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Abstract. In this paper, an iterative method is presented to solve the linear matrix equation AXB = C
over the generalized reflexive (or anti-reflexive) matrix X (A ∈ Rp×n,B ∈ Rm×q,C ∈ Rp×q,X ∈ Rn×m). By the
iterative method, the solvability of the equation AXB = C over the generalized reflexive (or anti-reflexive)
matrix can be determined automatically. When the equation AXB = C is consistent over the generalized
reflexive (or anti-reflexive) matrix X, for any generalized reflexive (or anti-reflexive) initial iterative matrix
X1 , the generalized reflexive (anti-reflexive) solution can be obtained within finite iterative steps in the
absence of roundoff errors. The unique least-norm generalized reflexive (or anti-reflexive) iterative solution
of AXB = C can be derived when an appropriate initial iterative matrix is chosen. A sufficient and necessary
condition for whether the equation AXB = C is inconsistent is given. Furthermore, the optimal approximate
solution of AXB = C for a given matrix X0 can be derived by finding the least-norm generalized reflexive
(or anti-reflexive) solution of a new corresponding matrix equation AXB = C. Finally, several numerical
examples are given to support the theoretical results of this paper.

1. Introduction

As well known, numerical methods for linear and nonlinear matrix equations play an important role
in many science and engineering computation,such as control theory, signal and image processing, pho-
togrammetry, etc. There are several kinds of linear and nonlinear matrix equations, which have been
studied deeply, such as Riccati equations[13, 22–26], Sylvester equations[17? –21], AXB = C[12, 14, 27], and
so on.

In this paper, we will consider the following linear matrix equation

AXB = C, (1)
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which has been considered by many authors, where A ∈ Rp×n,B ∈ Rm×q,C ∈ Rp×q,X ∈ Rn×m. In [1],
Penrose provided a sufficient and necessary condition for the consistency of this equation above and, for
the consistent case, gave a representation of its general solution. In [2–4], the necessary and sufficient
conditions for the existence of symmetric solutions and symmetric positive semidefinite solutions have
been presented, as well as explicit formulae using generalized inverses. Wang and Chang [5] studied least
squares symmetric solutions to the equation using the generalized singular value decomposition, and a
sufficient and necessary condition for its solvability and a representation of its general solution were also
established therein. In [6], Yuan and Dai considered the generalized reflexive solutions of the matrix Eq. (1)
and an associated optimal problem. By using of the generalized singular value decomposition, a necessary
and sufficient condition for the Eq. (1) to have a solution over generalized reflexive matrices has been
presented. In [15, 16], the authors studied generalized (P, Q)-reflexive solution of the linear systems of
matrix equations and the least-norm generalized (P,Q)-reflexive solution of matrix equations AiXBi = Ci.
Recently, M. Dehghan and M. Hajarian presented iterative methods for the reflexive and anti-reflexive
solutions for some kinds of matrix equations ([9–11]).

Throughout the paper we will use the following notations:
Rn will denote the real n− vector space and the set of n×m matrices by Rn×m. For a matrix A ∈ Rm×n, ‖A‖

represents its Frobenius norm, R(A) represents its column space, tr(A) represents its trace and vec(·) repre-
sents the vec operator, i.e., vec(A) = (aT

1 , a
T
2 , · · · , a

T
n )T for the matrix A = (a1, a2, · · · , an) ∈ Rm×n, ai ∈ Rm, i =

1, 2, · · · ,n.A ⊗ B stands for the Kronecker product of matrices A and B. In [7], the definition and some
properties of generalized reflexive (anti-reflexive) matrix have been presented.

Definition 1 A matrix P ∈ Rn×n is called a generalized reflection matrix if PT = P and P2 = I. A matrix
A ∈ Rn×m is said to be a generalized reflexive (anti-reflexive) matrix with respect to the generalized reflec-
tion matrix P ∈ Rn×n,Q ∈ Rm×m, if A = PAQ(A = −PAQ). We denote the set of all generalized reflexive (or
anti-reflexive) matrices by Rn×m

r (P,Q)(or Rn×m
a (P,Q)).

