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Available at: http://www.pmf.ni.ac.rs/filomat

On the Digitally Quasi Comultiplications of Digital Images

Dae-Woong Leea

aDepartment of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, 567 Baekje-daero, Deokjin-gu,
Jeonju-si, Jeollabuk-do 54896, Republic of Korea

Abstract. In this article we study the digitally quasi comultiplications of the digital wedge products of
pointed digital images. After defining a digitally quasi co-H-space and a digital Whitehead product, we
develop a method of how to calculate the cardinal number of digital homotopy classes based on the digitally
quasi comultiplications of a pointed digital image as a particular case. We also construct a digitally quasi
co-H-space as a digital retract of a given digitally quasi co-H-space.

1. Introduction

Kong [16] introduced the digital fundamental group of a discrete object. Boxer [6] showed how classical
methods of basic algebraic topology might be used to construct the digital fundamental group based on
the notions of digitally continuous functions and digital homotopy. Boxer’s digital fundamental groups
are defined for digital images of all dimensions with arbitrary adjacency relations, while the Kong’s digital
fundamental groups are defined only in dimension 2 and 3, and only for certain choices of adjacency
relations. The digital fundamental group is basically derived from a classical notion of homotopy classes
of based loops in the pointed homotopy category of pointed topological spaces or pointed CW-spaces.

The fundamental idea of algebraic topology is to associate to each topological space Y a group F(Y) and
to each continuous function f : Y → Z a homomorphism F( f ) : F(Y) → F(Z) such that if Y and Z have the
same homotopy type, then F(Y) is isomorphic to F(Z); F is called a functor from the category of topological
spaces and continuous functions to the one of groups and homomorphisms. The characteristic of modern
mathematics is to find out the properties of the covariant (or contravariant) functors. The covariant functor
πk

1 : D → G from the category D of pointed digital images and pointed digitally continuous functions to
the category G of (not necessarily abelian) groups and homomorphisms is one of them (see [6, Theorem
4.14]). Recently, the use of the whole-sample symmetric boundary conditions in image restoration was
considered in [19], and the foundations of a homology-based heuristic for finding optimal discrete gradient
vector fields on a general finite cell complex were introduced in [21] based on classification of cycles,
cohomology algebra, homology A(∞)-coalgebra, cohomology operations, homotopy groups and so on

2010 Mathematics Subject Classification. Primary 68U05; Secondary 52C45, 55Q15, 55Q20
Keywords. Digital k-loop, digital homotopy, trivial extension, digital fundamental group, digital wedge product, digitally quasi

co-H-space, digitally quasi comultiplication, digital Whitehead product, digital retraction
Received: 21 August 2016; Revised: 6 November 2016; Accepted: 11 December 2016
Communicated by Ljubiša D.R. Kočinac
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(see also [17]). The paper [12] presents cohomology in the context of structural pattern recognition and
introduces an algorithm to compute efficiently representative cocycles (dual of cycles in homology) using
a graph pyramid. Moreover, a set of tools to compute topological information of simplicial complexes, and
tools that are applicable to extract topological information from digital pictures were presented in [13].

The co-H-spaces [1], also called spaces with a comultiplication, play a fundamental role in algebraic
topology. One reason for this is that any two homotopy classes of maps from a co-H-space Z to a space Z′

can be added. One then obtains a natural binary operation with identity on the set of homotopy classes.
If the comultiplication is homotopy associative, then the set with this operation is a group, with the group
operation depending on the comultiplication of Z. An important class of co-H-spaces consists of all n-
spheres, n ≥ 1. It is the associative comultiplication on the n-sphere Sn that induces group structure on the
set of homotopy classes of Sn into a space Z′, the nth homotopy group of Z′.

It is easily seen that the wedge of two co-H-spaces is a co-H-space, and therefore it is natural to ask about
the comultiplications on a wedge of spheres. It turns out that the set of comultiplications is complicated -
there are usually many comultiplications (sometimes infinitely many) with many different properties. Some
indication of this complexity appeared in an early paper of Ganea [11, pp. 194-196] who gave an intricate
argument to show that S3

∨ S15 has at least 72 associative comultiplications and at most 56 homotopy
classes of suspension comultiplications. We can find the results for the calculations of the cardinality of
comultiplications, associative comultiplications and commutative comultiplications based on the wedge
of two spheres in [3] (see also [2] and [18]). For example, S2

∨ S5 has infinitely many homotopy classes
of comultiplications and commutative comultiplications. However, it has only 2 homotopy associative
comultiplications.

Motivated from the statement above, it is desirable for us to reformulate the digital version of co-H-
spaces in a fashion that parallels the important approach of pointed homotopy category for the realm of
computer science.

In this paper we work on the category of (pointed) digital images and (pointed) digitally continuous
functions. We sometimes omit the base point of a digital image. The paper is organized as follows: In
Section 2 we introduce the general notions of digital images. In Section 3 we define certain digitally quasi
comultiplications and the digital Whitehead products on a wedge product of digital images, and then
compute the cardinality of the set of digital homotopy classes based on digitally quasi comultiplications of
the wedge products of pointed digital images. We also investigate a method to construct a digitally quasi
co-H-space as a digital retract of a given digital image. In Section 4 a summary and a further work will be
made. The list of notations will be described at the end of this paper.

2. Preliminaries

Let Z be the set of integers and Zn the set of lattice points in the n-dimensional Euclidean space Rn. A
(binary) digital image is a pair (Y, k), where Y is a finite subset of Zn and k = k(u,n) indicates some adjacency
relation for the members of Y. The k-adjacency relations are used in the study of digital images in Zn. For
a positive integer u with 1 ≤ u ≤ n, we define an adjacency relation of a digital image inZn as follows. Two
distinct points p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) in Zn are k(u,n)-adjacent [8, 9] if

• there are at most u distinct indices i such that |pi − qi| = 1; and

• for all indices j, if |p j − q j| , 1, then p j = q j.

A k(u,n)-adjacency relation on Zn may be denoted by the number of points that are k(u,n)-adjacent to a
point p ∈ Zn. Moreover,

• the k(1, 1)-adjacent points of Z are called 2-adjacent;

• the k(1, 2)-adjacent points of Z2 are called 4-adjacent, and the k(2, 2)-adjacent points in Z2 are called
8-adjacent;
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• the k(1, 3)-adjacent points of Z3 are called 6-adjacent, the k(2, 3)-adjacent points of Z3 are called
18-adjacent, and the k(3, 3)-adjacent points of Z3 are called 26-adjacent;

• the k(1, 4), k(2, 4), k(3, 4), and k(4, 4)-adjacent points ofZ4 are called 8-adjacent, 32-adjacent, 64-adjacent,
and 80-adjacent, respectively; and so on.

We note that the number above is just the cardinality of the set of lattice points which have the k(u,n)-
adjacency relations centered at p in Zn. A k(u,n)-neighbor of a lattice point p ∈ Zn is a point of Zn that is
k(u,n)-adjacent to p. The above number k(u,n) is the number of points q ∈ Zn that are adjacent to a given
point p ∈ Zn according to the above relationship. For example, k(1, 1) = 2, k(1, 2) = 4, k(2, 2) = 8, k(1, 3) =
6, k(2, 3) = 18, k(3, 3) = 26, k(1, 4) = 8, k(2, 4) = 32, k(3, 4) = 64, k(4, 4) = 80, k(2, 6) = 72, k(2, 12) = 288, and so
on.

