Filomat 31:7 (2017), 2175–2182 DOI 10.2298/FIL1707175G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Fixed Points of a Finite Family of I-Asymptotically Quasi-Nonexpansive Mappings in a Convex Metric Space

Birol Gündüz^a

^aDepartment of Mathematics, Faculty of Science and Art, Erzincan University, Erzincan, 24000, Turkey

Abstract. In this paper, we study Ishikawa iterative scheme with error terms for a finite family of *I*-asymptotically quasi-nonexpansive mappings in a convex metric space. We established strong convergence theorems and their applications for the proposed algorithms in a convex metric space. Our theorems improve and extend the corresponding known results in Banach spaces.

1. Introduction and Preliminaries

Throughout this paper, \mathbb{N} denotes the set of natural numbers and $J = \{1, 2, ..., r\}$ the set of first r natural numbers. Denote by F(T) the set of fixed points of T and by $F := (\bigcap_{i=1}^{r} F(T_i)) \cap (\bigcap_{i=1}^{r} F(I_i))$ the set of common fixed points of two finite families of mappings $\{T_i : i \in J\}$ and $\{I_i : i \in J\}$.

Definition 1.1. Let X be a metric space and $T : X \to X$ be a mapping. The mapping T is said to be:

1. Nonexpansive if

 $d(Tx, Ty) \le d(x, y)$ for all $x, y \in X$.

- 2. Quasi-nonexpansive if $F(T) \neq \emptyset$ and
 - $d(Tx, p) \le d(x, p)$ for all $x \in X$ and $p \in F(T)$.
- 3. Asymptotically nonexpansive [1] if there exists $u_n \in [0, \infty)$ for all $n \in \mathbb{N}$ with $\lim_{n\to\infty} u_n = 0$ such that

 $d(T^nx, T^ny) \le (1 + u_n)d(x, y)$ for all $x, y \in X$ and $n \in \mathbb{N}$.

4. Asymptotically quasi-nonexpansive if $F(T) \neq \emptyset$ and there exists $u_n \in [0, \infty)$ for all $n \in \mathbb{N}$ with $\lim_{n\to\infty} u_n = 0$ such that

 $d(T^n x, p) \le (1 + u_n)d(x, p)$ for all $x \in X$, $\forall p \in F(T)$ and $n \in \mathbb{N}$.

²⁰¹⁰ Mathematics Subject Classification. 47H05, 47H09, 47H10

Keywords. Convex metric space, *I*-asymptotically quasi-nonexpansive mappings, Ishikawa iterative scheme, Error terms, Common fixed point.

Received: 22 January 2015; Accepted: 10 February 2017

Communicated by Dragan S. Djordjević

Email address: birolgndz@gmail.com (Birol Gündüz)

Remark 1.2. From the above definition, it follows that if F(T) is nonempty, then a nonexpansive mapping is quasinonexpansive, and an asymptotically nonexpansive mapping is asymptotically quasi-nonexpansive. But the converse does not hold (see, for example, [1-4]). It is obvious that if T is nonexpansive, then it is asymptotically nonexpansive with the constant sequence $\{0\}$.

There are many concepts which generalize a notion of asymptotically nonexpansive mapping in Banach space. One of such concepts is *I*-asymptotically nonexpansive mapping defined by Temir and Gul [8, 9]. Let us give metric version of these mappings.

Definition 1.3. Let X be a metric space and $T, I : X \to X$ be two mappings. T is said to be

1. *I-asymptotically nonexpansive if there exists a sequence* $\{v_n\} \subset [0, \infty)$ *with* $\lim_{n\to\infty} v_n = 0$ *such that*

 $d\left(T^{n}x,T^{n}y\right) \leq (1+v_{n})d\left(I^{n}x,I^{n}y\right)$

for all $x, y \in X$ and $n \ge 1$.