According to the definition above, we can prove
Lemma 2[15] For an arbitrary matrix A ∈ Rn×m, we have

A + PAQ ∈ Rn×m
r (P,Q),A − PAQ ∈ Rn×m

a (P,Q)

Lemma 3[15] If A ∈ Rn×m
r (P,Q),B ∈ Rn×m

a (P,Q), then we have tr(ATB) = 0.

In this paper, we consider the following problems.

Problem I. For given matrices A ∈ Rp×n,B ∈ Rm×q,C ∈ Rp×q, find matrix X ∈ Rn×m
r (P,Q) such that AXB = C.

Problem II. When Problem I is consistent, let SR denote the set of generalized reflexive solutions of Problem
I, for a given matrix Y ∈ Rn×m, find X0 ∈ SR such that

‖X0 − Y‖2 = min
X∈SR
‖X − Y‖2.

Problem III. For given matrices A ∈ Rp×n,B ∈ Rm×q,C ∈ Rp×q, find matrix X ∈ Rn×m
a (P,Q) such that AXB = C.

Problem IV. When Problem I is consistent, let SA denote the set of generalized anti-reflexive solutions of
Problem I, for a given matrix Y ∈ Rn×m, find X0 ∈ SA such that

‖X0 − Y‖2 = min
X∈SA
‖X − Y‖2.

In fact, Problem II and Problem IV are to find the optimal approximately generalized reflexive and
anti-reflexive solution to a given matrix Y ∈ Rn×m.

As to Problem I and Problem II, a sufficient and necessary condition for its solvability has been presented
by Yuan and Dai in [6]. In this paper, an iterative method is presented to solve the linear matrix equation
AXB = C over the generalized reflexive (anti-reflexive) matrix X. By this method, the solvability of the
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equation AXB = C over the generalized reflexive (anti-reflexive) matrix can be determined automatically.
When the equation AXB = C is consistent over the generalized reflexive (anti-reflexive) matrix X, for any
generalized reflexive (anti-reflexive) initial iterative matrix X1 , the generalized reflexive (anti-reflexive)
solution can be obtained within finite iterative steps in the absence of roundoff errors. The unique least-
norm generalized reflexive (anti-reflexive) iterative solution of AXB = C can be derived when an appropriate
initial iterative matrix is chosen. A sufficient and necessary condition for whether the equation AXB = C is
inconsistent is given. Furthermore, the optimal approximate solution of AXB = C for a given matrix X0 can
be derived by finding the least-norm generalized reflexive (anti-reflexive) solution of a new corresponding
matrix equation AXB = C. Finally, several numerical examples are given to support the theoretical results
of this paper.

2. An Algorithm for Solving Problem I and Problem II.

Firstly, we present an iterative algorithm for solving Problem I.
Algorithm 1: (An iterative algorithm for solving Problem I)

Step 1. Input matrices A ∈ Rp×n,B ∈ Rm×q,C ∈ Rp×q;
Step 2. Choose any matrix X1 ∈ Rn×m

r (P,Q), where P ∈ Rn×n,Q ∈ Rm×m are two arbitrary generalized
reflection matrices;

Step 3. Compute R1 = C − AX1B,P1 = 1
2 (ATR1BT + PATR1BTQ), k = 1;

Step 4. Compute

Xk+1 = Xk +
‖Rk‖

2

‖Pk‖
2 Pk,

Rk+1 = C − AXk+1B = Rk −
‖Rk‖

2

‖Pk‖
2 APkB,

Pk+1 =
1
2

(ATRk+1BT + PATRk+1BTQ) +
‖Rk+1‖

2

‖Rk‖
2 Pk;

Step 5. If Rk+1 = 0, or Rk+1 , 0 and Pk+1 = 0, stop; otherwise, let k = k + 1, go to Step 4.
Obviously, we know that Xk,Pk ∈ Rn×m

r (P,Q), where k = 1, 2, · · ·
Before we analyze the properties of Algorithm 1, we will firstly introduce the following definition.

Definition 4 Let P,Q ∈ Rm×n, the matrices P,Q are called orthogonal to each other, if tr(PTQ) = 0.