Definition 2.1. ([23]) Let k be an adjacency relation defined on Zn. A digital image Y ⊂ Zn is said to be
k-connected if and only if for every pair of points {x, y} ⊂ Y with x , y, there exists a set P = {x0, x1, . . . , xs} ⊂ Y
of s + 1 distinct points such that x = x0, xs = y, and xi and xi+1 are k-adjacent for i = 0, 1, . . . , s − 1. The length
of the set P is the number s.

The following generalizes an earlier definition of digital continuity given in [23].

Definition 2.2. ([6]) Let Y ⊂ Zn1 and Z ⊂ Zn2 be the digital images with k1-adjacency and k2-adjacency,
respectively. A function f : Y→ Z is said to be (k1, k2)-continuous if the image under f of every k1-connected
subset of Y is a k2-connected subset of Z.

The following is a consequence of the definition above: Let Y and Z be digital images with k1-adjacency
and k2-adjacency, respectively. Then the function f : Y → Z is a (k1, k2)-continuous function if and only
if for every {x1, x2} ⊂ Y such that x1 and x2 are k1-adjacent in Y, either f (x1) = f (x2) or f (x1) and f (x2) are
k2-adjacent in Z.

It is easy to see that if f : Y1 → Y2 is (k1, k2)-continuous and if 1 : Y2 → Y3 is (k2, k3)-continuous, then the
composite 1 ◦ f : Y1 → Y3 is (k1, k3)-continuous (see [5]).

Definition 2.3. ([5]) Two digital images (Y, k1) and (Z, k2) with adjacency relations k1 and k2, respectively,
are (k1, k2)-homeomorphic if there is a bijective function f : Y → Z that is (k1, k2)-continuous such that the
inverse function f−1 : Z → Y is (k2, k1)-continuous. In this case, we call the function f : Y → Z a digital
(k1, k2)-homeomorphism, and denote it by Y ≈(k1,k2) Z.

Definition 2.4. Let a, b ∈ Z, a < b. A digital interval [5] is a set of the form

[a, b]Z = {z ∈ Z | a ≤ z ≤ b}

in which 2-adjacency is assumed.

Definition 2.5. ([6, 7]) Let Y ⊂ Zn have an adjacency relation k. We say Y is a digital simple closed k-curve if
there is an integer m > 3 and a (2,k)-continuous function f : [0,m − 1]Z → Y such that

• f is a bijective function;

• f (0) and f (m − 1) are k-adjacent; and

• for all t ∈ [0,m−1]Z, the only k-neighbors of f (t) in f ([0,m−1]Z) are f ((t−1) mod m) and f ((t+1) mod m).

There is a fundamental difference between a Euclidean simple closed curve in topology and a digital
simple closed k-curve in digital image in that all Euclidean simple closed curves are homeomorphic, but
digital simple closed k-curves of different cardinalities are not even of the same digital homotopy types (see
[7] and below for digital homotopy).
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Definition 2.6. ([6, 7, 15]) A digital k-path in a digital image Y is a (2,k)-continuous function f : [0,m]Z → Y.
If f (0) = f (m), we call f a digital k-loop. If f is a constant function, it is called a trivial loop.

Definition 2.7. ([6, 8]) Let Y and Z be digital images with k1-adjacency and k2-adjacency, respectively, and
let f , 1 : Y → Z be (k1, k2)-continuous functions. Suppose that there is a positive integer m and a function
F : Y × [0,m]Z → Z such that

• for all y ∈ Y,F(y, 0) = f (y) and F(y,m) = 1(y);

• for all y ∈ Y, the induced function Fy : [0,m]Z → Z defined by Fy(t) = F(y, t) for all t ∈ [0,m]Z is
(2, k2)-continuous; and

• for all t ∈ [0,m]Z, the induced function Ft : Y → Z defined by Ft(y) = F(y, t) for all y ∈ Y is (k1, k2)-
continuous.

Then F is called a digital (k1, k2)-homotopy between f and 1, written f '(k1,k2) 1, and f and 1 are said to be
digitally (k1, k2)-homotopic in Z.

We use [ f ] to denote the digital homotopy class of a (k1, k2)-continuous function f : Y→ Z, i.e.,

[ f ] = {1 : Y→ Z | 1 is (k1, k2) − continuous, and f '(k1,k2) 1}.

Similarly, we denote by [ f ] the k-loop class of a digital k-loop f : [0,m]Z → Y in a digital image Y with
k-adjacency.

A pointed digital image is a pair (Y, y0), where Y is a digital image and y0 ∈ Y; y0 is called the base point
of (Y, y0). A pointed digitally continuous function f : (Y, y0) → (Z, z0) is a digitally continuous function from
Y to Z such that f (y0) = z0. A digital homotopy F : Y × [0,m]Z → Z between f and 1 is said to be pointed
digital homotopy between f and 1 if for all t ∈ [0,m]Z, F(y0, t) = z0. If a pointed digital homotopy between f
and 1 exists, we say f and 1 belong to the same pointed digital homotopy class. It is not difficult to see that
the (pointed) digital homotopy is an equivalence relation among the (pointed) digital homotopy classes of
digitally continuous functions (see [6] and [7]). We sometimes omit the base point for convenience.

We now consider the digital version of products just as in the case of products of paths (or loops) of
homotopy classes in homotopy theory. If f : [0,m1]Z → Y and 1 : [0,m2]Z → Y are digital k-paths in Y with
f (m1) = 1(0), the product ( f ∗ 1) : [0,m1 + m2]Z → Y (see [15], [6] and [8]) of f and 1 is the digital k-path in Y
defined by

( f ∗ 1)(t) =

 f (t) if t ∈ [0,m1]Z;
1(t −m1) if t ∈ [m1,m1 + m2]Z.

The following result will be used to show that the product operation of digital loop classes is well-
defined.

Proposition 2.8. ([6, 15]) Suppose f1, f2, 11 and 12 are digital loops in a pointed digital image (Y, y0) with f2 ∈ [ f1]
and 12 ∈ [11]. Then f2 ∗ 12 ∈ [ f1 ∗ 11].

We now discuss the digital k-fundamental group originally derived from a classical notion of homotopy
theory (see [24, 26]). Let (Y, y0) be a pointed digital image with k-adjacency. Consider the set πk

1(Y, y0) of
k-loop classes [ f ] in (Y, y0) with base point y0. By Proposition 2.8, the product operation

[ f ] + [1] = [ f ∗ 1]

is well-defined on πk
1(Y, y0). One can see that πk

1(Y, y0) becomes a group under the ∗ product operation which
is called the digital k-fundamental group of (Y, y0). As in the case of basic notions in algebraic topology, it is
well known in [6, Theorem 4.14] that πk

1 is a covariant functor from the category of pointed digital images
and pointed digitally continuous functions to the category of groups and group homomorphisms.

We now describe the notion of trivial extension which is used to allow a loop to stretch and remain in
the same pointed homotopy class.
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Definition 2.9. ([10]) Let f and f ′ be digital k-loops in a pointed digital image (Y, y0). We say that f ′ is a
trivial extension of f if there are sets of k-paths { f1, f2, . . . , fs} and {F1,F2, . . . ,Ft} in Y such that

1. s ≤ t;
2. f = f1 ∗ f2 ∗ · · · ∗ fs;
3. f ′ = F1 ∗ F2 ∗ · · · ∗ Ft; and
4. there are indices 1 ≤ i1 < i2 < · · · < is ≤ t such that

• Fi j = f j, 1 ≤ j ≤ s; and

• i < {i1, i2, . . . , is} implies Fi is a trivial loop.

