such that for all $x, y \in X$ with $(x, y) \in E(G)$ we have

$$
\begin{equation*}
d(T x, T y) \leq k d(x, y) \tag{2}
\end{equation*}
$$

3. Main Results

Throughout this section we assume that $X \equiv(X, d, E)$ is a vector metric space with an E-metric d and $\mathscr{G}=\{G: G$ is a directed graph with $V(G)=X$ and $\Delta \subseteq E(G)\}$. The set of all fixed points of a self map T on X will be denoted by $\operatorname{Fix}(T)$.
Definition 3.1. Let T be a self map on a vector metric space (X, d, E). T is an E-Picard operator (abbr., EPO) if T has a unique fixed point x_{*} and $T^{n} x \xrightarrow{d, E} x_{*}$ for all $x \in X$.

Definition 3.2. Let T be a self map on a vector metric space (X, d, E). T is a weakly E-Picard operator (abbr., WEPO) if for any $x \in X, \lim _{n \rightarrow \infty} T^{n} x$ exists (it may depend on x) and is a fixed point of T.

Following Definition 2.5 and Definition 2.6 we introduce G-contraction and (G, ϕ)-contraction in the following manner.

Definition 3.3. Let (X, d, E) be a vector metric space and G be a directed graph with $V(G)=X$ and $\Delta \subseteq E(G)$. A mapping $T: X \rightarrow X$ is said to be a G - contraction if
(i) for all $x, y \in X$,

$$
\begin{equation*}
(x, y) \in E(G) \Rightarrow(T x, T y) \in E(G) \tag{3}
\end{equation*}
$$

(ii) There exists a number $k \in[0,1)$ such that for all $x, y \in X$ with $(x, y) \in E(G)$,

$$
\begin{equation*}
d(T x, T y) \leq k d(x, y) \tag{4}
\end{equation*}
$$

Definition 3.4. Let (X, d, E) be a vector metric space, $\phi \in \Phi$ be an o-comparison function and $G \in \mathscr{G}$ be given. A mapping $T: X \rightarrow X$ is said to be a (G, ϕ)-contraction if
(i) for all $x, y \in X$,

$$
\begin{equation*}
(x, y) \in E(G) \Rightarrow(T x, T y) \in E(G) \tag{5}
\end{equation*}
$$

(ii) for all $x, y \in X$ with $(x, y) \in E(G)$,

$$
\begin{equation*}
d(T x, T y) \leq \phi(d(x, y)) \tag{6}
\end{equation*}
$$

Remark 3.5. Let $G \in \mathscr{G}$ be arbitrary. Then every G-contraction on (X, d, E) is a (G, ϕ)-contraction for ϕ given by $\phi(a)=k a$ for all $a \in E^{+}$. Here $k \in[0,1)$ is as in Definition 3.3.

Remark 3.6. It follows from (5) that $(T(V)(G)),(T \times T)(E(G)))$ is a subgraph of G where $(T \times T)(x, y)=(T x, T y)$ for all $x, y \in X$.

Example 3.7. Any constant function $T: X \rightarrow X$ is $a(G, \phi)$-contraction for every $\phi \in \Phi$ and $G \in \mathscr{G}$. This follows because $E(G)$ contains all loops.

Example 3.8. Let $\phi \in \Phi$ be arbitrary. Then every ϕ-contraction is an $\left(G_{0}, \phi\right)$-contraction for the complete graph G_{0} given by $V\left(G_{0}\right)=X$ and $E\left(G_{0}\right)=X \times X$.

Example 3.9. Let \leq be a partial order on X. Define the graph G_{1} by $E\left(G_{1}\right)=\{(x, y) \in X \times X: x \leq y\}$. Then $G_{1} \in \mathscr{G}$ and for any $\phi \in \Phi$, a self map $T: X \rightarrow X$ is a $\left(G_{1}, \phi\right)$-contraction if it satisfies
(i) T is non decreasing $w . r . t . \leq$ and
(ii) for all $x, y \in X$ with $(x, y) \in E\left(G_{1}\right)$,

$$
\begin{equation*}
d(T x, T y) \leq \phi(d(x, y)) \tag{7}
\end{equation*}
$$

We say that T is an order ϕ-contraction if T satisfies (ii) in Example 3.9. That is, if (7) is satisfied for all $x, y \in X$ with $x \leq y$.