Lemma 5 For the sequences Ri,Pi which are produced by Algorithm 1 and s ≥ 2, we have that

tr(RT
j Ri) = 0, tr(PT

j Pi) = 0(i , j; i, j = 1, 2, · · · , s) (2)

Proof: We can complete the proof by induction.
For s = 2, we have

tr(RT
2 R1) = tr((R1 −

‖R1‖
2

‖P1‖
2 AP1B)TR1)

= ‖R1‖
2
−
‖R1‖

2

‖P1‖
2 tr((AP1B)TR1)

= ‖R1‖
2
−
‖R1‖

2

‖P1‖
2 tr(PT

1 ATR1BT)

= ‖R1‖
2
−
‖R1‖

2

‖P1‖
2 tr(( 1

2 PT
1 (ATR1BT + PATR1BTQ) + 1

2 PT
1 (ATR1BT

− PATR1BTQ)) − PATR1BTQ))

= ‖R1‖
2
−
‖R1‖

2

‖P1‖
2 tr( 1

2 PT
1 (ATR1BT + PATR1BTQ))

= ‖R1‖
2
−
‖R1‖

2

‖P1‖
2 ‖P1‖

2 = 0,
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tr(PT
2 P1) = tr(( 1

2 (ATR2BT + PATR2BTQ) + ‖R2‖
2

‖R1‖
2 P1)TP1)

= tr( 1
2 (ATR2BT + PATR2BTQ)TP1) + ‖R2‖

2

‖R1‖
2 ‖P1‖

2

= tr((ATR2BT)TP1) + ‖R2‖
2

‖R1‖
2 ‖P1‖

2

= tr(RT
2 AP1B) + ‖R2‖

2

‖R1‖
2 ‖P1‖

2

= ‖P1‖
2

‖R1‖
2 tr(RT

2 (R1 − R2)) + ‖R2‖
2

‖R1‖
2 ‖P1‖

2

= ‖P1‖
2

‖R1‖
2 (0 − ‖R2‖

2) + ‖R2‖
2

‖R1‖
2 ‖P1‖

2 = 0.

So we know (2) holds for s = 2. Now assuming (2) holds for s = k, then we have

tr(RT
k+1Rk) = tr((Rk −

‖Rk‖
2

‖Pk‖
2 APkB)TRk)

= ‖Rk‖
2
−
‖Rk‖

2

‖Pk‖
2 tr((APkB)TRk)

= ‖Rk‖
2
−
‖Rk‖

2

‖Pk‖
2 tr(PT

k ATRkBT)

= ‖Rk‖
2
−
‖Rk‖

2

‖Pk‖
2 tr(( 1

2 PT
k (ATRkBT + PATRkBTQ) + 1

2 PT
k (ATRkBT

− PATRkBTQ))

= ‖Rk‖
2
−
‖Rk‖

2

‖Pk‖
2 tr( 1

2 PT
k (ATRkBT + PATRkBTQ))

= ‖Rk‖
2
−
‖Rk‖

2

‖Pk‖
2 tr(PT

k (Pk −
‖Rk‖

2

‖Rk−1‖
2 Pk−1))

= ‖Rk‖
2
−
‖Rk‖

2

‖Pk‖
2 ‖Pk‖

2 = 0,

tr(PT
k+1Pk) = tr(( 1

2 (ATRk+1BT + PATRk+1BTQ) + ‖Rk+1‖
2

‖Rk‖
2 Pk)TPk)

= tr( 1
2 (ATRk+1BT + PATRk+1BTQ)TPk) + ‖Rk+1‖

2

‖Rk‖
2 ‖Pk‖

2

= tr((ATRk+1BT)TPk) + ‖Rk+1‖
2

‖Rk‖
2 ‖Pk‖

2

= tr(RT
k+1APkB) + ‖Rk+1‖

2

‖Rk‖
2 ‖Pk‖

2

= ‖Pk‖
2

‖Rk‖
2 tr(RT

k+1(Rk − Rk+1)) + ‖Rk+1‖
2

‖Rk‖
2 ‖Pk‖

2

= ‖Pk‖
2

‖Rk‖
2 (0 − ‖Rk+1‖

2) + ‖Rk+1‖
2

‖Rk‖
2 ‖Pk‖

2 = 0.