Example 2.10. If f1, f2, f3 : [0, 1]Z → Y are digital k-paths defined by
f1(0) = y0;
f1(1) = y1 = f2(0);
f2(1) = y2 = f3(0);
f3(1) = y0;

and if F1,F2,F3,F4 : [0, 1]Z → Y are digital k-paths defined by
F1(0) = y0 = F1(1) = F2(0);
F2(1) = y1 = F3(0);
F3(1) = y2 = F4(0);
F4(1) = y0,

then the digital k-loop f ′ : [0, 4]Z → Y defined by

f ′ = F1 ∗ F2 ∗ F3 ∗ F4

is a trivial extension (see Figure 1) of the digital k-loop f : [0, 3]Z → Y defined by

f = f1 ∗ f2 ∗ f3.

In a homotopical point of view,
[ f ′] = [F1 ∗ F2 ∗ F3 ∗ F4]

= [F1] + [F2] + [F3] + [F4]
= [e1] + [ f1] + [ f2] + [ f3]
= [e1] + [ f1 ∗ f2 ∗ f3]
= [e1] + [ f ],

where e1 : [0, 1]Z → Y is a constant function at y0.

f1(0)= f3(1)=y0

s
f1(1)= f2(0)=y1

s
�

�
�

�
�

�

f2(1)= f3(0)=y2

s
F1(0)=F1(1)=F2(0)=F4(1)

=y0

s
F2(1)=F3(0)=y1

s
�

�
�

�
�

�

F3(1)=F4(0)=y2

s
Figure 1: The image of f on the left, and the image of f ′ on the right
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We end this section with digital notions of homotopy equivalence and nullhomotopy just like those of
classical homotopy theory: Let f : Y → Z be a (k1, k2)-continuous function and 1 : Z → Y be a (k2, k1)-
continuous function such that

1 ◦ f '(k1,k1) 1Y and f ◦ 1 '(k2,k2) 1Z.

Then f : Y → Z is said to be a (k1, k2)-homotopy equivalence [7]. Moreover, we say Y and Z have the
same (k1, k2)-homotopy type and that Y and Z are (k1, k2)-homotopy equivalent. A digital continuous function
f : Y → Z is digitally nullhomotopic in Z if f is digitally homotopic in Z to a constant function [6]. We can
also consider the pointed digital homotopy equivalences between pointed digitally continuous functions.

It is well known that if f : (Y, y0) → (Z, z0) is a (k1, k2)-homotopy equivalence between pointed digital
images with k1- and k2-adjacency relations, respectively, then f induces an isomorphism π1( f ) : πk1

1 (Y, y0)→
πk2

1 (Z, z0) between digital fundamental groups (see [6, Theorem 4.14] and [7, Theorem 4.1]).

3. Digital Wedges and Digitally Quasi Comultiplications

Let Zα, α ∈ Γ be a collection of (disjoint) spaces with base point zα ∈ Zα. The wedge product (or one-point
union)

∨
α∈Γ Zα is defined to be the quotient space Z/Z0, where Z is the disjoint union of the spaces Zα, and

Z0 is the subspace consisting of all the base points zα; the base point of
∨
α∈Γ Zα is the point corresponding

to Z0. In other words,
∨
α∈Γ Zα is the space obtained from Z by identifying together the base points zα, α ∈ Γ

in algebraic topology.
A graph product is a certain kind of binary operation on graphs such as the cartesian product, tensor

product, lexicographical product, normal product, conormal product and rooted product. Recall that the
cartesian product [4] of simple graphs G and H is the graph G�H whose vertex set is V(G)×V(H) and whose
edge set is the set of all pairs (u1, v1)(u2, v2) such that either u1u2 ∈ E(G) and v1 = v2, or v1v2 ∈ E(H) and
u1 = u2. In this section we use the cartesian product as graph products.

We now consider the digital version of the wedge product of digital images with adjacency relations as
follows (see [9] and [24, 26] for the original definition):

Definition 3.1. Let (Y, y0) and (Z, z0) be the pointed digital images with k(u,n)-adjacency relations in Zn.
The digital wedge product Y ∨ Z is defined by

Y ∨ Z = Y × {z0} ∪ {y0} × Z ⊂ Y × Z

which is the pointed digital image with k(u, 2n)-adjacency and base point (y0, z0) inZ2n. Here the cartesian
product in graph theory is assumed.

Let (Y, y0), (Y1, ȳ0) and (Y2, ȳ0) be the pointed digital images with k(u,n)-adjacency relations in Zn such
that

(1) Y1 ∩ Y2 = {ȳ0}, a single point set; and
(2) any element of Y1 − {ȳ0} is not a k(u,n)-neighbor of any element of Y2 − {ȳ0}.

If ψ1 : (Y, y0) → (Y1, ȳ0) and ψ2 : (Y, y0) → (Y2, ȳ0) are the base point preserving digital (k(u,n), k(u,n))-
homeomorphisms in Zn, then the function ψ : Y ∨ Y→ Y1 ∨ Y2 defined by ψ = ψ1 ∨ ψ2, explicitly,ψ(y, y0) = (ψ1 ∨ ψ2)(y, y0) = (ψ1(y), ȳ0) ∈ Y1 × {ȳ0}; and

ψ(y0, y) = (ψ1 ∨ ψ2)(y0, y) = (ȳ0, ψ2(y)) ∈ {ȳ0} × Y2,

are (k(u, 2n), k(u, 2n))-homeomorphism. Since the functions η1 : Y1 × {ȳ0} → Y1 and η2 : {ȳ0} × Y2 → Y2
defined by η1(y1, ȳ0) = y1; and

η2(ȳ0, y2) = y2
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are a (k(u, 2n), k(u,n))-homeomorphisms, the function η : Y1 ∨ Y2 → Y1 ∪ Y2 defined byη(y1, ȳ0) = η1(y1, ȳ0) = y1; and
η(ȳ0, y2) = η2(ȳ0, y2) = y2

is well-defined and a (k(u, 2n), k(u,n))-homeomorphism. By using those homeomorphisms, we can identify
the digital wedge product Y ∨ Y with Y1 ∪ Y2 as the digital image with k(u,n)-adjacency and base point ȳ0
in Zn.

We now give examples of the digital simple closed 18-curves in Z3 and the digital homeomorphisms
which will be used in this paper.

Example 3.2. The following are some examples of the digital simple closed 18-curves in Z3.