2. I-asymptotically quasi nonexpansive if $F(T) \cap F(I) \neq \emptyset$ and there exists a sequence $\{v_n\} \subset [0, \infty)$ with $\lim_{n\to\infty} v_n = 0$ such that

$$d\left(T^{n}x,p\right) \leq (1+v_{n})d\left(I^{n}x,p\right)$$

for all $x \in X$ and $p \in F(T) \cap F(I)$ and $n \ge 1$.

3. *I-uniformly Lipschitz if there exists* $\Gamma > 0$ *such that*

$$d(T^nx, T^ny) \leq \Gamma d(I^nx - I^ny), x, y \in X \text{ and } n \geq 1.$$

Remark 1.4. It is obvious that, an I-asymptotically nonexpansive mapping is I-uniformly Lipschitz with $\Gamma = \sup \{1 + v_n : n \ge 1\}$ and an I-asymptotically nonexpansive mapping with $F(T) \cap F(I) \ne \emptyset$ is I-asymptotically quasi nonexpansive. However, the converse of these claims are not true in general. It is easy to see that if I is identity mapping, then I-asymptotically nonexpansive mappings and I-asymptotically quasi nonexpansive mappings coincide with asymptotically nonexpansive mappings and asymptotically quasi nonexpansive mappings, respectively.

In 1970, Takahashi [5] introduced the concept of convexity in a metric space (X, d) as follows.

Definition 1.5. [5] A convex structure in a metric space (X, d) is a mapping $W : X \times X \times [0, 1] \rightarrow X$ satisfying, for all $x, y, u \in X$ and all $\lambda \in [0, 1]$,

 $d(u, W(x, y; \lambda)) \leq \lambda d(u, x) + (1 - \lambda) d(u, y).$

A metric space together with a convex structure is called a convex metric space. A nonempty subset C of X is said to be convex if $W(x, y; \lambda) \in C$ for all $(x, y; \lambda) \in C \times C \times [0, 1]$.

Definition 1.5 can be extended as follows: A mapping $W : X^3 \times [0, 1]^3 \rightarrow X$ is said to be a convex structure on X, if it satisfies the following condition:

For any $(x, y, z; a, b, c) \in X^3 \times [0, 1]^3$ with a + b + c = 1, and $u \in X$,

 $d(u, W(x, y, z; a, b, c)) \le ad(u, x) + bd(u, y) + cd(u, z).$

If (X, d) is a metric space with a convex structure W, then (X, d) is called a convex metric space.

Let (X, d) be a convex metric space. A nonempty subset *C* of *X* is said to be convex if $W(x, y, z; a, b, c) \in C$, $\forall (x, y, z) \in C^3$, $\forall (a, b, c) \in [0, 1]^3$ with a + b + c = 1.

It is easy to prove that every linear normed space is a convex metric space with a convex structure W(x, y, z; a, b, c) = ax + by + cz, for all $x, y, z \in X$ and $a, b, c \in [0, 1]$ with a + b + c = 1. But there exist some convex metric spaces which can not be embedded into any linear normed spaces (see, Takahashi [5] and, Gunduz and Akbulut [6]).

In 2009, Temir [8] introduced an iteration process for a finite family of *I*-asymptotically nonexpansive mappings in Banach space as follows.

Let *K* be a nonempty subset of *X* Banach space. Let $\{T_i\}_{i=1}^N$ be a finite family of I_i -asymptotically nonexpansive self-mappings and $\{I_i\}_{i=1}^N$ be a finite family of asymptotically nonexpansive self-mappings of *K*. Let $\{\alpha_n\}$ and $\{\beta_n\}$ are two real sequences in [0, 1]. Then the sequence $\{x_n\}$ is generated as follows:

$$\begin{cases} x_{n+1} = (1 - \alpha_n) x_n + \alpha_n I_{i(n)}^{k(n)} y_n \\ y_n = (1 - \beta_n) x_n + \beta_n T_{i(n)}^{k(n)} x_n \end{cases} \quad n \ge 1,$$
(1)

where $n = (k(n) - 1)N + i(n), i(n) \in \{1, 2, ..., N\}$.