Also, when i = 1, 2, · · · , k − 1, we have that

tr(RT
k+1Ri) = tr((Rk −

‖Rk‖
2

‖Pk‖
2 APkB)TRi)

= −
‖Rk‖

2

‖Pk‖
2 tr((APkB)TRi)

= −
‖Rk‖

2

‖Pk‖
2 tr(PT

k ATRiBT)

= −
‖Rk‖

2

‖Pk‖
2 tr(( 1

2 PT
k (ATRiBT + PATRiBTQ) + 1

2 PT
k (ATRiBT

− PATRiBTQ))

= −
‖Rk‖

2

‖Pk‖
2 tr( 1

2 PT
k (ATRiBT + PATRiBTQ))

= −
‖Rk‖

2

‖Pk‖
2 tr(PT

k (Pi −
‖Ri‖

2

‖Ri−1‖
2 Pi−1)) = 0,

tr(PT
k+1Pi) = tr(( 1

2 (ATRk+1BT + PATRk+1BTQ) + ‖Rk+1‖
2

‖Rk‖
2 Pk)TPi)

= tr( 1
2 (ATRk+1BT + PATRk+1BTQ)TPi)

= tr( 1
2 (ATRk+1BT + PATRk+1BTQ)T

= + 1
2 (ATRk+1BT

− PATRk+1BTQ))TPi)
= tr( 1

2 (ATRk+1BTPi) = tr(RT
k+1APiB)

= ‖Pi‖
2

‖Ri‖2
tr(RT

k+1(Ri − Ri+1)) = 0.

Therefore, (2) holds for s = k + 1 and we complete the proof.
Lemma 6 Suppose X be an arbitrary solution of Problem I and Xk,Rk,Pk be the sequences in Algorithm

1, then we have

tr((X − Xk)PT
k ) = ‖Rk‖

2. (3)
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Proof: For s = 1, we have

tr((X − X1)PT
1 ) = tr( 1

2 (X − X1)(ATR1B + PATR1BTQ)T)
= tr((X − X1)(ATR1BT)T)
= tr((X − X1)BRT

1 A)
= tr(A(X − X1)BRT

1 )
= tr((C − AX1B)RT

1 ) = ‖R1‖
2.

Now we assume that (3) holds for s = k − 1, then we can get

tr((X − Xk)PT
k−1) = tr((X − Xk−1 −

‖Rk−1‖
2

‖Pk−1‖
2 Pk−1)PT

k−1)

= tr((X − Xk−1)PT
k−1) − ‖Rk−1‖

2

‖Pk−1‖
2 ‖Pk−1‖

2

= ‖Rk−1‖
2
−
‖Rk−1‖

2

‖Pk−1‖
2 ‖Pk−1‖

2

= 0,

tr((X − Xk)PT
k ) = tr((X − Xk)( 1

2 (ATRkBT + PATRkBTQ) + ‖Rk‖
2

‖Rk−1‖
2 Pk−1)T)

= tr( 1
2 (X − Xk)(ATRkBT + PATRkBTQ)T) + ‖Rk‖

2

‖Rk−1‖
2 tr((X − Xk)PT

k−1)
= tr((X − Xk)(ATRkBT)T)
= tr(RT

k A(X − Xk)B) = ‖Rk‖
2,

that is, (3) holds for s = k and the proof is completed.

By Lemma 5 and Lemma 6, we can get the following theorem.
Theorem 7 Suppose that Problem I is consistent, then for an arbitrary initial matrix X1 ∈ Rn×m

r (P,Q), a
generalized reflexive solution of Problem I can be obtained by Algorithm 1 within finite iterative steps in
the absence of roundoff errors.

Proof: If Ri , 0, we have that Pi , 0, i = 1, 2, · · · , pq from Lemma 6. Hence, we can compute Xpq+1 and Rpq+1
by Algorithm 1. Now according to Lemma 5, we know

tr(RT
pq+1Ri) = 0, i = 1, 2, · · · , pq,

and
tr(R jRT

i ) = 0, i, j = 1, 2, · · · , pq, i , j.