(1) X1 = {x1
i | i = 0, 1, 2, . . . , 7} ⊂ Z3, where x1

0 = (0, 0, 0), x1
1 = (1, 1, 0), x1

2 = (2, 2, 0), x1
3 = (1, 3, 0), x1

4 =

(0, 4, 0), x1
5 = (−1, 3, 0), x1

6 = (−2, 2, 0), x1
7 = (−1, 1, 0) (see Figure 2);

(2) X2 = {x2
i | i = 0, 1, 2, . . . , 7} ⊂ Z3, where x2

0 = (0, 0, 0), x2
1 = (−1,−1, 0), x2

2 = (−2,−2, 0), x2
3 = (−1,−3, 0),

x2
4 = (0,−4, 0), x2

5 = (1,−3, 0), x2
6 = (2,−2, 0), x2

7 = (1,−1, 0);
(3) X3 = {x3

i | i = 0, 1, 2, . . . , 7} ⊂ Z3, where x3
0 = (0, 0, 0), x3

1 = (1, 0, 1), x3
2 = (2, 0, 2), x3

3 = (1, 0, 3), x3
4 =

(0, 0, 4), x3
5 = (−1, 0, 3), x3

6 = (−2, 0, 2), x3
7 = (−1, 0, 1); and

(4) X4 = {x4
i | i = 0, 1, 2, . . . , 7} ⊂ Z3, where x4

0 = (0, 0, 0), x4
1 = (−1, 0,−1), x4

2 = (−2, 0,−2), x4
3 = (−1, 0,−3),

x4
4 = (0, 0,−4), x4

5 = (1, 0,−3), x4
6 = (2, 0,−2), x4

7 = (1, 0,−1).

PPPPPPPPPPPPPPPq y

y

����������)x

x

.

6

z

1

1

2

3

4

-1

-2

1

2

3

ux1
7

ux1
6ux1

5ux1
4u

x1
3

ux1
2

ux1
1

u
x1

0

Figure 2: Digital simple closed 18-curve X1 in Z3

Convention We work on the digital images with 4-adjacency relation on Z2 and the 18-adjacency relation
onZ3 in the rest of the paper. The point xi

0 = (0, 0, 0) ofZ3 in Example 3.2 will be denoted by x0 as the base
point of Xi for i = 1, 2, 3, 4. And we will make use of the notations listed at the end of the article.

We remark that Xi ≈(18,18) X j for each i, j = 1, 2, 3, 4. We also note that

Xu ∨ Xu = Xu × {x0} ∪ {x0} × Xu = {(xu
i , x0), (x0, xu

i ) | i = 0, 1, . . . , 7}

with k(2, 6)-adjacency for u = 1, 2, 3, 4.

Example 3.3. Let 
α : Xu ∨ Xu → Xs ∨ Xt, (s, t,u = 1, 2, 3, 4);
β : Xs ∨ Xt → Xs ∪ Xt, (s, t = 1, 2, 3, 4); and
γ : X1 ∨ X2 ∨ X3 ∨ X4 → X1 ∪ X2 ∪ X3 ∪ X4
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be the functions defined by 

α(xu
i , x0) = (xs

i , x0); α(x0, xu
i ) = (x0, xt

i);
β(xs

i , x0) = xs
i ; β(x0, xt

i) = xt
i ;

γ(x1
i , x0, x0, x0) = x1

i ;
γ(x0, x2

i , x0, x0) = x2
i ;

γ(x0, x0, x3
i , x0) = x3

i ; and
γ(x0, x0, x0, x4

i , ) = x4
i .

Then it is easy to see that α, β and γ are well-defined and that they are bijective functions. Further-
more, α is a (k(2, 6), k(2, 6))-homeomorphism, β is a (k(2, 6), 18)-homeomorphism, and γ is a (k(2, 12), 18)-
homeomorphism. Similarly

(X1 ∨ X2) ∨ (X1 ∨ X2) ≈(k(2,12),k(2,12)) X1 ∨ X2 ∨ X3 ∨ X4.

We now describe the basic notions in algebraic topology. In the category of pointed and connected
CW-spaces, a pair ((Z, z0), ϕ) consisting of a pointed space (Z, z0) and a function ϕ : Z → Z ∨ Z is called a
co-H-space if p1ϕ = 1 and p2ϕ = 1, where p1 and p2 are the projections Z ∨ Z→ Z onto the first and second
summands of the wedge product and 1 is the identity map of Z. In this case, the map ϕ : Z → Z ∨ Z is
called a comultiplication. Equivalently, (Z, ϕ) is a co-H-space if Jϕ = ∆ : Z→ Z × Z, where ∆ is the diagonal
map and J : Z ∨ Z→ Z × Z is the inclusion.

It is well known that the Whitehead products in algebraic topology have the properties of biadditivity
and anticommutativity. In addition, there is the Jacobi identity for the Whitehead products (see [14, Theorem
5.3] and [26, pp. 472-478]) as follows: If a ∈ πp(Y), b ∈ πq(Y) and c ∈ πr(Y), then

(−1)p(r−1)[a, [b, c]] + (−1)q(p−1)[b, [c, a]] + (−1)r(q−1)[c, [a, b]] = 0.

If a, b, c ∈ πp(Y), then
[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Can we construct the digital versions of the notions above? The following gives an answer to this
question.

Definition 3.4. A pair ((Y, y0), ϕY) consisting of a pointed digital image (Y, y0) with k-adjacency and a
(k, k)-continuous function ϕY : Y → Y ∨ Y is called a digitally quasi co-H-space if for a given digital k-loop
f : [0,m]Z → (Y, y0), there exists a digital k-loop f ′ : [0,n]Z → (Y, y0) such that

• p1 ◦ ϕY ◦ f ′ is the trivial extension of f ; or

• p2 ◦ ϕY ◦ f ′ is the trivial extension of f .

Here, p1 : Y ∨ Y → Y and p2 : Y ∨ Y → Y are the first and second projections, respectively. The above
(k, k)-continuous function ϕY : Y→ Y ∨ Y is called a digitally quasi comultiplication of Y.

Example 3.5. The (18, 18)-continuous functions

ι1 : X(= X1∨2)→ X ∨ X(= X1∨2∨3∨4)

and
ι2 : X(= X1∨2)→ X ∨ X(= X1∨2∨3∨4)

defined by ι1(x j
i ) = x j

i and ι2(x j
i ) = x j+2

i , respectively, are the digitally quasi comultiplications of X, where
i = 0, 1, . . . , 7 and j = 1, 2 (see the list of notations at the end of this paper).

Let f1, f2 : [0, 8]Z → X1∨2 be the (2, 18)-continuous functions defined by
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• f1({0, 8}) = x0 = f2({0, 8});

• f1(i) = x1
i for i = 1, 2, . . . , 7; and

• f2(i) = x2
i for i = 1, 2, . . . , 7;

that is, f1 and f2 are digital 18-loops going around X1 and X2 just once, respectively. We note thatπ18
1 (X1∨2, x0)

is a free group on two generators [ f1] and [ f2] (cf. [9] and see also [22, Theorem 71.1] for detail in the case
of algebraic topology).

Definition 3.6. ([6]) Let f : [0,m]Z → Y be the digital k-loop in the digital image Y with the k-adjacency.
Then the digital k-loop f̄ : [0,m]Z → Y defined by f̄ (i) = f (m − i) is called the reverse of f

The k-loop class [ f̄ ] of the reverse f̄ plays a role of the inverse of [ f ] in the digital fundamental group
just like the classical homotopy theory.