Now, we transform iteration process (1) with error terms for a finite family of I-asymptotically quasinonexpansive mappings in convex metric spaces as follows:

Definition 1.6. Let (X, d) be a convex metric space with convex structure W, $\{T_i : i \in J\} : X \to X$ be a finite family of I_i -asymptotically quasi-nonexpansive mappings and $\{I_i : i \in J\} : X \to X$ be a finite family of asymptotically quasi-nonexpansive mappings. Suppose that $\{u_n\}$ and $\{v_n\}$ are two bounded sequences in X and $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, $\{\hat{\alpha}_n\}$, $\{\hat{\beta}_n\}$, $\{\hat{\gamma}_n\}$ are six sequences in [0, 1] such that $\alpha_i + \beta_n + \gamma_n = 1 = \hat{\alpha}_n + \hat{\beta}_n + \hat{\gamma}_n$ for $n \in \mathbb{N}$. For any given $x_1 \in X$, iteration process $\{x_n\}$ defined by,

$$\begin{aligned} x_{n+1} &= W\left(x_n, I_i^n y_n, u_n; \alpha_n, \beta_n, \gamma_n\right), \\ y_n &= W\left(x_n, T_i^n x_n, v_n; \hat{\alpha}_n, \hat{\beta}_n, \hat{\gamma}_n\right), \ n \ge 1, \end{aligned}$$

$$(2)$$

where n = (k - 1)r + i, $i = i(n) \in J$ is a positive integer and $k(n) \to \infty$ as $n \to \infty$. Thus, (2) can be expressed in the following form:

$$\begin{aligned} x_{n+1} &= W\left(x_n, I_{i(n)}^{k(n)} y_n, u_n; \alpha_n, \beta_n, \gamma_n\right), \\ y_n &= W\left(x_n, T_{i(n)}^{k(n)} x_n, v_n; \hat{\alpha}_n, \hat{\beta}_n, \hat{\gamma}_n\right), \ n \geq 1 \end{aligned}$$

Our purpose in the rest of the paper is to use the iteration process (2) to prove some strong convergence results for approximating common fixed points of a finite family of *I*-asymptotically quasi-nonexpansive mappings and a finite family of asymptotically quasi-nonexpansive mappings in a convex metric space.

In the sequel, we shall need the following lemma and proposition.

Lemma 1.7. [7] Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be three nonnegative sequences satisfying

$$\sum_{n=0}^{\infty} b_n < \infty, \ \sum_{n=0}^{\infty} c_n < \infty, \ a_{n+1} = (1+b_n)a_n + c_n, \ n \ge 0$$

Then

i) $\lim_{n\to\infty} a_n \text{ exists,}$ *ii*) *if* $\liminf_{n\to\infty} a_n = 0$ then $\lim_{n\to\infty} a_n = 0$.

Remark 1.8. [10] It is easy to verify that Lemma 1.7 (ii) holds under the hypothesis $\limsup_{n\to\infty} a_n = 0$ as well. Therefore, the condition (ii) in Lemma 1.7 can be reformulated as follows:

ii)' if either $\liminf_{n\to\infty} a_n = 0$ or $\limsup_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} a_n = 0$.

Proposition 1.9. Let (X, d) be a convex metric space with convex structure W, $\{T_i : i \in J\} : X \to X$ be a finite family of I_i -asymptotically quasi-nonexpansive mappings and $\{I_i : i \in J\} : X \to X$ be a finite family of asymptotically quasi-nonexpansive mappings with $F := (\bigcap_{i=1}^r F(T_i)) \cap (\bigcap_{i=1}^r F(I_i)) \neq \emptyset$. Then, there exist a point $p \in F$ and sequences $\{k_n\}, \{l_n\} \subset [0, \infty)$ with $\lim_{n\to\infty} k_n = \lim_{n\to\infty} l_n = 0$ such that

$$d\left(T_{i}^{n}x,p\right) \leq (1+k_{n})d\left(I_{i}^{n}x,p\right) \text{ and } d\left(I_{i}^{n}x,p\right) \leq (1+l_{n})d\left(x,p\right)$$

for all $x \in K$, for each $i \in I$.