Remark 3.10. Conditions (i) and (ii) in Definition 3.4 are independent. For example, identity mapping on any vector metric space (X, d, E) endowed with a graph G preserves edges but (6) is not satisfied for any $k \in[0,1)$ if there is at least one $(x, y) \in E(G)-\Delta$. Further, a mapping $T: E \rightarrow E$ given by $T x=-\frac{1}{2} x$ for all $x \in E$ is an order ϕ-contraction for $\phi(a)=\frac{1}{2}$ a for all $a \in E^{+}$and with respect to absolute valued metric on any Riesz space E but T is not increasing if E has at least two elements x and y with $x<y$.

Remark 3.11. Let G_{d} be the graph given by $V\left(G_{d}\right)=X$ and $E\left(G_{d}\right)=\Delta$. Then (3) and (4) are satisfied for every mapping $T: X \rightarrow X$. Thus every $T: X \rightarrow X$ is a $\left(G_{d}, \phi\right)$-contraction for every $\phi \in \Phi$. Consequently, given $\phi \in \Phi$, there is no self mapping on X which is not $a(G, \phi)$-contraction for all $G \in \mathscr{G}$. But for a fixed $G \in \mathscr{G}$ it is possible to find $a \phi \in \Phi$ and a mapping $T: X \rightarrow X$ such that T is a (G, ϕ)-contraction but not a G-contraction.

Example 3.12. Let $S_{n}=\frac{n(n+1)}{2}, n \in \mathbb{N} \cup\{0\}$ and $X=\left\{S_{n}: n \in \mathbb{N} \cup\{0\}\right\}$. Let $E=\mathbb{R}$ and $d(x, y)=|x-y|$ for all $x, y \in X$. Define $T: X \rightarrow X$ by $T S_{0}=S_{0}$ and $T S_{n}=S_{n-1}$ for all $n \in \mathbb{N}$. Take $\phi(t)=S_{n}$ if $S_{n}<t \leq S_{n+1}, n \in \mathbb{N} \cup\{0\}$ and $\phi\left(S_{0}\right)=\phi(0)=0$. Then ϕ becomes an o-comparison function on E^{+}. Let G be a graph given by $V(G)=X$ and $E(G)=\left\{\left(S_{n}, S_{n}\right): n \in \mathbb{N} \cup\{0\}\right\} \cup\left\{\left(S_{0}, S_{n}\right): n \in \mathbb{N}\right\}$. It is easy to see that T preserves edges. We show that T satisfies (6) but not (2). Clearly $(x, y) \in E(G)$ with $T x \neq T y$ if and only if $x=S_{0}$ and $y=S_{n}$ for some $n>1$. Further for $n>1$ we have $d\left(T S_{0}, T S_{n}\right) / \phi\left(d\left(S_{0}, S_{n}\right)\right)=S_{n-1} / \phi(S n)=S_{n-1} / S_{n-1}=1$. Thus T is a (G, ϕ)-contraction. Now for $n>1$ we have $d\left(T S_{0}, T S_{n}\right) / d\left(S_{0}, S_{n}\right)=\left(S_{n-1}-S_{0}\right) /\left(S_{n}-S_{0}\right)=S_{n-1} / S_{n}=(n-1) /(n+1)$ which tends to 1 as $n \rightarrow \infty$. Thus T does not satisfy (2). Hence T is a (G, ϕ)-contraction which is not a G-contraction.

Example 3.13. Let $X=[0,1] \times[0,1] \subseteq \mathbb{R}^{2}$ and $E=\mathbb{R}^{2}$ with componentwise ordering. Let $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=$ $\left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)$ be a vector metric on X. Let

$$
T(x, y)= \begin{cases}(1 / 4,1 / 4) & \text { if }(x, y) \neq(1,1) \\ (1 / 8,1 / 8) & \text { if }(x, y)=(1,1)\end{cases}
$$

T is not a ϕ-contraction for any $\phi \in \Phi$ as it is not an E-continous mapping. As discussed in Remark 3.11, T is a $\left(G_{d}, \phi\right)$-contraction for every $\phi \in \Phi$.

Definition 3.14. Two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in a vector metric space (X, d, E) are equivalent if $d\left(x_{n}, y_{n}\right) \xrightarrow{\circ} 0$ as $n \rightarrow \infty$.

Proposition 3.15. Let (X, d, E) be a vector metric space equipped with a graph G. If a mapping $T: X \rightarrow X$ is such that (5) (resp. (6)) holds, then (5) (resp. (6)) is also satisfied for G^{-1} and \tilde{G}. Hence if T is a (G, ϕ)-contraction then T is both $a\left(G^{-1}, \phi\right)$-contraction and $a(\tilde{G}, \phi)$-contraction.