Let (S, s0) = {si | i = 0, 1, 2, . . . , 32} ⊂ Z2 be the pointed digital image with the 4-adjacency relation and
base point s0 as a digital simple closed 4-curve, where s0 = (0, 0), s1 = (1, 0), s2 = (2, 0), s3 = (3, 0), s4 =
(4, 0), s5 = (5, 0), s6 = (6, 0), s7 = (7, 0), s8 = (8, 0), s9 = (8, 1), s10 = (8, 2), s11 = (8, 3), s12 = (8, 4), s13 = (8, 5), s14 =
(8, 6), s15 = (8, 7), s16 = (8, 8), s17 = (7, 8), s18 = (6, 8), s19 = (5, 8), s20 = (4, 8), s21 = (3, 8), s22 = (2, 8), s23 =
(1, 8), s24 = (0, 8), s25 = (0, 7), s26 = (0, 6), s27 = (0, 5), s28 = (0, 4), s29 = (0, 3), s30 = (0, 2), s31 = (0, 1), s32 = (0, 0).
Then we can think of this finite sequence in set theory as the image of the the digital 4-loop s : [0, 32]Z → S
defined by s(i) = si for i = 0, 1, 2, . . . , 32, where s(32) = s32 = s0. We now define the following:

Definition 3.7. The digital Whitehead product (see Figure 3) denoted by [ f1, f2]dW of f1 and f2 is the (4, 18)-
continuous map

[ f1, f2]dW : S→ X1∨2

defined by

[ f1, f2]dW(si) =


f1(i) if 0 ≤ i ≤ 8;
f2(i mod 8) if 8 ≤ i ≤ 16;
f̄1(i mod 8) if 16 ≤ i ≤ 24;
f̄2(i mod 8) if 24 ≤ i ≤ 32.
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Figure 3: Images of the digital Whitehead product [ f1, f2]dW : The digital interval [0, 8]Z gets wrapped by f1 and f2 (or f̄1 and f̄2) in a
counterclockwise (or clockwise) fashion around X1 and X2, respectively.

Indeed, [ f1, f2]dW is well-defined and it is not difficult to see that it is a pointed digitally (4, 18)-continuous
function.
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We note that the notion of Whitehead products, an Eckmann-Hilton dual of the Samelson products, of
homotopy classes in homotopy groups plays an important role in algebraic topology in that the graded
homotopy groups with the Whitehead products has the graded quasi-Lie algebra structure which is called
the Whitehead algebra [26]. Moreover, the digital Whitehead product [ f1, f2]dW is the commutator of the
digital k-loops f1 and f2 in the pointed digital images (X1∨2, x0), i.e., [ f1, f2]dW = f1 ∗ f2 ∗ f̄1 ∗ f̄2. Explicitly,

[ f1, f2]dW(si) =



x0 if i = 0, 8, 16, 24, 32;
x1

i if 1 ≤ i ≤ 7;
x2

i−8 if 9 ≤ i ≤ 15;
x1

24−i if 17 ≤ i ≤ 23;
x2

32−i if 25 ≤ i ≤ 31.

Given pointed digital images (Y1, y1) and (Y2, y2) with k-adjacency relations and base points y1 and y2,
respectively, in Zn, we denote by [(Y1, y1), (Y2, y2)] the set of pointed digital homotopy classes of pointed
(k, k)-continuous functions f : (Y1, y1)→ (Y2, y2) with f (y1) = y2.

Definition 3.8. The pointed digitally continuous function ∇ : (Y, y0) ∨ (Y, y0)→ (Y, y0) defined by

∇(y, y0) = y = ∇(y0, y)

is said to be the digital folding map.

We note that the digital folding map has a cross section. We also remark that if U and V are digital
images with k-adjacency relations in Zn such that U ≈(k,k) U′ and V ≈(k,k) V′ with U′ ∩ V′ = {ū}, a single
point set, and such that any element of U′−{ū} is not a k-neighbor of any element of V′−{ū}, then U∨V can
be considered as the pointed digital image (U′ ∪ V′, ū) with k-adjacency and base point ū in Zn via digital
homeomorphism, as described earlier. We need the following lemma to prove Theorem 3.10.

Lemma 3.9. For any pointed digital images (U,u0), (V, v0) and (W,w0) with k-adjacency relations in Zn,n ≥ 1, the
inclusions i : U ↪→ U∨V and j : V ↪→ U∨V as pointed (k, k)-continuous functions induce a bijection of [U∨V,W]
with the cartesian product [U,W] × [V,W].

Proof. Define a map
τ : [U ∨ V,W]→ [U,W] × [V,W]

by
τ([ f ]) = ([ f ◦ i], [ f ◦ j])

for [ f ] ∈ [U ∨ V,W]. To prove τ is a bijection, we define

σ : [U,W] × [V,W]→ [U ∨ V,W]

by
σ([1], [h]) = [∇ ◦ (1 ∨ h)],

where ∇ : W ∨W → W is the digital folding map. We note that if 1 : U → W and h : V → W are pointed
digitally (k, k)-continuous functions, then the function

1 ∨ h : U ∨ V →W ∨W

defined by (1 ∨ h)(u, v0) = (1(u),w0),
(1 ∨ h)(u0, v) = (w0, h(v))
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is also a pointed digitally (k, k)-continuous function via digital homeomorphisms. Thus, we have

σ ◦ τ([ f ]) = σ([ f ◦ i], [ f ◦ j])
= [∇ ◦ ( f ◦ i ∨ f ◦ j)]
= [ f ].

The last equality is obtained from the following facts:

∇ ◦ ( f ◦ i ∨ f ◦ j)(u, v0) = ∇ ◦ ( f ∨ f ) ◦ (i ∨ j)(u, v0)
= ∇ ◦ ( f ∨ f )((u, v0), (u0, v0))
= ∇( f (u, v0),w0)
= f (u, v0),

and
∇ ◦ ( f ◦ i ∨ f ◦ j)(u0, v) = ∇ ◦ ( f ∨ f ) ◦ (i ∨ j)(u0, v)

= ∇ ◦ ( f ∨ f )((u0, v0), (u0, v))
= ∇(w0, f (u0, v))
= f (u0, v).

On the other hand, since
(∇ ◦ (1 ∨ h) ◦ i)(u) = ∇ ◦ (1 ∨ h)(u, v0)

= ∇(1(u), h(v0))
= ∇(1(u),w0)
= 1(u),

and
(∇ ◦ (1 ∨ h) ◦ j)(v) = ∇ ◦ (1 ∨ h)(u0, v)

= ∇(1(u0), h(v))
= ∇(w0, h(v))
= h(v),

we get
τ ◦ σ([1], [h]) = τ([∇ ◦ (1 ∨ h)])

= ([∇ ◦ (1 ∨ h) ◦ i], [∇ ◦ (1 ∨ h) ◦ j])
= ([1], [h]).

Thus τ is a bijection as required.

