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Available at: http://www.pmf.ni.ac.rs/filomat

Semi-Fredholmness of the Discrete Gauss-Bonnet Operator

Ayadi Hèlaa
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Abstract. In the context of an infinite locally finite weighted graph, we give a necessary and sufficient
condition for semi-Fredholmness of the Gauss-Bonnet operator. This result is a discrete version of the
theorem of Gilles Carron in the continuous case [5]. In addition, using a criterion of Anghel [2], we give
a sufficient condition to have an operator of Gauss-Bonnet with closed range. Finally, this work can be
considered as an extension of the work of Colette Anné and Nabila Torki-Hamza [3].

1. Introduction

Dirac type operators have become of central importance in many branches of mathematics such as
PDE’s, differential geometry and topology (see [4], [7], [12]..), since the introduction in 1928 by the physicist
Paul Dirac of a first-order linear differential operator whose square is the Laplacian operator. In particular,
this paper focuses on the conditions to have semi-Fredholmness of the discrete Gauss-Bonnet operator
needed to approach the Hodge decomposition theorem [3]. In fact, we present a discrete version of the
work of G. Carron [5], which defines a new concept ”non-parabolicity at infinity” to have the Gauss-Bonnet
operator with closed range. Indeed, G. Carron’s condition is quite weaker than the one given by Anghel
[2]. Moreover, we provide a new sufficient condition to obtain a Gauss-Bonnet operator semi-Fredholm.
Finally, we give two explicit examples one example verifying the property of non-parabolicity at infinity,
and the other not.

2. Preliminaries

2.1. Definitions and notations
• A graph G is a couple (V,E) where V is a set at most countable whose elements are called vertices

and E is a set of oriented edges, considered as a subset ofV×V.

• If the graph G has a finite set of vertices, it’s called a finite graph. Otherwise, G is called infinite graph.

• We assume that E is symmetric without loops:

v ∈ V ⇒ (v, v) < E, (v1, v2) ∈ E ⇒ (v2, v1) ∈ E.
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• Choosing an orientation of G consists of defining a partition of E: E+
t E

− = E

(v1, v2) ∈ E+
⇔ (v2, v1) ∈ E−.

• For e = (v1, v2), we denote
e− = v1, e+ = v2 and − e = (v2, v1).

• The graph G is connected if, any two vertices x, y in V can be joined by a path of edges γxy, that
means,

γxy = {ek}k=1,...,n with e−1 = x, e+
n = y and i f n ≥ 2 , ∀ j ; 1 ≤ j ≤ (n − 1)⇒ e+

j = e−j+1.

• The degree (or valence) of a vertex x is the number of edges emanating from x. We denote

de1(x) := ]{e ∈ E; e− = x}.

• If de1(x) < ∞, ∀x ∈ V, we say that G is a locally finite graph.

2.2. The weighted graph
The weighted graph (G, c, r) is given by the graph G = (V,E), a weight on the vertices c :V →]0,∞[ and

a weight on the edges r : E →]0,∞[such that r(−e) = r(e).

Examples: - An infinite electrical network is a weighted graph (G, c, r) where the weights of the edges
called resistances r; their reciprocals are called conductances. And the weights of the vertices given by
c(x) =

∑
y∈V

1
r(x,y) < ∞, ∀x ∈ V.

-The graph G called a simple graph where the weights of the edges and the vertices equals 1.

All the graphs we shall consider on the sequel will be weighted, connected and locally finite.

2.3. The notion of subgraph
A subgraph of a graph G is a graph GK := (K,EK) such that K ⊂ V and EK := {e ∈ E; e−, e+

∈ K}.
For such a subgraph we define:

• the vertex boundary :
∂K := {x ∈ V \ K;∃y ∈ K, (x, y) ∈ E},

• the edge boundary:

∂EK := {e ∈ E; e− ∈ K and e+ < K or e+
∈ K and e− < K}.

2.4. Functional spaces
We denote the set of real functions onV by:

C(V) = { f :V → R}

and the set of functions of finite support by C0(V).

Moreover, we denote the set of real skewsymmetric functions on E by:

C
a(E) = {ϕ : E → R ;ϕ(−e) = −ϕ(e)}

and the set of functions of finite support by Ca
0(E).