As Ri ∈ Rp×q, the set of R1,R2, · · · ,Rpq forms an orthogonal basis of the matrix space Rp×q, which implies
Rpq+1 = 0 and Xpq+1 is a generalized reflexive solution of Problem I.

Now we prove the solution of Problem I can be obtained by Algorithm 1 within finite iterative steps in
the absence of roundoff errors.

Let s = min(pq,mn), when Problem I is consistent, if mn ≤ pq and Ri , 0, i = 1, 2, · · · ,mn, then
Pi , 0, i = 1, 2, · · · ,mn, and so Xmn+1,Rmn+1,Pmn+1 can be computed by Algorithm 1. As Pi ∈ Rn×m, we
can get Pmn+1 = 0, and then Rmn+1 = 0, that is, Xmn+1 is a solution of Problem I. If mn > pq, by the first part
of the proof, we can know Xpq+1 is a solution of Problem I.

Theorem 8 Problem I is inconsistent if and only if there exists a positive integer k such that Rk , 0 and
Pk = 0 in the process of the iteration.

Proof: Firstly, by Lemma 6 we know, if exists k such that Rk , 0 and Pk = 0, then we know Problem I is
inconsistent.

Now we prove the necessity. If Problem I is inconsistent, then Rk , 0 for any positive integer k. Accord-
ing to the proof of Theorem 7, we know there must exist a positive integer k such that Pk = 0. Otherwise, if
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Pk , 0 for all positive integer k, there must have a solution of Problem I, which contradict to the inconsis-
tency of Problem I.

Lemma 9[8] Assume that the consistent system of linear equations My = b has a solution y0 ∈ R(MT), then
y0 is the least-norm solution of the system of linear equations.

Theorem 10 If Problem I is consistent and X1 = ATHBT + PATHBTQ is the initial iterative matrix, where H
is arbitrary, or especially let X1 = 0, then the generalized reflexive solution X∗ generated by Algorithm 1 is
the least-norm generalized reflexive solution of the problem I.

Proof: Firstly, by Algorithm 1 and Theorem 7, we can obtain the solution of Problem I denoted by X∗ within
finite steps. Obviously, X∗ can be represented by X∗ = ATMBT + PATMBTQ.

Then we will prove that X∗ is just the least-norm solution of Problem I.
Consider the system of matrix equations[

BT
⊗ A

BTQ ⊗ AP

]
X =

[
C
C

]
. (4)

Noting that
x∗ = vec(ATMBT + PATMBTQ)

= (BT
⊗ A + BTQ ⊗ AP)y

and [
BT
⊗ A

BTQ ⊗ AP

]T [
y
y

]
∈ R

[ BT
⊗ A

BTQ ⊗ AP

]T ,
by Lemma 9 we know x∗ is the least-norm solution of Eq. (4), so X∗ is the least-norm solution of Eq. (3)
since vec operator is isomorphic, i.e., X∗ is the least-norm solution of Problem I.

Now we consider Problem II.
For an arbitrary matrix Y ∈ Rn×m and X ∈ Sr, by Lemma 3 we can get

‖X − Y‖2 = ‖X −
1
2

(Y + PYQ) −
1
2

(Y − PYQ)‖2 = ‖X −
1
2

(Y + PYQ)‖2 + ‖
1
2

(Y − PYQ)‖2.

When Problem I is consistent, the set of solutions of Problem I denoted by Sr is no empty. Hence, to find
X0 ∈ Sr such that min ‖X − Y‖2 is equivalent to find X0 ∈ Sr such that

min ‖X −
1
2

(Y + PYQ)‖2. (5)

It is easy to verify that

A(X −
1
2

(Y + PYQ))B = C −
1
2

A(Y + PYQ)B.

Let X = X− 1
2 (Y +PYQ),C = C− 1

2 A(Y +PYQ))B, then (5) is equivalent to find the least-norm generalized
reflexive solution X

∗

of the following matrix equation

AXB = C. (6)

According to Theorem 10, if we take the initial iterative matrix X1 = ATHBT + PATHBTQ for (6), where
H is arbitrary, or especially let X1 = 0, then the least-norm solution X

∗

of (6) can be obtained by Algorithm
1, and so is the solution of Problem II, i.e., X0 = X

∗

+ 1
2 (Y + PYQ).