Even though algebraic or topological devices have been incredibly developed since the 1930s (originally
H. Poincaré in the 1890s), there are no general solutions for computing the unstable (even stable) homotopy
groups of a space [25]. As previously mentioned in the introduction, it is worth noting how the cardinality
of the set of homotopy classes satisfying certain conditions could be calculated. It is, however, difficult for us
to compute the cardinality of homotopy groups of a pointed topological space (or a pointed digital image)
except for very special cases. Indeed, only a few results have been known so far. Motivated by this, we now
calculate the cardinality of the set of digital homotopy classes based on digitally quasi comultiplications of
the digital wedge products as follows:

Let ϕ : X → X ∨ X be a digitally quasi comultiplication of X. Then for a given digital 18-loop
ω : [0,m]Z → (X, x0), there exists at least one digital 18-loop ω′ : [0,n]Z → (X, x0) such that the composite
of ϕ ◦ ω′ with the first projection or the second projection is a trivial extension of ω. It raises the following
question. How many digital homotopy classes [ϕ ◦ ω′] ∈ π18

1 (X ∨ X, x0) making ϕ : X → X ∨ X into the
digitally quasi comultiplication are there? We are mainly interested in these digital homotopy classes [ϕ◦ω′]
because we can construct a digitally quasi co-H-space ((X, x0), ϕ) depending on the digital homotopy class.
So we let

HDCω = { [ϕ ◦ ω′] ∈ π18
1 (X ∨ X, x0)|π1∨2 ◦ ϕ ◦ ω

′ or π3∨4 ◦ ϕ ◦ ω
′ is a trivial extension of ω}.

Then we have an answer to this query in a particular case as follows:
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Theorem 3.10. Letϕ : X→ X∨X be an (18, 18)-continuous function, and let f1 : [0, 8]Z → X and f2 : [0, 8]Z → X
be the digital 18-loops defined by f1(i) = x1

i and f2(i) = x2
i for i = 0, 1, 2, . . . , 8 in the pointed digital images (X1, x0)

and (X2, x0), respectively. Let N(HDC fi ), i = 1, 2 be the cardinal number of the set HDC fi , i = 1, 2 of digital homotopy
classes [ϕ ◦ f ′i ], i = 1, 2. Then N(HDC fi ) = ℵ0 for i = 1, 2.

Proof. Since X = X1∨2 ≈(18,k(2,6)) X1 ∨ X2, by Lemma 3.9, there is a bijection of [X,X ∨ X] with [X1,X ∨ X] ×
[X2,X ∨ X], i.e., any map defined on the wedge X(≈(18,k(2,6)) X1 ∨ X2) can be expressed by each factor as a
kind of coordinate functions. Thus, by considering

X ∨ X = X1∨2∨3∨4 ≈(18,k(2,12)) X1 ∨ X2 ∨ X3 ∨ X4,

we now consider the composite functions ϕ ◦ f ′i of fi, i = 1, 2 and the (18, 18)-continuous function ϕ : X →
X ∨ X defined byϕ ◦ f ′1 = ι1 ◦ f1 ∗ ι2 ◦ f1 ∗ (h1 ∨ h2) ◦ [ f1, f2]dW ◦ an; and

ϕ ◦ f ′2 = ι1 ◦ f2 ∗ ι2 ◦ f2 ∗ (h1 ∨ h2) ◦ [ f1, f2]dW ◦ bm. (?)

Here

(1) f ′1 : [0, 16 + 32n]Z → X and f ′2 : [0, 16 + 32m]Z → X are digital 18-loops;
(2) an : [0, 32n]Z → S and bm : [0, 32m]Z → S are the digital 18-loops in the pointed digital image

(S, s0) ⊂ Z2 based at s0 = (0, 0), i.e., [an], [bn] ∈ π4
1(S, s0); and

(3) the composite functions are obtained, via digital homeomorphisms, as follows:

[0, 32n]Z
an

(2,4)−conti
// S

[ f1, f2]dW

(4,18)−conti
// X1∨2 ≈(18,k(2,6)) X1 ∨ X2

h1∨h2

(k(2,6),k(2,6))−conti
// X1∨2 ∨ X3∨4 ≈(k(2,6),18) X1∨2∨3∨4 = X ∨ X,

and similarly for the second equation.
From the constructions above, the followings are straightforward:

(1) π1∨2 ◦ ι1 = 1X1∨2 ;
(2) π3∨4 ◦ ι1 = cx0 (a constant function at x0);
(3) π1∨2 ◦ ι2 = cx0 (a constant function at x0);
(4) (π3∨4 ◦ ι2)(x1

i ) = x3
i for i = 0, 1, 2, . . . , 7; and

(5) (π3∨4 ◦ ι2)(x2
i ) = x4

i for i = 0, 1, 2, . . . , 7.

Moreover, by using the same notations of digitally continuous functions, via digital homeomorphisms,
X1∨2 ≈(18,k(2,6)) X1 ∨ X2, X3∨4 ≈(18,k(2,6)) X3 ∨ X4, and X1∨2∨3∨4 ≈(18,k(2,12)) X1 ∨ X2 ∨ X3 ∨ X4, we have the
following commutative diagrams:

[0, 8]Z
f1 //

f1
��

(X1 ∨ X2, x0)

h1∨h2

��
(X1 ∨ X2, x0)

ι1 // (X1 ∨ X2 ∨ X3 ∨ X4, x0)

and

[0, 8]Z
f2 //

f2
��

(X1 ∨ X2, x0)

h1∨h2

��
(X1 ∨ X2, x0)

ι2 // (X1 ∨ X2 ∨ X3 ∨ X4, x0).
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Since the digital fundamental group construction induces a covariant functor, it can be seen that if F :
(A, a0) → (B, b0) is a pointed digitally (k, k)-continuous function, then the map πk

1(F) : πk
1(A, a0) → πk

1(B, b0),
defined by πk

1(F)([ f ]) = [F ◦ f ], where [ f ] ∈ πk
1(A, a0) is a group homomorphism. Indeed,

πk
1([ f ∗ 1]) = [F ◦ ( f ∗ 1)]

= [(F ◦ f ) ∗ (F ◦ 1)]
= [(F ◦ f )] + [(F ◦ 1)]
= πk

1([ f ]) + πk
1([1]).

Thus, by applying the projection π1∨2 on the above equation (?), we have

π1∨2 ◦ ϕ ◦ f ′1 = π1∨2 ◦ ι1 ◦ f1 ∗ π1∨2 ◦ ι2 ◦ f1 ∗ π1∨2 ◦ (h1 ∨ h2) ◦ [ f1, f2]dW ◦ an
= f1 ∗ cx0 ◦ f1 ∗ π1∨2 ◦ [ι1 ◦ f1, ι2 ◦ f2]dW ◦ an
= f1 ∗ e8 ∗ [π1∨2 ◦ ι1 ◦ f1, π1∨2 ◦ ι2 ◦ f2]dW ◦ an
= f1 ∗ e8 ∗ [1X1∨2 ◦ f1, cx0 ◦ f2]dW ◦ an
= f1 ∗ e8 ∗ [ f1, e8]dW ◦ an
= f1 ∗ e8 ∗ e32n,

that is,

π1∨2 ◦ ϕ ◦ f ′1(x) =


f1(x) for 0 ≤ i ≤ 8;
x0 for 8 ≤ i ≤ 16;
x0 for 16 ≤ i ≤ 32n.

Thus π1∨2 ◦ ϕ ◦ f ′1 is a trivial extension of f1. Indeed, the composite

π18
1 (X, x0)

ι2∗ // π18
1 (X ∨ X, x0)

π1∨2∗ // π18
1 (X, x0)

is trivial, where ι2∗ and π1∨2∗ are the induced homomorphisms induced by ι2 and π1∨2, respectively, between
digital 18-fundamental groups, X = X1∨2 and X ∨ X = X1∨2∨3∨4 with 18-adjacency and base point x0
considered inZ3 via digital homeomorphisms. The constant function e32n in the above equation is derived
from the fact that the digital Whitehead product [ f1, e8]dW of f1 and e8 is also a constant function, because

[ f1, e8]dW = [ f1 ∗ e8 ∗ f̄1 ∗ ē8]
= [ f1 ∗ f̄1]
= [cx0 ],

so cx0 ◦ an = e32n. Similarly, we have

(1) π3∨4 ◦ ϕ ◦ f ′1 is a trivial extension of f1;
(2) π1∨2 ◦ ϕ ◦ f ′2 is a trivial extension of f2; and
(3) π3∨4 ◦ ϕ ◦ f ′2 is a trivial extension of f2.