Proof. This is an obvious consequence of symmetry of d and (1).
Lemma 3.16. Let $T: X \rightarrow X$ be a (G, ϕ)-contraction on a vector metric space (X, d, E) equipped with a graph G. For $x \in X$ and $y \in[x]_{\tilde{G}^{\prime}}$ we have $d\left(T^{n} x, T^{n} y\right) \xrightarrow{\circ} 0$ as $n \rightarrow \infty$.

Proof. Let $x \in X$ and $y \in[x]_{\tilde{G}}$. Then there exists a path $\left(x_{i}\right)_{i=0}^{N}$ in \tilde{G} from x to y. That is, $x_{0}=x, x_{N}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(\tilde{\mathrm{G}})$ for all $i=1,2, \ldots, N$. By Proposition $3.15, T$ is a $(\tilde{\mathrm{G}}, \phi)$-contraction. So inductively $\left(T^{n} x_{i-1}, T^{n} x_{i}\right) \in E(\tilde{\mathrm{G}})$ for all $n \in \mathbb{N}, i=1,2, \ldots, N$ and

$$
\begin{equation*}
d\left(T^{n} x_{i-1}, T^{n} x_{i}\right) \leq \phi^{n}\left(d\left(x_{i-1}, x_{i}\right)\right) \tag{8}
\end{equation*}
$$

for all $i=1,2, \ldots, N$ and $n \in \mathbb{N}$. If $x_{i-1}=x_{i}$ for some $i=1,2, \ldots, N$, then $d\left(T^{n} x_{i-1}, T^{n} x_{i}\right)=0$ for all $n \in \mathbb{N}$. Consider the case when $x_{i-1} \neq x_{i}$ for all $i=1,2, \ldots, N$. Letting $n \rightarrow \infty$ in (8) we get $d\left(T^{n} x_{i-1}, T^{n} x_{i}\right) \xrightarrow{\circ} 0$ as $n \rightarrow \infty$ for all $i=1,2, \ldots, N$. By triangular inequality we get $d\left(T^{n} x, T^{n} y\right) \leq \sum_{i=1}^{N} d\left(T^{n} x_{i-1}, T^{n} x_{i}\right) \xrightarrow{\circ} 0$ as $n \rightarrow \infty$.

Theorem 3.17. The following statements are equivalent in a vector metric space (X, d, E) equipped with a graph G.
(i) G is weakly connected.
(ii) For any (G, ϕ)-contraction $T: X \rightarrow X$ and $x, y \in X$, the sequences $\left\{T^{n} x\right\}$ and $\left\{T^{n} y\right\}$ are E-Cauchy and equivalent.
(iii) For any (G, ϕ)-contraction $T: X \rightarrow X, \operatorname{Card}(F i x T) \leq 1$.

Proof. (i) \Rightarrow (ii):
Let G be weakly connected. Let $T: X \rightarrow X$ be a (G, ϕ)-contraction and $x, y \in X$. Then $X=[x]_{\tilde{G}}$. Take $y=T x \in[x]_{\tilde{\mathrm{G}}}$ in Lemma 3.16. Then $d\left(T^{n} x, T^{n+1} x\right) \xrightarrow{\circ} 0$ as $n \rightarrow \infty$. So $d\left(T^{n} x, T^{m} x\right) \leq \sum_{i=1}^{n-m} d\left(T^{m+i-1}, T^{m+i}\right) \xrightarrow{\circ} 0$ as $n \rightarrow \infty$. Thus ($T^{n} x$) is E-Cauchy. By Lemma 3.16, $\left(T^{n} x\right)$ and $\left(T^{n} y\right)$ are equivalent. So $\left(T^{n} y\right)$ is also E-Cauchy.
(ii) \Rightarrow (iii) Let $T: X \rightarrow X$ be a (G, ϕ)-contraction and $x, y \in \operatorname{Fix}(T)$. By $(i i),\left(T^{n} x\right)$ and $\left(T^{n} y\right)$ are E-Cauchy and equivalent. This gives $x=y$.
$\left(\right.$ iiii \Rightarrow (i) Let G be not weakly connected. Then \tilde{G} is disconnected. Let $x_{0} \in X$. Then both $\left[x_{0}\right]_{\tilde{G}}$ and $X \backslash\left[x_{0}\right]_{\tilde{G}}$ are non empty. Choose $y_{0} \in X \backslash\left[x_{0}\right]_{\tilde{G}}$. Define

$$
T(x)= \begin{cases}x_{0} & \text { if } x \in\left[x_{0}\right] \\ y_{0} & \text { if } x \in X \backslash\left[x_{0}\right]_{\tilde{G}}\end{cases}
$$

