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Available at: http://www.pmf.ni.ac.rs/filomat

Fixed Points of a Finite Family of I-Asymptotically
Quasi-Nonexpansive Mappings in a Convex Metric Space
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Abstract. In this paper, we study Ishikawa iterative scheme with error terms for a finite family of I-
asymptotically quasi-nonexpansive mappings in a convex metric space. We established strong convergence
theorems and their applications for the proposed algorithms in a convex metric space. Our theorems
improve and extend the corresponding known results in Banach spaces.

1. Introduction and Preliminaries

Throughout this paper,N denotes the set of natural numbers and J = {1, 2, ..., r} the set of first r natural
numbers. Denote by F(T) the set of fixed points of T and by F :=

(⋂r
i=1 F(Ti)

)
∩

(⋂r
i=1 F(Ii)

)
the set of common

fixed points of two finite families of mappings {Ti : i ∈ J} and {Ii : i ∈ J}.

Definition 1.1. Let X be a metric space and T : X→ X be a mapping. The mapping T is said to be:

1. Nonexpansive if

d
(
Tx,Ty

)
≤ d

(
x, y

)
for all x, y ∈ X.

2. Quasi-nonexpansive if F(T) , ∅ and

d
(
Tx, p

)
≤ d

(
x, p

)
for all x ∈ X and p ∈ F(T).

3. Asymptotically nonexpansive [1] if there exists un ∈ [0,∞) for all n ∈N with limn→∞ un = 0 such that

d
(
Tnx,Tny

)
≤ (1 + un)d

(
x, y

)
for all x, y ∈ X and n ∈N.

4. Asymptotically quasi-nonexpansive if F(T) , ∅ and there exists un ∈ [0,∞) for all n ∈N with limn→∞ un = 0
such that

d
(
Tnx, p

)
≤ (1 + un)d

(
x, p

)
for all x ∈ X, ∀p ∈ F(T) and n ∈N.
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Remark 1.2. From the above definition, it follows that if F(T) is nonempty, then a nonexpansive mapping is quasi-
nonexpansive, and an asymptotically nonexpansive mapping is asymptotically quasi-nonexpansive. But the converse
does not hold (see, for example, [1–4]). It is obvious that if T is nonexpansive, then it is asymptotically nonexpansive
with the constant sequence {0}.

There are many concepts which generalize a notion of asymptotically nonexpansive mapping in Banach
space. One of such concepts is I-asymptotically nonexpansive mapping defined by Temir and Gul [8, 9].
Let us give metric version of these mappings.

Definition 1.3. Let X be a metric space and T, I : X→ X be two mappings. T is said to be

1. I-asymptotically nonexpansive if there exists a sequence {vn} ⊂ [0,∞) with limn→∞ vn = 0 such that

d
(
Tnx,Tny

)
≤ (1 + vn)d

(
Inx, Iny

)
for all x, y ∈ X and n ≥ 1.

2. I-asymptotically quasi nonexpansive if F (T) ∩ F (I) , ∅ and there exists a sequence {vn} ⊂ [0,∞) with
limn→∞ vn = 0 such that

d
(
Tnx, p

)
≤ (1 + vn)d

(
Inx, p

)
for all x ∈ X and p ∈ F (T) ∩ F (I) and n ≥ 1.

3. I-uniformly Lipschitz if there exists Γ > 0 such that

d
(
Tnx,Tny

)
≤ Γd

(
Inx − Iny

)
, x, y ∈ X and n ≥ 1.

Remark 1.4. It is obvious that, an I-asymptotically nonexpansive mapping is I-uniformly Lipschitz with Γ =
sup {1 + vn : n ≥ 1} and an I-asymptotically nonexpansive mapping with F (T) ∩ F (I) , ∅ is I-asymptotically quasi
nonexpansive. However, the converse of these claims are not true in general. It is easy to see that if I is identity
mapping, then I-asymptotically nonexpansive mappings and I-asymptotically quasi nonexpansive mappings coincide
with asymptotically nonexpansive mappings and asymptotically quasi nonexpansive mappings, respectively.

In 1970, Takahashi [5] introduced the concept of convexity in a metric space (X, d) as follows.