Proof. Since $\{T_i : i \in I\}$: $X \to X$ is a finite family of I-asymptotically quasi-nonexpansive mappings and $\{I_i : i \in J\}$: $X \to X$ is a finite family of asymptotically quasi-nonexpansive mappings with $F := (\bigcap_{i=1}^{\bar{r}} F(T_i)) \cap$ $(\bigcap_{i=1}^{r} F(I_i)) \neq \emptyset$, there exist $p \in F$ and sequences $\{k_{in}\}, \{l_{in}\} \subset [0, \infty)$ with $\lim_{n \to \infty} k_{in} = \lim_{n \to \infty} l_{in} = 0$ for each $i \in I$ such that

$$d\left(T_{i}^{n}x,p\right) \leq (1+k_{in})d\left(I_{i}^{n}x,p\right) \text{ and } d\left(I_{i}^{n}x,p\right) \leq (1+l_{in})d\left(x,p\right)$$

for each $x \in X$. Let $k_n = \max\{k_{in} : i \in J\}$ and $l_n = \max\{l_{in} : i \in J\}$. So, we have that $\{k_n\}, \{l_n\} \subset [0, \infty)$ with $\lim_{n\to\infty} k_n = \lim_{n\to\infty} l_n = 0$. Hence, there exist $p \in F$ and $\{k_n\}, \{l_n\} \subset [0,\infty)$ with $\lim_{n\to\infty} k_n = \lim_{n\to\infty} l_n = 0$ such that

$$d\left(T_{i}^{n}x,p\right) \leq (1+k_{n})d\left(I_{i}^{n}x,p\right) \text{ and } d\left(I_{i}^{n}x,p\right) \leq (1+l_{n})d\left(x,p\right)$$

for all $x \in K$, for each $i \in J$. \Box

2. Main Results

Lemma 2.1. Let (X, d, W) be a convex metric space with convex structure $W, \{T_i : i \in J\} : X \to X$ be a finite family of I_i -asymptotically quasi-nonexpansive mappings and $\{I_i : i \in J\} : X \to X$ be a finite family of asymptotically quasi-nonexpansive mappings with $F \neq \emptyset$. Suppose that $\sum_{n=1}^{\infty} k_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$ and $\{x_n\}$ is as in (2) with $\{\gamma_n\}$, $\{\gamma_n\}$ satisfying $\sum_{n=1}^{\infty} \gamma_n < \infty$ and $\sum_{n=1}^{\infty} \hat{\gamma}_n < \infty$. If $\lim_{n\to\infty} d(x_n, F) = 0$ where $d(x, F) = \inf \{d(x, p) : p \in F\}$, then $\{x_n\}$ is a Cauchy sequence.

Proof. Let $p \in F$. Since $\{u_n\}$ and $\{v_n\}$ are bounded sequences in X, there exists M > 0 such that

• • • •

$$\max\left\{\sup_{n\geq 1}d(u_n,p),\sup_{n\geq 1}d(v_n,p)\right\}\leq M.$$

Then we have from Proposition 1.9 and (2) that , ,

$$d(y_n, p) = d\left(W\left(x_n, T_i^n x_n, v_n; \hat{\alpha}_n, \hat{\beta}_n, \hat{\gamma}_n\right), p\right)$$

$$\leq \hat{\alpha}_n d(x_n, p) + \hat{\beta}_n d\left(T_i^n x_n, p\right) + \hat{\gamma}_n d(v_n, p)$$

$$\leq \hat{\alpha}_n d(x_n, p) + \hat{\beta}_n (1 + k_n) d\left(l_i^n x_n, p\right) + \hat{\gamma}_n M$$

$$\leq \hat{\alpha}_n d(x_n, p) + \hat{\beta}_n (1 + k_n) (1 + l_n) d(x_n, p) + \hat{\gamma}_n M$$

$$\leq \left(1 + \hat{\beta}_n (k_n + l_n + k_n l_n)\right) d(x_n, p) + \hat{\gamma}_n M$$
(3)

and

$$d(x_{n+1}, p) = d\left(W\left(x_n, I_i^n y_n, u_n; \alpha_n, \beta_n, \gamma_n\right), p\right)$$

$$\leq \alpha_n d(x_n, p) + \beta_n d\left(I_i^n y_n, p\right) + \gamma_n d(u_n, p)$$

$$\leq \alpha_n d(x_n, p) + \beta_n (1 + l_n) d(y_n, p) + \gamma_n M.$$
(4)