We define on the weighted graph (G, c, r) the following function spaces endowed of the scalar products.
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a)

l2(V) :=

 f ∈ C(V);
∑
x∈V

c(x) f 2(x) < ∞

 ,
with the inner product 〈

f , 1
〉
V

=
∑
x∈V

c(x) f (x)1(x)

and the norm ∥∥∥ f
∥∥∥

l2(V)
=

√〈
f , f

〉
V
.

b)

l2(E) :=

ϕ ∈ Ca(E);
1
2

∑
e∈E

r(e)ϕ2(e) < ∞

 ,
with the inner product 〈

ϕ,ψ
〉
E

=
1
2

∑
e∈E

r(e)ϕ(e)ψ(e)

and the norm ∥∥∥ϕ∥∥∥
l2(E)

=
√〈
ϕ,ϕ

〉
E
.

As a consequence, we define the direct sums of l2(V) and l2(E) by:

l2(G) := l2(V) ⊕ l2(E) =
{
( f , ϕ), f ∈ l2(V) and ϕ ∈ l2(E)

}
,

with the norm ∥∥∥( f , ϕ)
∥∥∥2

l2(G)
:=

∥∥∥ f
∥∥∥2

l2(V)
+

∥∥∥ϕ∥∥∥2

l2(E)
.

2.5. Operators and properties

The difference operator: it is the operator

d : C0(V) −→ Ca
0(E),

given by
d( f )(e) = f (e+) − f (e−).

The coboundary operator: it is δ the formal adjoint of d. Thus it satisfies〈
d f , ϕ

〉
E

=
〈

f , δϕ
〉
V

(2.1)

for all f ∈ C0(V) and for all ϕ ∈ Ca
0(E).

As consequence, we have the following formula characterizing δ :

Lemma 2.1. The coboundary operator δ is characterized by the formula

δϕ(x) =
1

c(x)

∑
e,e+=x

r(e)ϕ(e),

for all ϕ ∈ Ca
0(E).
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Proof: For f ∈ C0(V) and ϕ ∈ Ca
0(E), using (2.1), we get〈

d f , ϕ
〉
E

=
1
2

∑
e∈E

r(e)d f (e)ϕ(e)

=
1
2

∑
e∈E

r(e)
(

f (e+) − f (e−)
)
ϕ(e)

=
1
2

∑
x∈V

f (x)

 ∑
e,e+=x

r(e)ϕ(e) −
∑

e,e−=x

r(e)ϕ(e)

 .
But, r(−e) = r(e) and

∑
e,e+=x

r(e)ϕ(e) = −
∑

e,e−=x

r(e)ϕ(e).

So we have,

〈
d f , ϕ

〉
E

=
∑
x∈V

c(x) f (x)

 1
c(x)

∑
e,e+=x

r(e)ϕ(e)


=

〈
f , δϕ

〉
V
.

�
We introduce now a very important result inspired by [11].

Lemma 2.2. Let x and x0 inV, then there exists a positive constant Cxx0 such that∣∣∣ f (x)
∣∣∣ ≤ Cxx0

(∣∣∣ f (x0)
∣∣∣ +

∥∥∥d f
∥∥∥

l2(E)

)
, (2.2)

for all f ∈ C0(V).

Proof: As G is connected, then we can find a path γxx0 joining x to x0, i.e,

γxx0 = {ek}k=1,...,n with e−1 = x, e+
n = x0 and i f n ≥ 2 , ∀ j ; 1 ≤ j ≤ (n − 1)⇒ e+

j = e−j+1.

Then, using the triangle inequality, we have∣∣∣ f (x) − f (x0)
∣∣∣ =

∣∣∣ f (x) − f (e+
1 ) + f (e+

1 ) − f (e+
2 ) + ... + f (e+

n−1) − f (x0)
∣∣∣

≤

∣∣∣d f (e1)
∣∣∣ +

∣∣∣d f (e2)
∣∣∣ + ... +

∣∣∣d f (en)
∣∣∣

≤

∑
e∈γxx0

1√
r(e)

√
r(e)

∣∣∣d f (e)
∣∣∣ .