Definition 1.5. [5] A convex structure in a metric space (X, d) is a mapping W : X ×X × [0, 1]→ X satisfying, for
all x, y,u ∈ X and all λ ∈ [0, 1] ,

d
(
u,W

(
x, y;λ

))
≤ λd (u, x) + (1 − λ) d

(
u, y

)
.

A metric space together with a convex structure is called a convex metric space. A nonempty subset C of X is said to
be convex if W

(
x, y;λ

)
∈ C for all

(
x, y;λ

)
∈ C × C × [0, 1].

Definition 1.5 can be extended as follows: A mapping W : X3
×[0, 1]3

→ X is said to be a convex structure
on X, if it satisfies the following condition:

For any
(
x, y, z; a, b, c

)
∈ X3

× [0, 1]3 with a + b + c = 1, and u ∈ X,

d
(
u,W

(
x, y, z; a, b, c

))
≤ ad (u, x) + bd

(
u, y

)
+ cd (u, z) .

If (X, d) is a metric space with a convex structure W, then (X, d) is called a convex metric space.
Let (X, d) be a convex metric space. A nonempty subset C of X is said to be convex if W

(
x, y, z; a, b, c

)
∈ C,

∀
(
x, y, z

)
∈ C3, ∀ (a, b, c) ∈ [0, 1]3 with a + b + c = 1.

It is easy to prove that every linear normed space is a convex metric space with a convex structure
W

(
x, y, z; a, b, c

)
= ax + by + cz, for all x, y, z ∈ X and a, b, c ∈ [0, 1] with a + b + c = 1. But there exist some

convex metric spaces which can not be embedded into any linear normed spaces (see, Takahashi [5] and,
Gunduz and Akbulut [6]).
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In 2009, Temir [8] introduced an iteration process for a finite family of I-asymptotically nonexpansive
mappings in Banach space as follows.

Let K be a nonempty subset of X Banach space. Let {Ti}
N
i=1 be a finite family of Ii-asymptotically

nonexpansive self-mappings and {Ii}
N
i=1 be a finite family of asymptotically nonexpansive self-mappings of

K. Let {αn} and
{
βn

}
are two real sequences in [0, 1]. Then the sequence {xn} is generated as follows:xn+1 = (1 − αn)xn + αnIk(n)

i(n) yn

yn = (1 − βn)xn + βnTk(n)
i(n) xn

n ≥ 1, (1)

where n = (k(n) − 1)N + i(n), i(n) ∈ {1, 2, . . . ,N} .
Now, we transform iteration process (1) with error terms for a finite family of I-asymptotically quasi-

nonexpansive mappings in convex metric spaces as follows:

Definition 1.6. Let (X, d) be a convex metric space with convex structure W, {Ti : i ∈ J} : X → X be a finite family
of Ii-asymptotically quasi-nonexpansive mappings and {Ii : i ∈ J} : X→ X be a finite family of asymptotically quasi-
nonexpansive mappings. Suppose that {un} and {vn} are two bounded sequences in X and {αn} ,

{
βn

}
,
{
γn

}
, {α̂n} , {β̂n},{

γ̂n
}

are six sequences in [0, 1] such that αi + βn + γn = 1 = α̂n + β̂n + γ̂n for n ∈N. For any given x1 ∈ X, iteration
process {xn} defined by,

xn+1 = W
(
xn, In

i yn,un;αn, βn, γn

)
, (2)

yn = W
(
xn,Tn

i xn, vn; α̂n, β̂n, γ̂n

)
, n ≥ 1,

where n = (k − 1)r + i, i = i(n) ∈ J is a positive integer and k(n)→ ∞ as n→ ∞. Thus, (2) can be expressed in the
following form:

xn+1 = W
(
xn, I

k(n)
i(n) yn,un;αn, βn, γn

)
,

yn = W
(
xn,T

k(n)
i(n) xn, vn; α̂n, β̂n, γ̂n

)
, n ≥ 1.

Our purpose in the rest of the paper is to use the iteration process (2) to prove some strong convergence
results for approximating common fixed points of a finite family of I-asymptotically quasi-nonexpansive
mappings and a finite family of asymptotically quasi-nonexpansive mappings in a convex metric space.

In the sequel, we shall need the following lemma and proposition.

Lemma 1.7. [7] Let {an}, {bn} and {cn} be three nonnegative sequences satisfying
∞∑

n=0

bn < ∞,
∞∑

n=0

cn < ∞, an+1 = (1 + bn) an + cn, n ≥ 0.