Now, we can consider Problem III and Problem IV. According to Lemma 2 and Lemma 3, one algorithm
can be proposed easily for solving the generalized anti-reflexive solution of the matrix equation AXB = C
and the corresponding theoretical results can also be deduced.
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Algorithm 2: (An iterative algorithm for solving Problem III)
Step 1. Input matrices A ∈ Rp×n,B ∈ Rm×q,C ∈ Rp×q;
Step 2. Choose any matrix X1 ∈ Rn×m

a (P,Q), where P ∈ Rn×n,Q ∈ Rm×m are two arbitrary generalized
reflection matrices;

Step 3. Compute R1 = C − AX1B,P1 = 1
2 (ATR1BT

− PATR1BTQ), k = 1;
Step 4. Compute

Xk+1 = Xk +
‖Rk‖

2

‖Pk‖
2 APk,

Rk+1 = C − AXk+1B = Rk −
‖Rk‖

2

‖Pk‖
2 APkB,

Pk+1 =
1
2

(ATRk+1BT
− PATRk+1BTQ) +

‖Rk+1‖
2

‖Rk‖
2 Pk;

Step 5. If Rk+1 = 0, or Rk+1 , 0 and Pk+1 = 0, stop; otherwise, let k = k + 1, go to Step 4.
Obviously, we know that Xk,Pk ∈ Rn×m

a (P,Q), where k = 1, 2, · · ·

By Algorithm 2, we can get the following lemmas.
Lemma 11 For the sequences Ri,Pi which are produced by Algorithm 2 and s ≥ 2, we have that

tr(RT
j Ri) = 0, tr(PT

j Pi) = 0(i , j; i, j = 1, 2, · · · , s) (7)

Lemma 12 Suppose X be an arbitrary solution of Problem III and Xk,Rk,Pk be the sequences in Algorithm
2, then we have

tr((X − Xk)PT
k ) = ‖Rk‖

2. (8)

Proof: The proof is the same as Lemma 6.
By Lemma 11 and Lemma 12, we can also get the following theorems, and the proofs of which are

similar with Theorem 7, Theorem 8, and Theorem 10 by suitable modifications.

Theorem 13 Suppose that Problem III is consistent, then for an arbitrary initial matrix X1 ∈ Rn×m
a (P,Q),

a generalized anti-reflexive solution of Problem III can be obtained by Algorithm 2 within finite iterative
steps in the absence of roundoff errors.

Theorem 14 Problem III is inconsistent if and only if there exists a positive integer k such that Rk , 0 and
Pk = 0 in the process of the iteration.

Theorem 15 If Problem III is consistent and X1 = ATHBT
− PATHBTQ is the initial iterative matrix, where

H is arbitrary, or especially let X1 = 0, then the generalized reflexive solution X∗ generated by Algorithm 2
is the least-norm generalized anti-reflexive solution of the problem III.

Then we can present an finite iterative method for solving Problem IV, by using Algorithm 2.
For an arbitrary matrix Y ∈ Rn×m and X ∈ Sa, then we can have

‖X − Y‖2 = ‖X −
1
2

(Y + PYQ) −
1
2

(Y − PYQ)‖2

= ‖X −
1
2

(Y − PYQ)‖2 + ‖
1
2

(Y + PYQ)‖2.

When Problem III is consistent, the set of solutions of Problem III denoted by Sa is no empty. Hence, to
find X0 ∈ Sa such that min ‖X − Y‖2 is equivalent to find X0 ∈ Sa such that

min ‖X −
1
2

(Y − PYQ)‖2. (9)
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As
A(X −

1
2

(Y − PYQ))B = C −
1
2

A(Y − PYQ)B,

let
X = X −

1
2

(Y − PYQ),C = C −
1
2

A(Y − PYQ))B

, then (9) is equivalent to find the least-norm generalized anti-reflexive solution X
∗

of the following matrix
equation

AXB = C. (10)

By Theorem 15, if we take the initial iterative matrix X1 = ATHBT
− PATHBTQ for (10), where H is

arbitrary, or especially let X1 = 0, then the least-norm solution X
∗

of (10) can be obtained by Algorithm 2,
and so is the solution of Problem IV, i.e., X0 = X

∗

+ 1
2 (Y − PYQ).