Applying the Cauchy-Schwarz inequality, we obtain

∣∣∣ f (x) − f (x0)
∣∣∣ ≤  ∑

e∈γxx0

1
r(e)


1
2
 ∑

e∈γxx0

r(e)(d f (e))2


1
2

≤ Sxx0

∑
e∈E

r(e)(d f (e))2


1
2

≤ Sxx0

∥∥∥d f
∥∥∥

l2(E)
,

with Sxx0 =

 ∑
e∈γxx0

1
r(e)


1
2

.
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Thus, we deduce that∣∣∣ f (x)
∣∣∣ ≤ ∣∣∣ f (x) − f (x0)

∣∣∣ +
∣∣∣ f (x0)

∣∣∣
≤ Sxx0

∥∥∥d f
∥∥∥

l2(E)
+

∣∣∣ f (x0)
∣∣∣

≤ Cxx0

(∥∥∥d f
∥∥∥

l2(E)
+

∣∣∣ f (x0)
∣∣∣) ,

with Cxx0 = max(Sxx0 , 1). �

Before giving another important result, for f ∈ C0(V), we define the mean value f of f by

f (e) =
f (e+) + f (e−)

2

for all e ∈ E.

And we have from [10] the following derivation property:

Lemma 2.3. For f , 1 ∈ C0(V) and ϕ ∈ Ca
0(E), it follows

d( f1)(e) = f (e+)d1(e) + 1(e−)d( f )(e). (2.3)

δ( fϕ)(x) = f (x)δϕ(x) −
1

2c(x)

∑
e,e+=x

r(e)d( f )(e)ϕ(e). (2.4)

Proof: For f , 1 ∈ C0(V) and e ∈ E,

d( f1)(e) = ( f1)(e+) − ( f1)(e−)
= f (e+)

(
1(e+) − 1(e−)

)
+ 1(e−)

(
f (e+) − f (e−)

)
= f (e+)d(1)(e) + 1(e−)d( f )(e).

On the other hand, for ϕ ∈ Ca
0(E) applying the characterization of δ from Lemma (2.1) to the function

fϕ ∈ Ca
0(E), we have

δ( fϕ)(x) =
1

c(x)

∑
e,e+=x

r(e)( fϕ)(e)

=
1

c(x)

∑
e,e+=x

r(e)
(

f (e+) + f (e−)
2

)
ϕ(e)

=
1

c(x)

∑
e,e+=x

r(e) f (e+)ϕ(e) +
1

c(x)

∑
e,e+=x

r(e)
(

f (e−) − f (e+)
2

)
ϕ(e)

= f (x)
1

c(x)

∑
e,e+=x

r(e)ϕ(e) +
1

2c(x)

∑
e,e+=x

r(e)d( f )(−e)ϕ(e)

= f (x)δ(ϕ)(x) −
1

2c(x)

∑
e,e+=x

r(e)d( f )(e)ϕ(e).

�
The Gauss-Bonnet operator: it is the endomorphism

D = d + δ : C0(V) ⊕ Ca
0(E) −→ C0(V) ⊕ Ca

0(E)

with,
D( f , ϕ) = δϕ + d f , ∀( f , ϕ) ∈ C0(V) ⊕ Ca

0(E).

And it is a symmetric operator.
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3. Non-Parabolicity at Infinity

Now we introduce the discrete result of Carron [5]:

Definition 3.1. We say that D is non-parabolic at infinity if there is a finite subgraph GK of G such that for all finite
subset U of G \ GK, there exists a positive constant C = C(U) such that holds the following inequality

C
∥∥∥( f , ϕ)

∥∥∥
l2(U)
≤

∥∥∥D( f , ϕ)
∥∥∥

l2(G\GK)
, ∀( f , ϕ) ∈ C0(V \ K) × Ca

0(E \ EK).

Remark 3.2. We call a finite subset U of G a couple U := (VU,EU) such thatVU is a finite subset ofV and EU is a
finite subset of E. And, we denote ∥∥∥( f , ϕ)

∥∥∥2

l2(U)
=

∥∥∥ f
∥∥∥2

l2(VU)
+

∥∥∥ϕ∥∥∥2

l2(EU)
.

Definition 3.3. GK̃ is a neighborhood of GK if GK̃ := (K̃,EK̃) is a finite subgraph of G such that
i) K ⊂ K̃ f inite,

ii) EK t ∂EK ⊂ EK̃,

iii) e = (x, y) ∈ EK̃ ⇒ x, y ∈ K̃.

Since we can define the smallest neighborhood of GK by GK̃0
, where GK̃0

is a finite subgraph of G contains GK and
its boundary.

Remark 3.4. In [9], GK̃0
is called a combinatorial neighborhood of GK.