Substituting (3) into (4),

$$\begin{aligned} d(x_{n+1},p) &\leq \alpha_n d(x_n,p) + \beta_n (1+l_n) d(y_n,p) + \gamma_n M \\ &\leq \alpha_n d(x_n,p) + \beta_n (1+l_n) \left(1 + \hat{\beta}_n (k_n + l_n + k_n l_n)\right) d(x_n,p) + \beta_n (1+l_n) \hat{\gamma}_n M + \gamma_n M \\ &\leq \alpha_n d(x_n,p) + \beta_n (1+l_n) d(x_n,p) + \beta_n (1+l_n) \hat{\beta}_n (k_n + l_n + k_n l_n) d(x_n,p) + (\beta_n (1+l_n) \hat{\gamma}_n + \gamma_n) M \\ &\leq \left[1 + \beta_n l_n + \beta_n \hat{\beta}_n (1+l_n) (k_n + l_n + k_n l_n)\right] d(x_n,p) + (\beta_n (1+l_n) \hat{\gamma}_n + \gamma_n) M. \end{aligned}$$

Thus we obtain

$$d(x_{n+1}, p) \le [1 + \kappa_n] d(x_n, p) + t_n \tag{5}$$

where $\kappa_n = \beta_n l_n + \beta_n \hat{\beta}_n (1 + l_n) (k_n + l_n + k_n l_n)$ and $t_n = (\beta_n (1 + l_n) \hat{\gamma}_n + \gamma_n) M$ with $\sum_{n=1}^{\infty} \kappa_n < \infty$ and $\sum_{n=1}^{\infty} t_n < \infty$. Hence, we have

$$d(x_{n+1}, F) \le [1 + \kappa_n] d(x_n, F) + t_n \tag{6}$$

It follows from (6) and Lemma 1.7 that the $\lim_{n\to\infty} d(x_n, F)$ exists.

Next we prove that the sequence $\{x_n\}$ is a Cauchy sequence. In fact, since $\sum_{n=1}^{\infty} \kappa_n < \infty$, $1 + x \le e^x$ for all $x \ge 0$, and (5), therefore we have

$$d(x_{n+1}, p) \le \exp\left\{\kappa_n\right\} d(x_n, p) + t_n. \tag{7}$$

Hence, for any positive integers n, m, from (7) it follows that

$$d(x_{n+m}, p) \leq \exp \{\kappa_{n+m-1}\} d(x_{n+m-1}, p) + t_{n+m-1}$$

$$\leq \exp \{\kappa_{n+m-1}\} [\exp \{\kappa_{n+m-2}\} d(x_{n+m-2}, p) + t_{n+m-2}] + t_{n+m-1}$$

$$= \exp \{\kappa_{n+m-1}\} \exp \{\kappa_{n+m-2}\} d(x_{n+m-2}, p)$$

$$+ \exp \{\kappa_{n+m-1}\} t_{n+m-2} + t_{n+m-1}$$

$$\leq \cdots$$

$$\leq \exp \left\{ \sum_{i=n}^{n+m-1} \kappa_i \right\} d(x_n, p) + \exp \left\{ \sum_{i=n}^{n+m-1} \kappa_i \right\} \sum_{i=n}^{n+m-1} t_i$$

$$\leq Qd(x_n, p) + Q \sum_{i=n}^{n+m-1} t_i,$$

$$(n+m-1)$$

where $Q = \exp\left\{\sum_{i=n}^{n+m-1} \kappa_i\right\} < \infty$.