Then $\operatorname{Fix}(T)=\left\{x_{0}, y_{0}\right\}$. We now show that T is a (G, ϕ)-contraction. Let $(x, y) \in E(G)$ be arbitrary. Then $[x]_{\tilde{\mathrm{G}}}=[y]_{\tilde{\mathrm{G}}}$. So $x, y \in\left[x_{0}\right]_{\tilde{\mathrm{G}}}$ or $x, y \in X \backslash\left[x_{0}\right]_{\tilde{\mathrm{G}}}$. In both cases we have $T x=T y$. This shows that $(T x, T y) \in E(G)$ because $\Delta \subseteq E(G)$. Consequently, (5) and (6) are satisfied. Thus T is a (G, ϕ)-contraction having two fixed points which violates (iii). Hence G must be weakly connected.

Corollary 3.18. Let (X, d, E) be a complete vector metric space. Then the following statements are equivalent.
(i) G is weakly connected.
(ii) for any (G, ϕ)-contraction $T: X \rightarrow X$, there exists an $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} T^{n} x=x^{*}$ for all $x \in X$.

Remark 3.19. Example 3.2 of [5] justifies the fact that we may not improve Corollary 3.18 by adding in (ii) that x^{*} is a fixed point of T. Mapping T in Example 3.2 of [5] is obviously an order F-contraction for $F(\alpha)=\ln \alpha$ for all $\alpha>0$.

Theorem 3.20. Let $T: X \rightarrow X$ be a (G, ϕ)-contraction such that $T x_{0} \in\left[x_{0}\right]_{\tilde{G}}$ for some $x_{0} \in X$. Let $\tilde{G}_{x_{0}}$ be component of \tilde{G} containing x_{0}. Then $\left[x_{0}\right]_{\tilde{G}}$ is T-invariant and $\left.T\right|_{\left[x_{0}\right]_{\tilde{G}}}$ is a $\left(\tilde{G}_{x_{0}}, \phi\right)$-contraction. Moreover, if $x, y \in\left[x_{0}\right]_{\tilde{G}}$ then the sequences $\left(T^{n} x\right)_{n \in \mathbb{N}}$ and $\left(T^{n} y\right)_{n \in \mathbb{N}}$ are E-Cauchy and equivalent.

Proof. Let $x \in\left[x_{0}\right]_{\tilde{G}}$ be arbitrary. Then there exists a path $\left(x_{i}\right)_{i=0}^{N}$ in \tilde{G} from x_{0} to x. That is, $x_{N}=x$ and $\left(x_{i-1}, x_{i}\right) \in E(\tilde{\mathrm{G}})$ for all $i=1,2, \ldots, N$. By Proposition 3.15, every (G, ϕ)-contraction is a $(\tilde{\mathrm{G}}, \phi)$-contraction. So T is a $(\tilde{\mathrm{G}}, \phi)$-contraction. This implies $\left(T x_{i-1}, T x_{i}\right) \in E(\tilde{\mathrm{G}})$ for all $i=1,2, \ldots, N$. Consequently $\left(T x_{i}\right)_{i=0}^{N}$ is a path in \tilde{G} from $T x_{0}$ to $T x$. Thus $T x \in\left[T x_{0}\right]_{\tilde{G}}$. But $T x_{0} \in\left[x_{0}\right]_{\tilde{G}}$. So $\left[T x_{0}\right]_{\tilde{G}}=\left[x_{0}\right]_{\tilde{G}}$. Hence $T x \in\left[x_{0}\right]_{\tilde{G}}$. This proves that $\left[x_{0}\right]_{\tilde{\mathrm{G}}}$ is T-invariant.