Then

i) limn→∞ an exists,
ii) if lim infn→∞ an = 0 then limn→∞ an = 0.

Remark 1.8. [10] It is easy to verify that Lemma 1.7 (ii) holds under the hypothesis lim supn→∞ an = 0 as well.
Therefore, the condition (ii) in Lemma 1.7 can be reformulated as follows:

ii)′ if either lim infn→∞ an = 0 or lim supn→∞ an = 0, then limn→∞ an = 0.

Proposition 1.9. Let (X, d) be a convex metric space with convex structure W, {Ti : i ∈ J} : X → X be a finite
family of Ii-asymptotically quasi-nonexpansive mappings and {Ii : i ∈ J} : X→ X be a finite family of asymptotically
quasi-nonexpansive mappings with F :=

(⋂r
i=1 F(Ti)

)
∩
(⋂r

i=1 F(Ii)
)
, ∅. Then, there exist a point p ∈ F and sequences

{kn} , {ln} ⊂ [0,∞) with limn→∞ kn = limn→∞ ln = 0 such that

d
(
Tn

i x, p
)
≤ (1 + kn)d

(
In
i x, p

)
and d

(
In
i x, p

)
≤ (1 + ln)d

(
x, p

)
for all x ∈ K, for each i ∈ I.
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Proof. Since {Ti : i ∈ J} : X → X is a finite family of I-asymptotically quasi-nonexpansive mappings and
{Ii : i ∈ J} : X→ X is a finite family of asymptotically quasi-nonexpansive mappings with F :=

(⋂r
i=1 F(Ti)

)
∩(⋂r

i=1 F(Ii)
)
, ∅, there exist p ∈ F and sequences {kin} , {lin} ⊂ [0,∞) with limn→∞ kin = limn→∞ lin = 0 for each

i ∈ J such that

d
(
Tn

i x, p
)
≤ (1 + kin)d

(
In
i x, p

)
and d

(
In
i x, p

)
≤ (1 + lin)d

(
x, p

)
for each x ∈ X. Let kn = max {kin : i ∈ J} and ln = max {lin : i ∈ J}. So, we have that {kn} , {ln} ⊂ [0,∞) with
limn→∞ kn = limn→∞ ln = 0. Hence, there exist p ∈ F and {kn} , {ln} ⊂ [0,∞) with limn→∞ kn = limn→∞ ln = 0
such that

d
(
Tn

i x, p
)
≤ (1 + kn)d

(
In
i x, p

)
and d

(
In
i x, p

)
≤ (1 + ln)d

(
x, p

)
for all x ∈ K, for each i ∈ J.

2. Main Results

Lemma 2.1. Let (X, d,W) be a convex metric space with convex structure W, {Ti : i ∈ J} : X→ X be a finite family
of Ii-asymptotically quasi-nonexpansive mappings and {Ii : i ∈ J} : X→ X be a finite family of asymptotically quasi-
nonexpansive mappings with F , ∅. Suppose that

∑
∞

n=1 kn < ∞,
∑
∞

n=1 ln < ∞ and {xn} is as in (2) with
{
γn

}
,
{
γ̂n

}
satisfying

∑
∞

n=1 γn < ∞ and
∑
∞

n=1 γ̂n < ∞. If limn→∞ d (xn,F) = 0 where d (x,F) = inf
{
d
(
x, p

)
: p ∈ F

}
, then {xn} is

a Cauchy sequence.

Proof. Let p ∈ F. Since {un} and {vn} are bounded sequences in X, there exists M > 0 such that

max
{

sup
n≥1

d(un, p), sup
n≥1

d(vn, p)
}
≤M.