Since $\lim_{n\to\infty} d(x_n, F) = 0$ and $\sum_{n=1}^{\infty} t_n < \infty$, for any given $\varepsilon > 0$, there exists a positive integer n_0 such that

$$d(x_n,F) < \frac{\varepsilon}{4(Q+1)}, \sum_{n=1}^{\infty} t_n < \frac{\varepsilon}{2Q}, \forall n \ge n_0.$$

Therefore there exists $p_1 \in F$ such that

$$d(x_n, p_1) < \frac{\varepsilon}{2(Q+1)}, \ \forall n \ge n_0.$$

Consequently, for any $n \ge n_0$ and for all $m \ge 1$ we have

$$d(x_{n+m}, x_n) \leq d(x_{n+m}, p_1) + d(x_n, p_1) \leq (1+Q)d(x_n, p_1) + Q\sum_{n=1}^{\infty} t_n \\ \leq \frac{\varepsilon}{2(Q+1)}(1+Q) + Q\frac{\varepsilon}{2Q} = \varepsilon.$$

This implies that $\{x_n\}$ is a Cauchy sequence in *X*.

Theorem 2.2. Let (X, d, W) be a convex metric space with convex structure W, $\{T_i : i \in J\} : X \to X$ be a finite family of I_i -asymptotically quasi-nonexpansive mappings and $\{I_i : i \in J\} : X \to X$ be a finite family of asymptotically quasi-nonexpansive mappings with $F \neq \emptyset$. Suppose that $\sum_{n=1}^{\infty} k_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$ and $\{x_n\}$ is as in (2) with $\{\gamma_n\}$, $\{\hat{\gamma}_n\}$ satisfying $\sum_{n=1}^{\infty} \gamma_n < \infty$ and $\sum_{n=1}^{\infty} \hat{\gamma}_n < \infty$. Then

(*i*) $\liminf_{n\to\infty} d(x_n, F) = \limsup_{n\to\infty} d(x_n, F) = 0$ if $\{x_n\}$ converges to a unique point in *F*.

(ii) $\{x_n\}$ converges to a unique fixed point in F if X is complete and either $\liminf_{n\to\infty} d(x_n, F) = 0$ or $\limsup_{n\to\infty} d(x_n, F) = 0$.

Proof. (i) Let $p \in F$. Since $\{x_n\}$ converges to p, $\lim_{n\to\infty} d(x_n, p) = 0$. So, for a given $\varepsilon > 0$, there exists $n_0 \in N$ such that

$$d(x_n, p) < \varepsilon \qquad \forall n \ge n_0.$$

Taking infimum over $p \in F$, we have

$$d(x_n, F) < \varepsilon \qquad \forall n \ge n_0.$$

This means $\lim_{n\to\infty} d(x_n, F) = 0$ so that

$$\liminf_{n \to \infty} d(x_n, F) = \limsup_{n \to \infty} d(x_n, F) = 0$$

(ii) Suppose that *X* is complete and $\liminf_{n\to\infty} d(x_n, F) = 0$ or $\limsup_{n\to\infty} d(x_n, F) = 0$. Then, we have from Lemma 1.7 (ii) and Remark 1.8 that $\lim_{n\to\infty} d(x_n, F) = 0$. From the completeness of *X* and Theorem 2.1, we get that $\lim_{n\to\infty} x_n$ exists. Put $\lim_{n\to\infty} x_n = q \in X$, we will prove that $q \in F$.

For any given $\varepsilon_1 > 0$, there exists a constant n_1 such that for all $n \ge n_1$, we have

$$d(x_n, q) < \frac{\varepsilon_1}{2(2+l_1)} \text{ and } d(x_n, F) < \frac{\varepsilon_1}{2(4+3l_1)}.$$
 (8)

In particular, there exists a $s \in F$ and a constant $n_2 \ge n_1$ such that

$$d(x_{n_2},s) < \frac{\varepsilon_1}{2(4+3l_1)}$$
(9)