Now let $(x, y) \in E\left(\tilde{\mathrm{G}}_{x_{0}}\right)$ be arbitrary. This means there is a path $\left(x_{i}\right)_{i=0}^{N}$ in $\tilde{\mathrm{G}}$ from x_{0} to y such that $x_{N-1}=x$. Repeating the argument from the first part of the proof we infer that $\left(T x_{i}\right)_{i=0}^{N}$ is a path in \tilde{G} from $T x_{0}$ to $T y$. Since $T x_{0} \in\left[x_{0}\right]_{\tilde{G}}$, therefore we have a path $\left(y_{i}\right)_{i=0}^{M}$ in \tilde{G} from x_{0} to $T x_{0}$. It follows that $\left(y_{0}, y_{1}, \ldots, y_{M}, T x_{1}, T x_{2}, \ldots, T x_{N}\right)$ is a path in \tilde{G} from x_{0} to $T y$. In particular $\left(T x_{N-1}, T x_{N}\right) \in E\left(\tilde{\mathrm{G}}_{x_{0}}\right)$. That is (Tx,Ty) $\in E\left(\tilde{\mathrm{G}}_{x_{0}}\right)$. Since $E\left(\tilde{\mathrm{G}}_{x_{0}}\right) \subseteq E(\tilde{\mathrm{G}})$ and T is a (G, ϕ)-contraction, therefore (6) holds for the graph $\tilde{\mathrm{G}}_{x_{0}}$ as well. Thus $\left.T\right|_{\left[x_{0}\right]_{\tilde{G}}}$ is a $\left(\tilde{\mathrm{G}}_{x_{0}}, \phi\right)$-contraction.

Finally Theorem 3.17 and connectedness of $\tilde{G}_{x_{0}}$ imply that $\left(T^{n} x\right)_{n \in \mathbb{N}}$ and $\left(T^{n} y\right)_{n \in \mathbb{N}}$ are E-Cauchy and equivalent for all $x, y \in\left[x_{0}\right]_{\tilde{G}}$.

Theorem 3.21. Let (X, d, E) be a complete vector metric space, $T: X \rightarrow X$ be a (G, ϕ)-contraction, $X_{T}=\{x \in X$: $(x, T x) \in E(G)\}$ and (X, d, E, G) satisfy the following property.
For any $x \in X$ with the sequence $T^{n} x \xrightarrow{d, E} x^{*}$ and $\left(T^{n} x, T^{n+1} x\right) \in E(G)$ for all $n \in \mathbb{N}$, there exists a subsequence $\left\{T^{k_{n}} x\right\}_{n \in \mathbb{N}}$ of $\left\{T^{n} x\right\}_{n \in \mathbb{N}}$ satisfying $\left(T^{k_{n}} x, x^{*}\right) \in E(G)$ for all $n \in \mathbb{N}$.
Then
(i) Card Fix $T=\operatorname{Card}\left\{[x]_{\tilde{G}}: x \in X_{T}\right\}$.
(ii) Fix $T \neq \phi$ if and only if $X_{T} \neq \phi$.
(iii) T has a unique fixed point if and only if there exists a point $x_{0} \in X_{T}$ such that $X_{T} \subseteq\left[x_{0}\right]_{\tilde{G}}$.
(iv) For any $x \in X_{T},\left.T\right|_{[x]_{\tilde{G}}}$ is an $E P O$.
(v) If $X_{T} \neq \phi$ and G is weakly connected then T is an EPO.
(vi) If $X^{\prime}=\cup\left\{[x]_{\tilde{G}}: x \in X_{T}\right\}$ then $\left.T\right|_{X^{\prime}}$ is a WEPO.
(vii) If $T \subseteq E(G)$ then T is a WEPO.

Proof. Let us first prove (iv) and (v). Let $x \in X_{T}$ be arbitrary. Then $(x, T x) \in E(G)$. This implies that $T x \in[x]_{\tilde{G}}$. So by Theorem 3.20, for any $y \in X$ sequences $\left(T^{n} x\right)_{n \in \mathbb{N}}$ and $\left(T^{n} y\right)_{n \in \mathbb{N}}$ are E-Cauchy and equivalent. Since (X, d, E) is complete, therefore, there exists an $x^{*} \in X$ such that $T^{n} x \xrightarrow{d, E} x^{*}$ and $T^{n} y \xrightarrow{d, E} x^{*}$. Since $(x, T x) \in E(G)$, (5) yields for all $n \in \mathbb{N}$

$$
\begin{equation*}
\left(T^{n} x, T^{n+1} x\right) \in E(G) \tag{10}
\end{equation*}
$$

By (9), it follows that there exists a subsequence $\left(T^{k_{n}} x\right)$ of $\left(T^{n} x\right)$ such that $\left(T^{k_{n}} x, x^{*}\right) \in E(G)$ for all $n \in \mathbb{N}$. By (10), $\left(x, T x, T^{2} x, \ldots, T^{k_{1}} x, x^{*}\right)$ is a path in G (and hence in $\left.\tilde{G}\right)$ from x to x^{*}. So $x^{*} \in[x]_{\tilde{G}}$. Now $d\left(T^{k_{n}+1} x, T x^{*}\right) \leq d\left(T^{k_{n}} x, x^{*}\right)$ for all $n \in \mathbb{N}$. Letting $n \rightarrow \infty$ we get $d\left(x^{*}, T x^{*}\right)=0$. That is $T x^{*}=x^{*}$. Hence $T \mid[x]_{\mathrm{G}}$ is an EPO.