3. Numerical Examples

In this section, we present some examples to demonstrate our results. The stopping criterion used is
that the Frobenius norm of Rk or Pk less than ε, where ε = 10−10.

Example 1. We consider the matrix equation AXB = C, with

A =



1 0 10 −32
9 13 0 62
11 −32 7 0
12 0 21 3
12 8 35 2
13 0 45 23


, B =


12 −11 3
12 0 2
21 9 13
45 12 35
15 36 0

 and C =



−762 −6430 3178
4896 0 816
7179 −4501 3510
5841 −13503 7914
7179 −22505 12764

11925 −28935 16860


.

(a) Find the generalized reflexive solution and the least-norm generalized reflexive solution of the matrix
equation with respect to P,Q

P =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , Q =


−1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 .
(b) Let Sr denote the set of all generalized reflexive solutions of the matrix equation AXB = C with respect
to P,Q. For a given matrix Y ∈ Rn×m, find X0 ∈ Sr such that ‖X0 − Y‖2 = minX∈Sr ‖X − Y‖2.

Firstly, we can compute the generalized reflexive solution and least-norm generalized reflexive solution
of the matrix equation AXB = C by using Algorithm 1.

Choose an arbitrary initial iterative matrix X1 which is a generalized reflexive matrix, such as

X1 =


0 2 0 0 0
0 −5 0 0 0
4 0 3 6 −1
0 −7 0 0 0

 .
By Algorithm 1, we can get

X11 =


0 13.000 0 0 0
0 −11.000 0 0 0

2.4622 0 0.4590 9.9042 −20.5249
0 −7.0000 0 0 0

 ,
‖R11‖ = 1.4060e − 011.
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So we obtain a generalized reflexive solution of the matrix equation AXB = C as follows

X =


0 13.000 0 0 0
0 −11.000 0 0 0

2.4622 0 0.4590 9.9042 −20.5249
0 −7.0000 0 0 0

 .
If we take the initial iterative matrix as X1 = ATMBT + PATMBTQ with

M =



1 2 −1
1 2 3
4 3 0
4 3 −1
−11 3 4

9 8 5


,

then we have

X15 =


0 13.000 0 0 0
0 −11.000 0 0 0

2.5116 0 0.1875 10.0008 −20.4742
0 −7.0000 0 0 0

 ,
‖R15‖ = 8.8499e − 011.

that is, we obtain the least-norm generalized reflexive solution

X∗ =


0 13.000 0 0 0
0 −11.000 0 0 0

2.5116 0 0.1875 10.0008 −20.4742
0 −7.0000 0 0 0

 .
If we take X1 = 0, then we have

X∗ = X10 =


0 13.000 0 0 0
0 −11.000 0 0 0

2.5116 0 0.1875 10.0008 −20.4742
0 −7.0000 0 0 0

 ,
‖R10‖ = 8.8499e − 011.

If we take

Y =


1 3 −4 5 9
0 2 −3 4 0
3 2 11 9 3
0 9 7 −3 −5

 ,
then

C = C − 1
2 A(Y + PYQ)B =



−4512 −9250 −922
−2436 0 −406
2532 −6475 303
−9972 −19425 −2019
−18756 −32375 −3721
−23292 −41625 −4647


,

X = X − 1
2 (Y + PYQ).



X. Wang et al. / Filomat 31:7 (2017), 2151–2162 2160

By Algorithm 1, taking the initial iterative matrix X1 = 0, we can obtain the least-norm generalized
reflexive solution X

∗

of the matrix equation AXB = C as follows

X
∗

= X11 =


0 10.000 0 0 0
0 −13.000 0 0 0

−1.5072 0 −5.2119 −0.9921 −24.5213
0 −2.0000 0 0 0

 ,
‖R11‖ = 1.6819e − 011.