For any I_i , $i \in J$, we obtain from (8) and (9) that

$$\begin{aligned} d(I_{i}q,q) &\leq d(I_{i}q,s) + d(s,I_{i}x_{n_{2}}) + d(I_{i}x_{n_{2}},s) + d(s,x_{n_{2}}) + d(x_{n_{2}},q) \\ &= d(I_{i}q,s) + 2d(I_{i}x_{n_{2}},s) + d(s,x_{n_{2}}) + d(x_{n_{2}},q) \\ &\leq (1+l_{1})d(q,s) + 2(1+l_{1})d(x_{n_{2}},s) + d(s,x_{n_{2}}) + d(x_{n_{2}},q) \\ &\leq (2+l_{1})d(x_{n_{2}},q) + (4+3l_{1})d(x_{n_{2}},s) \\ &\leq (2+l_{1})\frac{\varepsilon_{1}}{2(2+l_{1})} + (4+3l_{1})\frac{\varepsilon_{1}}{2(4+3l_{1})} = \varepsilon_{1}. \end{aligned}$$

Since ε_1 is arbitrary, so $d(I_iq, q) = 0$ for all $i \in J$; i.e., $I_iq = q$. This implies $q \in \bigcap_{i=1}^k F(I_i)$. Similarly, $q \in \bigcap_{i=1}^k F(T_i)$. Therefore, $q \in F$. \Box

3. Applications

Now, we give some applications of Theorem 2.2.

Theorem 3.1. Let (X, d, W) be a complete convex metric space with convex structure W, $\{T_i : i \in J\} : X \to X$ be a finite family of I_i -asymptotically quasi-nonexpansive mappings and $\{I_i : i \in J\} : X \to X$ be a finite family of asymptotically quasi-nonexpansive mappings with $F \neq \emptyset$. Suppose that $\sum_{n=1}^{\infty} k_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$ and $\{x_n\}$ is as in (2) with $\{\gamma_n\}$, $\{\hat{\gamma}_n\}$ satisfying $\sum_{n=1}^{\infty} \gamma_n < \infty$ and $\sum_{n=1}^{\infty} \hat{\gamma}_n < \infty$. Assume that the following two conditions hold.

$$i) \lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$
(10)

ii) the sequence $\{y_n\}$ *in* X *satisfying* $\lim_{n\to\infty} d(y_n, y_{n+1}) = 0$ *implies*

$$\liminf_{n \to \infty} d(y_n, F) = 0 \text{ or } \limsup_{n \to \infty} d(y_n, F) = 0.$$
(11)

Then $\{x_n\}$ converges to a unique point in *F*.

Proof. Using (10) and (11), we get

$$\liminf_{n \to \infty} d(x_n, F) = 0 \text{ or } \limsup_{n \to \infty} d(x_n, F) = 0$$

Therefore, we obtain from Theorem 2.2 (ii) that the sequence $\{x_n\}$ converges to a unique point in F.

Theorem 3.2. Let (X, d, W) be a complete convex metric space with convex structure W, $\{T_i : i \in J\} : X \to X$ be a finite family of I_i -asymptotically quasi-nonexpansive mappings and $\{I_i : i \in J\} : X \to X$ be a finite family of asymptotically quasi-nonexpansive mappings satisfying $\lim_{n\to\infty} d(x_n, T_ix_n) = \lim_{n\to\infty} d(x_n, I_ix_n) = 0$ with $F \neq \emptyset$. Suppose that $\sum_{n=1}^{\infty} k_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$ and $\{x_n\}$ is as in (2) with $\{\gamma_n\}$, $\{\hat{\gamma}_n\}$ satisfying $\sum_{n=1}^{\infty} \gamma_n < \infty$ and $\sum_{n=1}^{\infty} \hat{\gamma}_n < \infty$. If one of the following is true, then the sequence $\{x_n\}$ converges to a unique point in F.

i) If there exists a nondecreasing function $g : [0, \infty) \to [0, \infty)$ with g(0) = 0, g(t) > 0 for all $t \in (0, \infty)$ such that either $d(x_n, T_i x_n) \ge g(d(x_n, F))$ or $d(x_n, I_i x_n) \ge g(d(x_n, F))$ for all $n \ge 1$ (See Condition A' of Khan and Fukhar-ud-din [11]).

ii) There exists a function $f : [0, \infty) \to [0, \infty)$ which is right continuous at 0, f(0) = 0 and $f(d(x_n, T_ix_n)) \ge d(x_n, F)$ or $f(d(x_n, I_ix_n)) \ge d(x_n, F)$ for all $n \ge 1$.