Further if G is weakly connected and $x \in X_{T}$ then $X=[x]_{\tilde{G}}$. So T is an EPO.
Now (vi) is a consequence of (iv). To prove (vii) observe that $T \subseteq E(G)$ implies that $X=X_{T}$ which gives $X^{\prime}=X$ and hence by (iv), T becomes a WEPO on X.

To prove (i), consider the mapping π : Fix $T \rightarrow C$ given by $\pi(x)=[x]_{\tilde{G}}$ for all $x \in$ Fix T where $C=\left\{[x]_{\tilde{G}}\right.$: $\left.x \in X_{T}\right\}$. It suffices to show that π is a bijection. Let $x \in X_{T}$ be arbitrary. By (iv), $\left.T\right|_{[x]_{\tilde{G}}}$ is an EPO. Let $x^{*}=\lim _{n \rightarrow \infty} T^{n} x$. Then $x^{*} \in$ Fix $T \cap[x]_{\tilde{\mathrm{G}}}$ and $\pi x^{*}=\left[x^{*}\right]_{\tilde{\mathrm{G}}}=[x]_{\tilde{\mathrm{G}}}$. So π is surjective. Now let $x_{1}, x_{2} \in$ Fix T be arbitrary with $\left[x_{1}\right]_{\tilde{\mathrm{G}}}=\left[x_{2}\right]_{\tilde{\mathrm{G}}}$. Then $x_{2} \in\left[x_{1}\right]_{\tilde{\mathrm{G}}}$. By (iv), $\lim _{n \rightarrow \infty} T^{n} x_{2} \in \operatorname{Fix} T \cap\left[x_{1}\right]_{\tilde{\mathrm{G}}}=\left\{x_{1}\right\}$. But $T^{n} x_{2}=x_{2}$ for all $n \in \mathbb{N}$. Thus we get $x_{1}=x_{2}$. Hence π is a bijection.

Finally (ii) and (iii) follows by (i).
Corollary 3.22. Let (X, d, E) be a complete vector metric space and (X, d, E, G) satisfy the property (9). Then the following statements become equivalent.
(i) G is weakly connected.
(ii) Every (G, ϕ)-contraction $T: X \rightarrow X$ such that $\left(T x_{0}, x_{0}\right) \in X$ for some $x_{0} \in X$, is an EPO.
(iii) For any (G, ϕ)-contraction $T: X \rightarrow X$, card Fix $T \leq 1$.

Proof. (i) \Rightarrow (ii) follows from Theorem 3.21 (v).
(ii) \Rightarrow (iii):

Let $T: X \rightarrow X$ be a (G, ϕ)-contraction. If $X_{T}=\phi$ then so is Fix T as Fix $T \subseteq X_{T}$. In case $X_{T} \neq \phi$ then by (ii) Fix T is singleton. In both cases card Fix $T \leq 1$.
(iii) $\Rightarrow(i)$:

Follows by Theorem 3.17.

Theorem 3.23. Let (X, d, E) be complete and $T: X \rightarrow X$ be an orbitally (G, E)-continuous (G, ϕ)-contraction. Let $X_{T}=\{x \in X:(x, T x) \in E(G)\}$. Then the following statements hold:
(i) Fix $T \neq \phi$ if and only if $X_{T} \neq \phi$.
(ii) For any $x \in X_{T}$ and $y \in[x]_{\tilde{G}}$, the sequence $\left(T^{n} y\right)_{n \in \mathbb{N}}$ converges to a fixed point of T and $\lim _{n \rightarrow \infty} T^{n} y$ does not depend on y.
(iii) If $X_{T} \neq \phi$ and G is weakly connected, then T is an EPO.
(iv) If $T \subseteq E(G)$ then T is a WEPO.