Then we have from Proposition 1.9 and (2) that

d
(
yn, p

)
= d

(
W

(
xn,Tn

i xn, vn; α̂n, β̂n, γ̂n

)
, p

)
≤ α̂nd

(
xn, p

)
+ β̂nd

(
Tn

i xn, p
)

+ γ̂nd(vn, p)

≤ α̂nd
(
xn, p

)
+ β̂n (1 + kn) d

(
In
i xn, p

)
+ γ̂nM

≤ α̂nd
(
xn, p

)
+ β̂n (1 + kn) (1 + ln) d

(
xn, p

)
+ γ̂nM

≤

(
1 + β̂n (kn + ln + knln)

)
d
(
xn, p

)
+ γ̂nM (3)

and

d
(
xn+1, p

)
= d

(
W

(
xn, In

i yn,un;αn, βn, γn

)
, p

)
≤ αnd

(
xn, p

)
+ βnd

(
In
i yn, p

)
+ γnd

(
un, p

)
≤ αnd

(
xn, p

)
+ βn (1 + ln) d

(
yn, p

)
+ γnM. (4)

Substituting (3) into (4),

d
(
xn+1, p

)
≤ αnd

(
xn, p

)
+ βn (1 + ln) d

(
yn, p

)
+ γnM

≤ αnd
(
xn, p

)
+ βn (1 + ln)

(
1 + β̂n (kn + ln + knln)

)
d
(
xn, p

)
+ βn (1 + ln) γ̂nM + γnM

≤ αnd
(
xn, p

)
+ βn (1 + ln) d

(
xn, p

)
+ βn (1 + ln) β̂n (kn + ln + knln) d

(
xn, p

)
+

(
βn (1 + ln) γ̂n + γn

)
M

≤

[
1 + βnln + βnβ̂n (1 + ln) (kn + ln + knln)

]
d
(
xn, p

)
+

(
βn (1 + ln) γ̂n + γn

)
M.

Thus we obtain

d
(
xn+1, p

)
≤ [1 + κn] d

(
xn, p

)
+ tn (5)
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where κn = βnln + βnβ̂n (1 + ln) (kn + ln + knln) and tn =
(
βn (1 + ln) γ̂n + γn

)
M with

∑
∞

n=1 κn < ∞ and
∑
∞

n=1 tn <
∞. Hence, we have

d (xn+1,F) ≤ [1 + κn] d (xn,F) + tn (6)

It follows from (6) and Lemma 1.7 that the limn→∞ d (xn,F) exists.
Next we prove that the sequence {xn} is a Cauchy sequence. In fact, since

∑
∞

n=1 κn < ∞, 1 + x ≤ ex for all
x ≥ 0, and (5), therefore we have

d
(
xn+1, p

)
≤ exp {κn} d

(
xn, p

)
+ tn. (7)

Hence, for any positive integers n,m, from (7) it follows that

d
(
xn+m, p

)
≤ exp {κn+m−1} d

(
xn+m−1, p

)
+ tn+m−1

≤ exp {κn+m−1}
[
exp {κn+m−2} d

(
xn+m−2, p

)
+ tn+m−2

]
+ tn+m−1

= exp {κn+m−1} exp {κn+m−2} d
(
xn+m−2, p

)
+ exp {κn+m−1} tn+m−2 + tn+m−1

≤ · · ·

≤ exp

n+m−1∑
i=n

κi

 d
(
xn, p

)
+ exp

n+m−1∑
i=n

κi

 n+m−1∑
i=n

ti

≤ Qd
(
xn, p

)
+ Q

n+m−1∑
i=n

ti,

where Q = exp
{

n+m−1∑
i=n

κi

}
< ∞.

Since limn→∞ d (xn,F) = 0 and
∑
∞

n=1 tn < ∞, for any given ε > 0, there exists a positive integer n0 such
that

d (xn,F) <
ε

4(Q + 1)
,

∑
∞

n=1
tn <

ε
2Q

, ∀n ≥ n0.

Therefore there exists p1 ∈ F such that

d
(
xn, p1

)
<

ε
2(Q + 1)

, ∀n ≥ n0.

Consequently, for any n ≥ n0 and for all m ≥ 1 we have

d (xn+m, xn) ≤ d
(
xn+m, p1

)
+ d

(
xn, p1

)
≤ (1 + Q)d

(
xn, p1

)
+ Q

∑
∞

n=1
tn

≤
ε

2(Q + 1)
(1 + Q) + Q

ε
2Q

= ε.

This implies that {xn} is a Cauchy sequence in X.