Proof. First assume that (i) holds. Then

$$\lim_{n\to\infty} g\left(d\left(x_n,F\right)\right) \leq \lim_{n\to\infty} d\left(x_n,T_ix_n\right) = 0 \text{ or } \lim_{n\to\infty} g\left(d\left(x_n,F\right)\right) \leq \lim_{n\to\infty} d\left(x_n,I_ix_n\right) = 0.$$

Thus, $\lim_{n\to\infty} g(d(x_n, F)) = 0$; and properties of g imply $\lim_{n\to\infty} d(x_n, F) = 0$.

Now all the conditions of Theorem 2.2 are satisfied, therefore $\{x_n\}$ converges to a point of *F*. Next, assume (ii) holds. In this case,

$$\lim_{n \to \infty} d(x_n, F) \le \lim_{n \to \infty} f(d(x_n, T_i x_n)) = f\left(\lim_{n \to \infty} d(x_n, T_i x_n)\right) = f(0) = 0$$

or

$$\lim_{n \to \infty} d(x_n, F) \le \lim_{n \to \infty} f(d(x_n, I_i x_n)) = f\left(\lim_{n \to \infty} d(x_n, I_i x_n)\right) = f(0) = 0$$

From above inequalities, $\lim_{n\to\infty} d(x_n, F) = 0$. Thus $\liminf_{n\to\infty} d(x_n, F) = 0$ or $\limsup_{n\to\infty} d(x_n, F) = 0$. By Theorem 2.2, $\{x_n\}$ converges to a point of *F*. \Box

Remark 3.3. Our theorems generalize and improve the corresponding results of Temir [8] (i) from Banach space setting to the general setup of convex metric space (ii) from Ishikawa iterative scheme to Ishikawa iterative scheme with error terms (iii) from a finite family of I_i -asymptotically nonexpansive mappings to a finite family of I_i -asymptotically quasi-nonexpansive mappings.

References

- K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1) (1972) 171-174.
- [2] W.V. Pershyn, T.E. Williamson Jr., Strong and weak convergence of the sequence of successive approximations for quasinonexpansive mappings, J. Math. Anal. Appl. 43 (1973) 459-497.
- You-Xian Tian, Convergence of an ishikawa type iterative scheme for asymptotically quasi-nonexpansive mappings, Comput. Math. Appl. 49 (2005) 1905-1912.
- [4] A. Kettapun, A. Kananthai, S. Suantai, A new approximation method for common fixed points of a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces, Comput. Math. Appl. 60 (2010) 1430-1439.
- [5] W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai. Math. Sem. Rep. 22 (1970) 142-149.
- [6] B. Gunduz, S. Akbulut, Strong convergence of an explicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces, Miskolc Mathematical Notes. 14 (3) (2013) 915-925.
- [7] L. Qihou, Iterative sequence for asymptotically quasi-nonexpansive mappings with errors member, J. Math. Anal. Appl. 259 (2001) 18–24.

- [8] S. Temir, On the convergence theorems of implicit iteration process for a finite family of I-asymptotically nonexpansive mappings, J. Comput. Appl. Math. 225 (2009) 398–405.
- [9] S. Temir, O. Gul, Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space, J. Math. Anal. Appl. 329 (2007) 759–765.
- [10] I. Yıldırım and S.H. Khan, Convergence theorems for common fixed points of asymptotically quasi-nonexpansive mappings in convex metric spaces, Appl. Math. Comput. 218 (2012) 4860–4866.
 [11] H. Fukhar-ud-din, S.H. Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applica-
- tions, J. Math. Anal. Appl. 328 (2007) 821-829