In order to calculate the cardinality of the set of digital homotopy classes [ϕ ◦ f ′1] ∈ π18
1 (X ∨ X, x0) making

ϕ : X → X ∨ X into a digitally quasi comultiplication, it suffices to check that the conditions of digitally
quasi comultiplications are satisfied only for the free generators, [ f1] and [ f2], of the digital fundamental
group π18

1 (X, x0) which is the free product of two infinite cyclic groups; that is, a free group on these two
generators. Indeed, the digital wedge product X = Xs ∨ Xt (s, t = 1, 2, 3, 4) plays a role of the figure-eight
space, i.e., a bouquet of two circles (see [20, pp. 123-124]).

Let f : [0, 32]Z → (S, s0) be a digital 4-loop in the pointed digital image (S, s0) with 4-adjacency in Z2

defined by

f (i) =

s0 for i = 0, 32;
si for 1 ≤ i ≤ 31.
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Then by using the same methods as in [22, p. 345], we can see that the digital 4-fundamental group of (S, s0)
becomes the infinite cyclic group generated by the digital 4-loop class [ f ] (see also [8]), i.e.,

π4
1(S, s0) � < [ f ] > � 32Z.

We note that

(1) the identity [e] of π4
1(S, s0) is the class of a constant function;

(2) the inverse [ f ]−1 of the digital 4-loop class [ f ] in π4
1(S, s0) is the class [ f̄ ] of the digital 4-loop f̄ :

[0, 32]Z → (S, s0) defined by f̄ (i) = f (32 − i) = s32−i; and
(3) the digital 4-loop class n[ f ] means the class of the (2, 4)-continuous function

n f = f ∗ f ∗ · · · ∗ f︸         ︷︷         ︸ : [0, 32n]Z −→ (S, s0)

(n times)

defined by (n f )(i mod 32) = f (i).

Finally, we also note that the set of digitally quasi comultiplications of X(= X1∨2) is nonempty and finite,
and we can identify an with n f , and bm with m f from π4

1(S, s0) = 32Z so that the cardinal number of a set
of digital homotopy classes [ϕ ◦ f ′1] based on the digitally quasi comultiplication ϕ : X → X ∨ X has the
cardinality ℵ0, and similarly for [ϕ ◦ f ′2], as required.

We remark that the digital image (S, s0) with 4-adjacency in Z2 plays a role of the unit circle (S1, (1, 0))
in the 2-dimensional Euclidean space. Indeed, the fundamental group π1(S1, (1, 0)) of the unit circle S1 is
isomorphic to the additive group of integers Z, but for n ≥ 2, π1(Sn, (1, 0, . . . , 0)) is the trivial group.

Let (Y, y0) be a digital image with k-adjacency in Zn. Let A ⊂ Y and let r : Y → A be a digitally
(k, k)-continuous function such that r(a) = a for all a ∈ A, i.e., the following diagram commutes:

Y r // A

A,
?�

i

OO

1A

88

where 1A : A → A is the identity map on A. Such a map r : Y → A is called a digital retraction [5], and A is
said to be a digital retract of Y.

Example 3.11. Let A = X1 and Y = A ∪ {u} with the 18-adjacency relation on Z3, where u = (−1, 0, 0) ∈ Z3.
We define a (18, 18)-continuous function r : Y→ A by

r(y) =

y for y ∈ A;
x0 = (0, 0, 0) for y = u.

Then r : Y→ A is a digital retraction (see Figure 4).
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Figure 4: Image of the digital retraction r : Y → A in the xy-plane with z = 0: The point u goes to x0 = (0, 0, 0) under the digital
retraction r : Y→ A, and the elements of A are the fixed points of r.

It is well known that the (digital) retraction induces an epimorphism between (digital) fundamental
groups [7], as well as many kinds of algebraic tools in algebraic topology such as higher homotopy groups,
homology groups and more generally all homology theories. This raises the basic question concerning with
a digital homotopical viewpoint: For a given digitally quasi co-H-space ((Y, y0), ϕY) with y0 ∈ A $ Y, can
we construct a digitally quasi comultiplication of A? The following answers to this question.

Theorem 3.12. Let ((Y, y0), ϕY) be a digitally quasi co-H-space consisting of a pointed digital image (Y, y0) with
k-adjacency and a (k, k)-continuous function ϕY : Y → Y ∨ Y. If r : Y → A is a digital retraction, then (A, ϕA) is a
digital quasi co-H-space with a (k, k)-continuous function ϕA : A→ A∨A as a digitally quasi comultiplication of A.

Proof. Let f : [0,m]Z → (Y, y0) be any digital k-loop in (Y, y0). Since ϕY : Y → Y ∨ Y is a digitally quasi
comultiplication, there is a digital k-loop f ′ : [0,n]Z → (Y, y0) such that p1 ◦ϕY ◦ f ′ or p2 ◦ϕY ◦ f ′ is a trivial
extension of f , where p1 : Y ∨ Y → Y and p2 : Y ∨ Y → Y are the first and second projections, respectively.
Thus we have the following commutative diagrams

[0,n]Z
f ′ // Y

ϕY //

p1◦ϕY

��

Y ∨ Y

p1

��

or [0,n]Z
f ′ // Y

ϕY //

p2◦ϕY

��

Y ∨ Y

p2

��
[0,m]Z

f // Y [0,m]Z
f // Y.

Let 1 : [0,m]Z → A be a digital k-loop in A, and let q1 : A ∨ A → A and q2 : A ∨ A → A be the first
and second projections, respectively. Then by restricting the digital image Y to A with the k-adjacency
and by considering the hypotheses, we have the following commutative diagram (similarly, for the second
projections p2 : Y ∨ Y→ Y and q2 : A ∨ A→ A)

[0,n]Z
∃1′ // A �

� i // Y

p1◦ϕY

��

ϕY // Y ∨ Y r∨r //

p1

��

A ∨ A

q1

}}
[0,m]Z

1 // A �
� i // Y r // A.

Indeed,

(1) q1 ◦ (r ∨ r)(y, y0) = q1(r(y), y0) = r(y) = r ◦ p1(y, y0);
(2) q1 ◦ (r ∨ r)(y0, y) = q1(y0, r(y)) = y0 = r(y0) = r ◦ p1(y0, y);
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(3) q2 ◦ (r ∨ r)(y, y0) = q2(r(y), y0)) = y0 = r(y0) = r ◦ p2(y, y0);
(4) q2 ◦ (r ∨ r)(y0, y) = q2(y0, r(y)) = r(y) = r ◦ p2(y0, y); and
(5) the existence of a digital k-loop 1′ : [0,n]Z → A can be guaranteed becauseϕY : Y→ Y∨Y is a digitally

quasi comultiplication of Y with A ⊂ Y.