So we can obtain a solution of Problem II, i.e.,

X0 = X
∗

+
1
2

(Y + PYQ) =


0 13.000 0 0 0
0 −11.000 0 0 0

1.4928 0 5.7881 8.0079 −21.5213
0 7.0000 0 0 0


Example 2. We consider the matrix equation AXB = C, with

A =



−13 64 9 0
3 13 44 0
−7 −11 24 12
7 0 0 1
34 13 −7 5
0 5 0 −19


, B =


1 −11 7
−8 2 0
−5 −7 14
0 110 2

11 7 0

 and C =



5437 −4795 2201
−7240 −464 3495
−5966 −802 1601

10 4180 148
2904 21340 597
508 −7518 −411


.

(a) Find the generalized anti-reflexive solution and the least-norm generalized anti-reflexive solution of the
matrix equation with respect to P,Q

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , Q =


−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 .
(b) Let Sa denote the set of all generalized anti-reflexive solutions of the matrix equation AXB = C with
respect to P,Q. For a given matrix Y ∈ Rn×m, find X0 ∈ Sa such that ‖X0 − Y‖2 = minX∈Sa ‖X − Y‖2.

At first, we compute the generalized anti-reflexive solution and least-norm generalized anti-reflexive
solution of the matrix equation AXB = C by using Algorithm 2.

Choose an arbitrary initial iterative matrix X1 which is a generalized reflexive matrix, such as

X1 =


3 0 0 −4 0
0 13 35 0 −44
0 22 15 0 9
6 0 0 −8 0

 .
By Algorithm 2, we can get

X16 =


1.0000 0 0 5.0000 0

0 −3.0000 2.0000 0 9.0000
0 12.0000 5.0000 0 −7.0000

3.0000 0 0 4.0000 0

 ,
‖R16‖ = 3.2184e − 011.
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So we obtain a generalized anti-reflexive solution of the matrix equation AXB = C as follows

X =


1.0000 0 0 5.0000 0

0 −3.0000 2.0000 0 9.0000
0 12.0000 5.0000 0 −7.0000

3.0000 0 0 4.0000 0

 .
If we take X1 = 0, then we can get the least-norm generalized anti-reflexive solution

X∗ = X15 =


1.0000 0 0 5.0000 0

0 −3.0000 2.0000 0 9.0000
0 12.0000 5.0000 0 −7.0000

3.0000 0 0 4.0000 0

 ,
‖R15‖ = 6.1397e − 011.

If we take

Y =


1 3 −4 5 9
0 2 −3 4 0
3 2 11 9 3
0 9 7 −3 −5

 ,
then

C = C − 1
2 A(Y − PYQ)B =



6153 1269 3724
−4106 806 −2786
−4266 8958 −2366

3 737 35
2386 3828 1673
513 −13913 −315


,

X = X − 1
2 (Y − PYQ).

By Algorithm 2, taking the initial iterative matrix X1 = 0, we can obtain the least-norm generalized
reflexive solution X

∗

of the matrix equation AXB = C as follows

X
∗

= X16 =


−0.0000 0 0 −0.0000 0

0 −5.0000 5.0000 0 9.0000
0 10.0000 −6.0000 0 −7.0000

3.0000 0 0 7.0000 0

 ,
‖R16‖ = 8.9389e − 011.

So we can obtain a solution of Problem II, i.e.,

X0 = X
∗

+
1
2

(Y − PYQ) =


−1.0000 0 0 5.0000 0

0 −3.0000 2.0000 0 9.0000
0 12.0000 5.0000 0 −7.0000

3.0000 0 0 4.0000 0

 .
Example 3. We consider the matrix equation AXB = C, with

A =


1 1 1
0 1 0
1 −1 0
0 2 1

 , B =


1 0
1 0
0 −1
1 1
1 0

 ,C =


1 0
0 1
2 0
1 0
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and

P =

 1 0 0
0 1 0
0 0 −1

 , Q =


−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 ,
then by Algorithm 1 we have ‖R7‖ = 2.5709, ‖P7‖ = 8.1098e − 11. By Algorithm 2 we can get ‖R7‖ =
4.3608, ‖P7‖ = 1.5968e − 09. Therefore, the matrix equation has no generalized reflexive and anti-reflexive
solution.
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