Proof. We begin with (ii). Let $x \in X$ satisfy $(x, T x) \in E(G)$ and $y \in[x]_{\tilde{G}}$. By Theorem 3.20, sequences $\left(T^{n} x\right)_{n \in \mathbb{N}}$ and $\left(T^{n} y\right)_{n \in \mathbb{N}}$ vectorially converge to the same point x_{*}. Moreover ($\left.T^{n} x, T^{n+1} x\right) \in E(G)$ for all $n \in \mathbb{N}$. Since T is orbitally (G, E)-continuous we get $T\left(T^{n} x\right) \xrightarrow{d, E} T x_{*}$. This yields $T x_{*}=x_{*}$ since, simultaneously, $T\left(T^{n} x\right)=T^{n+1} x \xrightarrow{d, E} x_{*}$. Thus we proved (ii) and ' \Leftarrow 'of (i). ' \Rightarrow 'of (i) follows by the assumption that $E(G) \supseteq \Delta$. (iv) is an immediate consequence of (ii) since $T \subseteq E(G)$ means $X_{T}=X$. To Prove (iii) observe that if $x_{0} \in X_{T}$ then $\left[x_{0}\right]_{\tilde{\mathrm{G}}}=X$ so (ii) yields T is an EPO.

Continuity condition on T can be strengthened by the following version of Theorem 3.23.
Theorem 3.24. Let (X, d, E) be complete and $T: X \rightarrow X$ be an orbitally E-continuous (G, ϕ)-contraction. Let $X_{T}=\{x \in X:(x, T x) \in E(G)\}$. Then the following statements hold:
(i) FixT $\neq \phi$ if and only if there exists an $x_{0} \in X$ with $T x_{0} \in\left[x_{0}\right]_{\tilde{G}}$.
(ii) If $x \in X$ is such that $T x \in[x]_{\tilde{G}}$, then for any $y \in[x]_{\tilde{G}}$ the sequence $\left(T^{n} y\right)_{n \in \mathbb{N}}$ converges to a fixed point of T and $\lim _{n \rightarrow \infty} T^{n} y$ does not depend on y.
(iii) If G is weakly connected, then T is an EPO.
(iv) If $T x \in[x]_{\tilde{G}}$ for any $x \in X$ then T is a WEPO.

Proof. We begin with (ii). Let $x \in X$ be such that $T x \in[x]_{\tilde{G}}$ and let $y \in[x]_{\tilde{G}}$. By Theorem 3.20, sequences $\left(T^{n} x\right)_{n \in \mathbb{N}}$ and $\left(T^{n} y\right)_{n \in N}$ vectorially converge to the same point x_{*}. Since T is orbitally E-continuous we get $T\left(T^{n} x\right) \xrightarrow{d, E} T x_{*}$. This yields $T x_{*}=x_{*}$ since, simultaneously, $T\left(T^{n} x\right)=T^{n+1} x \xrightarrow{d, E} x_{*}$. Thus we proved (ii) and ' \Leftarrow 'of (i). ' \Rightarrow 'of (i) follows by the fact that $x \in[x]_{\tilde{G}}$ for any $x \in X$. Now if G is weakly connected then $X=[x]_{\tilde{G}}$ for any $x \in X$. In particular $T x \in[x]_{\tilde{G}}$ for any $x \in X$ and by (ii) we infer that T is an EPO. Thus (iii) holds. Finally (iv) is an immediate consequence of (ii).

Corollary 3.25. Let (X, d, E) be complete. Then the following statements are equivalent.
(i) G is weakly connected.
(ii) Every orbitally E-continous (G, ϕ)-contraction is an EPO.
(iii) For every orbitally E-continous (G, ϕ)-contraction $T: X \rightarrow X$, card Fix $T \leq 1$.

Hence if \tilde{G} is disconnected then there exist at least one orbitally E - continous (G, ϕ)-contraction $T: X \rightarrow X$ which has at least two fixed points.

Proof. Theorem 3.24 (iii) yields that $(i) \Rightarrow(i i)$. (ii) \Rightarrow (iii) is obvious. (iii) \Rightarrow (i) follows by the proof of (iii) $\Rightarrow(i)$ of Theorem 3.17. T defined there is orbitally E-continous.