Theorem 2.2. Let (X, d,W) be a convex metric space with convex structure W, {Ti : i ∈ J} : X → X be a finite
family of Ii-asymptotically quasi-nonexpansive mappings and {Ii : i ∈ J} : X→ X be a finite family of asymptotically
quasi-nonexpansive mappings with F , ∅. Suppose that

∑
∞

n=1 kn < ∞,
∑
∞

n=1 ln < ∞ and {xn} is as in (2) with
{
γn

}
,{

γ̂n
}

satisfying
∑
∞

n=1 γn < ∞ and
∑
∞

n=1 γ̂n < ∞. Then

(i) lim infn→∞ d (xn,F) = lim supn→∞ d (xn,F) = 0 if {xn} converges to a unique point in F.
(ii) {xn} converges to a unique fixed point in F if X is complete and either lim infn→∞ d (xn,F) = 0 or

lim supn→∞ d (xn,F) = 0 .
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Proof. (i) Let p ∈ F. Since {xn} converges to p, limn→∞ d
(
xn, p

)
= 0. So, for a given ε > 0, there exists n0 ∈ N

such that

d
(
xn, p

)
< ε ∀n ≥ n0.

Taking infimum over p ∈ F, we have

d (xn,F) < ε ∀n ≥ n0.

This means limn→∞ d (xn,F) = 0 so that

lim inf
n→∞

d (xn,F) = lim sup
n→∞

d (xn,F) = 0.

(ii) Suppose that X is complete and lim infn→∞ d (xn,F) = 0 or lim supn→∞ d (xn,F) = 0. Then, we have from
Lemma 1.7 (ii) and Remark 1.8 that limn→∞ d (xn,F) = 0. From the completeness of X and Theorem 2.1, we
get that limn→∞ xn exists. Put limn→∞ xn = q ∈ X, we will prove that q ∈ F.

For any given ε1 > 0, there exists a constant n1 such that for all n ≥ n1, we have

d
(
xn, q

)
<

ε1

2(2 + l1)
and d (xn,F) <

ε1

2(4 + 3l1)
. (8)

In particular, there exists a s ∈ F and a constant n2 ≥ n1 such that

d
(
xn2 , s

)
<

ε1

2(4 + 3l1)
(9)

For any Ii, i ∈ J, we obtain from (8) and (9) that

d(Iiq, q) ≤ d(Iiq, s) + d(s, Iixn2 ) + d(Iixn2 , s) + d(s, xn2 ) + d(xn2 , q)
= d(Iiq, s) + 2d(Iixn2 , s) + d(s, xn2 ) + d(xn2 , q)
≤ (1 + l1)d(q, s) + 2(1 + l1)d(xn2 , s) + d(s, xn2 ) + d(xn2 , q)
≤ (2 + l1)d(xn2 , q) + (4 + 3l1)d(xn2 , s)

≤ (2 + l1)
ε1

2(2 + l1)
+ (4 + 3l1)

ε1

2(4 + 3l1)
= ε1.

Since ε1 is arbitrary, so d(Iiq, q) = 0 for all i ∈ J; i.e., Iiq = q. This implies q ∈
⋂k

i=1 F(Ii). Similarly, q ∈
⋂k

i=1 F(Ti).
Therefore, q ∈ F.

3. Applications

Now, we give some applications of Theorem 2.2.

Theorem 3.1. Let (X, d,W) be a complete convex metric space with convex structure W, {Ti : i ∈ J} : X → X
be a finite family of Ii-asymptotically quasi-nonexpansive mappings and {Ii : i ∈ J} : X → X be a finite family of
asymptotically quasi-nonexpansive mappings with F , ∅. Suppose that

∑
∞

n=1 kn < ∞,
∑
∞

n=1 ln < ∞ and {xn} is as in
(2) with

{
γn

}
,
{
γ̂n

}
satisfying

∑
∞

n=1 γn < ∞ and
∑
∞

n=1 γ̂n < ∞. Assume that the following two conditions hold.

i) lim
n→∞

d (xn, xn+1) = 0. (10)

ii) the sequence
{
yn

}
in X satisfying limn→∞ d

(
yn, yn+1

)
= 0 implies

lim inf
n→∞

d
(
yn,F

)
= 0 or lim sup

n→∞
d
(
yn,F

)
= 0. (11)

Then {xn} converges to a unique point in F.
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Proof. Using (10) and (11), we get

lim inf
n→∞

d (xn,F) = 0 or lim sup
n→∞

d (xn,F) = 0.