Since ((Y, y0), ϕY) is a digitally quasi co-H-space, the composite p1 ◦ ϕY ◦ i ◦ 1′, via the inclusion i : A ↪→ Y,
is a trivial extension of i ◦ 1, or p2 ◦ ϕY ◦ i ◦ 1′ is a trivial extension of i ◦ 1.

We now define ϕA : A→ A ∨ A by
ϕA = (r ∨ r) ◦ ϕY ◦ i.

Then the following diagrams are commutative:

A
ϕA //� _

i

��

A ∨ A
q1 // A and A

ϕA //� _

i

��

A ∨ A
q2 // A

Y
ϕY // Y ∨ Y

p1 //

r∨r

OO

Y

r

OO

Y
ϕY // Y ∨ Y

p2 //

r∨r

OO

Y.

r

OO

Moreover, we have
q1 ◦ ϕA ◦ 1

′ = q1 ◦ (r ∨ r) ◦ ϕY ◦ i ◦ 1′

= r ◦ p1 ◦ ϕY ◦ i ◦ 1′.

Since p1 ◦ϕY ◦ i◦1′ is a trivial extension of i◦1, we can see that q1 ◦ϕA ◦1
′ is a trivial extension of 1(= r◦ i◦1)

which shows that ϕA : A → A ∨ A is a digitally quasi comultiplication of A. Similarly for the projections
p2 : Y ∨ Y→ Y and q2 : A ∨ A→ A, as required.

Example 3.13. Let ϕ : X → X ∨ X be a digitally quasi comultiplication of X = X1∨2 and let r : X → X1 be a
digital retraction (see Figure 5) defined by

r(xt
s) =

xt
s for s = 0, 1, . . . , 7 and t = 1;

x0 = (0, 0, 0) for s = 0, 1, . . . , 7 and t = 2.

Then ϕX1 = (r∨ r) ◦ϕ ◦ i : X1 → X1 ∨X1 becomes a digitally quasi comultiplication of X1, where i : X1 ↪→ X
is the inclusion.

PPPPPPPPPPPPPPPq y

y

.����������)x

x

.
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1

2

3
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Figure 5: Image of the digital retraction r : X→ X1: The points x2
s , s = 0, 1, 2, . . . , 7 go to x0 = (0, 0, 0), and the points x1

s , s = 0, 1, 2, . . . , 7
have remained fixed under the digital retraction r : X→ X1.
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4. Summary and further work

By using the basic properties of digital images and the digital Whitehead products, we have constructed
the fundamental concepts of digitally quasi co-H-spaces and developed a method of calculating the cardinal
number of digital homotopy classes based on the digitally quasi comultiplications of the digital wedge
products of pointed digital images as a particular case. We have also introduced a new method for
constructing a digitally quasi co-H-space as a digital retract of a given digitally quasi co-H-space.

As a further work and a subsequent paper, using the singular (or simplicial) homology in algebraic
topology, we can consider a matter in all its aspects of the corresponding digital versions of homology
theory and (rational) homotopy theory from the computer science theoretical and digital topological points
of view.

List of Notations

We finally present some of the basic notations used in this paper as follows:

• For s, t = 1, 2, 3, 4 with s , t, we denote Xs∨t by the digital image Xs ∪ Xt with 18-adjacency and base
point x0 in Z3 which is (18, k(2, 6))-homeomorphic to Xs ∨ Xt, and similarly denote X1∨2∨3∨4 by the
digital image X1 ∪ X2 ∪ X3 ∪ X4 with 18-adjacency and base point x0 in Z3 (see Example 3.2).

• πs∨t : X1∨2∨3∨4 → Xs∨t is the projection to the (s, t)th factor among digital wedge products for s, t =
1, 2, 3, 4.

• h1 : X1 → X1∨2 is the (18, 18)-continuous function defined by h1(x1
i ) = x1

i for i = 0, 1, 2, . . . , 7.

• h2 : X2 → X3∨4 is the (18, 18)-continuous function defined by h2(x2
i ) = x4

i for i = 0, 1, 2, . . . , 7.

• ι1 : X1∨2 → X1∨2∨3∨4 is the (18, 18)-continuous function defined by ι1(x j
i ) = x j

i for i = 0, 1, . . . , 7 and
j = 1, 2.

• ι2 : X1∨2 → X1∨2∨3∨4 is the (18, 18)-continuous function defined by ι2(x j
i ) = x j+2

i for i = 0, 1, . . . , 7 and
j = 1, 2.

• en : [0,n]Z → X1∨2 is a constant function at x0 = (0, 0, 0).

• Since Xs∨t ≈(18,k(2,6)) Xs∨Xt for s, t = 1, 2, 3, 4, we denote any one of them by X as the digital image with
18-adjacency and base point x0 inZ3. Since X1∨X2∨X1∨X2 ≈(k(2,12),k(2,12)) X1∨X2∨X3∨X4 ≈(k(2,12),18)
X1∨2∨3∨4, we denote any one of them by X ∨ X as the digital image with 18-adjacency and base point
x0 in Z3.

• More generally, the digital wedge product Y ∨ Y denotes the pointed digital image (Y1 ∪ Y2, ȳ0) with
k(u,n)-adjacency in Zn. Here, as previously mentioned, Y1 ≈(k(u,n),k(u,n)) Y ≈(k(u,n),k(u,n)) Y2, Y1 ∩ Y2 is a
single point set {ȳ0}, and any element of Y1 − {ȳ0} is not a k(u,n)-neighbor of any element of Y2 − {ȳ0}.

• ℵ0 means the aleph-naught; that is, the cardinality of the set of all natural numbers.

Acknowledgement The author is grateful to the anonymous referees for a careful reading and many
helpful suggestions that improved the quality of the paper.

References

[1] M. Arkowitz, Co-H-spaces, Handbook of Algebraic Topology, North-Holland, New York, 1995, 1143-1173.
[2] M. Arkowitz, D.-W. Lee, Properties of comultiplications on a wedge of spheres, Topology Appl. 157 (2010) 1607–1621.
[3] M. Arkowitz, D.-W. Lee, Comultiplications of a wedge of two spheres, Science China Math. 54(2011) 9–22.
[4] J. A. Bondy, U.S.R. Murty, Graph Theory, Graduate Texts in Math. 244, Springer-Verlag, New York, Heidelberg, Berlin, 2008.
[5] L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15 (1994) 833–839.



D.-W. Lee / Filomat 31:7 (2017), 1875–1892 1892

[6] L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vis. 10 (1999) 51–62.
[7] L. Boxer, Properties of digital homotopy, J. Math. Imaging Vis. 22 (2005) 19–26.
[8] L. Boxer, Homotopy properties of sphere-like digital images, J. Math. Imaging Vis. 24 (2006) 167–175.
[9] L. Boxer, Digital products, wedges, and covering spaces, J. Math. Imaging Vis. 25 (2006) 159–171.

[10] L. Boxer, I. Karaca, Some properties of digital covering spaces, J. Math. Imaging Vis. 37 (2010) 17–26.
[11] T. Ganea, Cogroups and suspensions, Invent. Math. 9 (1970) 185–197.
[12] R. Gonzalez-Diaz, A. Ion, M. Iglesias-Ham, W.G. Kropatsch, Invariant representative cocycles of cohomology generators using

irregular graph pyramids, Computer Vision and Image Understanding 115 (2011) 1011–1022.
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