4. Applications

Theorem 4.1. Let $I=[a, b]$ be any interval of the real line, $(B,\|\cdot\|)$ be a partially ordered Banach space satisfying the property that for any sequence $\left\{b_{n}\right\}$ in B with $b_{n} \leq b_{n+1}$ for all $n \in \mathbb{N}$ and $b_{n} \rightarrow b, b \in B$, we have $b_{n} \leq b$. Let $E=C\left(I, \mathbb{R}^{+}\right)$be the space of all continuous functions defined on I taking values in \mathbb{R}^{+}, with usual partial order and the usual operations of addition and multiplication. The space E is a Riesz space under the pointwise lattice operations. Let $X=C(I, B)$ be the space of all continuous functions defined on I with values in B and pointwise partial order. Let $d: X \times X \rightarrow E$ defined by $d(x, y)()=.\|x()-.y()$.$\| for any x, y \in X$, be a complete vector metric on X. Let $h: I \times I \times B \rightarrow B$ be continuous and $\alpha \in X$. Consider the Fredholm type integral equation

$$
\begin{equation*}
x(t)=\int_{I} h(t, s, x(s)) d s+\alpha(t), \tag{11}
\end{equation*}
$$

for $t \in I$. Assume that
(i) $h(t, s,):. B \rightarrow B$ is nondecreasing for each $t, s \in I$,
(ii) there exists an o-comparison function $\phi: E_{+} \rightarrow E_{+}$and a continuous function $w: I \times I \rightarrow \mathbb{R}^{+}$such that $\|h(t, s, x(s))-h(t, s, y(s))\| \leq w(t, s) \phi(d(x, y))(t)$ for each $t, s \in I$ and $x \leq y$,
(iii) $\sup _{t \in I} \int_{I} w(t, s) d s \leq 1$,
(iv) there exists $x_{0} \in X$ such that $x_{0}(t) \leq \int_{I} h\left(t, s, x_{0}(s)\right) d s+\alpha(t)$ for all $t \in I$.

Then the integral equation (11) has a unique solution in the set $\left\{x \in X: x \leq x_{0}\right.$ or $\left.x \geq x_{0}\right\}$.
Proof. Define a mapping $T: X \rightarrow X$ by

$$
T(x)(t):=\int_{I} h(t, s, x(s)) d s+\alpha(t)
$$

for all $t \in I$. Clearly T is a well defined mapping. Consider a graph G with $V(G)=X$ and $E(G)=\{(x, y) \in$ $X \times X: x \leq y\}$. By the given condition (i), we observe that T is nondecreasing. Thus $(x, y) \in E(G)$ implies that $(T x, T y) \in E(G)$. Further, G satisfies the property (9) because B satisfies the same for nondecreasing sequences. Now for any $x, y \in X$ with $(x, y) \in E(G)$, we have $d(T(x), T(y))(t)=\|T(x)(t)-T(y)(t)\| \leq$ $\int_{I}\|h(t, s, x(s))-h(t, s, y(s))\| d s \leq \int_{I} w(t, s) \phi(d(x, y))(t) d s=\phi(d(x, y))(t) \int_{I} w(t, s) d s \leq \phi(d(x, y))(t)$ for all $t \in I$. Thus $d(T(x), T(y)) \leq \phi(d(x, y))$ for all $x, y \in X$ with $(x, y) \in E(G)$. So T is a (G, ϕ)-contraction. By (iv), we have $\left(x_{0}, T x_{0}\right) \in E(G)$. Also, $\left[x_{0}\right]_{\tilde{G}}=\left\{x \in X: x \leq x_{0}\right.$ or $\left.x \geq x_{0}\right\}$. The conclusion follows by Theorem 3.21.

References

[1] C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis, Springer-Verlag, Berlin, 1999.
[2] F. Bojor, Fixed point of ϕ-contraction in metric spaces endowed with a graph, Annals of the University of Craiova, Mathematics and Computer Science Series 37(2010), no. 4, 85-92.
[3] R. Cristescu, Order Structures in Normed Vector Spaces, Editura Ştiinţifică şi Enciclopedică, Bucureşti, 1983 (in Romanian).
[4] C. Evik and I. Altun, Vector metric spaces and some properties, Topological Methods in Nonlinear Analysis 34(2009), $375-382$.
[5] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proceedings of the American Mathematical Society 136(2008), no. 4, 1359-73.
[6] W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4(2003), no. 1, 79-89.
[7] I. R. Petre, Fixed Points For ϕ-Contractions In E-Banach Spaces, Fixed Point Theory 13(2012), no. 2, 623-640.

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; Secondary 05C40, 47H04, 54H25, 55M20)
 Keywords. vecor metric, fixed point, E-Picard operator, (G, ϕ)-contraction, connected graph
 Received: 18 December 2014; Accepted: 29 November 2015
 Communicated by Ljubomir Ćirić
 Email addresses: rakeshbatra.30@gmail.com (Rakesh Batra), vashistha_sachin@rediffmail.com (Sachin Vashistha), rajeshhctm@rediffmail.com (Rajesh Kumar)