Therefore, we obtain from Theorem 2.2 (ii) that the sequence {xn} converges to a unique point in F.

Theorem 3.2. Let (X, d,W) be a complete convex metric space with convex structure W, {Ti : i ∈ J} : X → X
be a finite family of Ii-asymptotically quasi-nonexpansive mappings and {Ii : i ∈ J} : X → X be a finite family of
asymptotically quasi-nonexpansive mappings satisfying limn→∞ d (xn,Tixn) = limn→∞ d (xn, Iixn) = 0 with F , ∅.
Suppose that

∑
∞

n=1 kn < ∞,
∑
∞

n=1 ln < ∞ and {xn} is as in (2) with
{
γn

}
,
{
γ̂n

}
satisfying

∑
∞

n=1 γn < ∞ and∑
∞

n=1 γ̂n < ∞. If one of the following is true, then the sequence {xn} converges to a unique point in F.

i) If there exists a nondecreasing function 1 : [0,∞) → [0,∞) with 1 (0) = 0, 1 (t) > 0 for all t ∈ (0,∞) such
that either d (xn,Tixn) ≥ 1 (d (xn,F)) or d (xn, Iixn) ≥ 1 (d (xn,F)) for all n ≥ 1 (See Condition A′ of Khan and
Fukhar-ud-din [11]).

ii) There exists a function f : [0,∞) → [0,∞) which is right continuous at 0, f (0) = 0 and f (d (xn,Tixn)) ≥
d (xn,F) or f (d (xn, Iixn)) ≥ d (xn,F) for all n ≥ 1.

Proof. First assume that (i) holds. Then

lim
n→∞
1 (d (xn,F)) ≤ lim

n→∞
d (xn,Tixn) = 0 or lim

n→∞
1 (d (xn,F)) ≤ lim

n→∞
d (xn, Iixn) = 0.

Thus, limn→∞ 1 (d (xn,F)) = 0; and properties of 1 imply limn→∞ d (xn,F) = 0.
Now all the conditions of Theorem 2.2 are satisfied, therefore {xn} converges to a point of F.
Next, assume (ii) holds. In this case,

lim
n→∞

d (xn,F) ≤ lim
n→∞

f (d (xn,Tixn)) = f
(

lim
n→∞

d (xn,Tixn)
)

= f (0) = 0.

or

lim
n→∞

d (xn,F) ≤ lim
n→∞

f (d (xn, Iixn)) = f
(

lim
n→∞

d (xn, Iixn)
)

= f (0) = 0.

From above inequalities, limn→∞ d (xn,F) = 0. Thus lim infn→∞ d (xn,F) = 0 or lim supn→∞ d (xn,F) = 0. By
Theorem 2.2, {xn} converges to a point of F.

Remark 3.3. Our theorems generalize and improve the corresponding results of Temir [8] (i) from Banach space
setting to the general setup of convex metric space (ii) from Ishikawa iterative scheme to Ishikawa iterative scheme with
error terms (iii) from a finite family of Ii-asymptotically nonexpansive mappings to a finite family of Ii-asymptotically
quasi-nonexpansive mappings.

References

[1] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1) (1972)
171-174.

[2] W.V. Pershyn, T.E. Williamson Jr., Strong and weak convergence of the sequence of successive approximations for quasi-
nonexpansive mappings, J. Math. Anal. Appl. 43 (1973) 459-497.

[3] You-Xian Tian, Convergence of an ishikawa type iterative scheme for asymptotically quasi-nonexpansive mappings, Comput.
Math. Appl. 49 (2005) 1905-1912.

[4] A. Kettapun, A. Kananthai, S. Suantai, A new approximation method for common fixed points of a finite family of asymptotically
quasi-nonexpansive mappings in Banach spaces, Comput. Math. Appl. 60 (2010) 1430-1439.

[5] W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai. Math. Sem. Rep. 22 (1970) 142-149.
[6] B. Gunduz, S. Akbulut, Strong convergence of an explicit iteration process for a finite family of asymptotically quasi-nonexpansive

mappings in convex metric spaces, Miskolc Mathematical Notes. 14 (3) (2013) 915-925.
[7] L. Qihou, Iterative sequence for asymptotically quasi-nonexpansive mappings with errors member, J. Math. Anal. Appl. 259

(2001) 18–24.
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