Lemma 3.5. If D is non-parabolic at infinity then, for every finite subset U of G there exists a positive constant
C′ = C′(U) such that

C′
∥∥∥( f , ϕ)

∥∥∥
l2(U)
≤

∥∥∥D( f , ϕ)
∥∥∥

l2(G)
+

∥∥∥( f , ϕ)
∥∥∥

l2(GK̃)
, ∀( f , ϕ) ∈ C0(V) ⊕ Ca

0(E), (3.5)

where GK̃ is a neighborhood of GK.

Proof: Since U is a finite subset of G it can be reduced to a point or an edge.

Let x any vertex of G, we start by proving

C′
∣∣∣ f (x)

∣∣∣ ≤ ∥∥∥d f
∥∥∥

l2(E)
+

∥∥∥ f
∥∥∥

l2(K̃)
, ∀ f ∈ C0(V).

GK̃ is a finite subgraph of G, so according to Lemma 2.2, we obtain

f 2(x) ≤ C1

(∥∥∥ f
∥∥∥2

l2(K̃)
+

∥∥∥d f
∥∥∥2

l2(E)

)
, (3.6)

where C1 is a positive constant which depends on x and K̃. Indeed:
let x ∈ V and x0 ∈ K̃, using Lemma 2.2, we obtain

f 2(x) ≤ Cxx0

(
f 2(x0) +

∥∥∥d f
∥∥∥2

l2(E)

)
. (3.7)

Multiplying (3.7) by c(x0) > 0, we get

c(x0) f 2(x) ≤ Cxx0

(
c(x0) f 2(x0) + c(x0)

∥∥∥d f
∥∥∥2

l2(E)

)
≤ Cxx0

(∥∥∥ f
∥∥∥2

l2(K̃)
+ c(x0)

∥∥∥d f
∥∥∥2

l2(E)

)
≤ C′xx0

(∥∥∥ f
∥∥∥2

l2(K̃)
+

∥∥∥d f
∥∥∥2

l2(E)

)
,
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where C′xx0
= max(Cxx0 , c(x0)Cxx0 ).

Then, we have

f 2(x) ≤
C′xx0

c(x0)

(∥∥∥ f
∥∥∥2

l2(K̃)
+

∥∥∥d f
∥∥∥2

l2(E)

)
.

Finally, we obtain

f 2(x) ≤ C1

(∥∥∥ f
∥∥∥2

l2(K̃)
+

∥∥∥d f
∥∥∥2

l2(E)

)
where C1 =

C′xx0
c(x0) .

On the other hand, we want to show the following inequality, for any edge e ∈ E

C′′
∣∣∣ϕ(e)

∣∣∣ ≤ ∥∥∥δϕ∥∥∥
l2(V)

+
∥∥∥ϕ∥∥∥

l2(EK̃)
, ∀ϕ ∈ C0(E).

For e ∈ EK ⊂ EK̃ finite, we have

ϕ2(e) ≤
∥∥∥ϕ∥∥∥2

l2(EK̃)
≤

∥∥∥ϕ∥∥∥2

l2(EK̃)
+

∥∥∥δϕ∥∥∥2

l2(V)
.

And if e ∈ E \ EK, we consider the indicator function of Kc, denoted by χ

χ(x) =


0 if x ∈ K

1 otherwise.
(3.8)

which gives

dχ(e) =


0 if e ∈ EK,

±1 if e ∈ ∂EK,

0 otherwise.

& χ(e) =


0 if e ∈ EK,

1
2 if e ∈ ∂EK,

1 otherwise.

Let ϕ ∈ Ca
0(E), we have then χϕ with finite support in E \ EK. Thus, applying the definition of the

non-parabolicity at infinity of D to the function (0, χϕ), we obtain∥∥∥χϕ∥∥∥2

l2(U)
≤ C

∥∥∥δ(χϕ)
∥∥∥2

l2(V)
,

where C = 1
C(U) .

Since we have e ∈ E \ EK, this implies that

ϕ2(e) ≤ C
∥∥∥δ(χϕ)

∥∥∥2

l2(V)
. (3.9)

The derivation property of Lemma (2.3), gives

δ(χϕ)(x) = χ(x)δϕ(x) −
1

2c(x)

∑
e,e+=x

r(e)d(χ)(e)ϕ(e).

And by the inequality (a − b)2
≤ 2(a2 + b2), we obtain∥∥∥δ(χϕ)

∥∥∥2

l2(V)
=

∑
x∈V

c(x)(δ(χϕ))2

≤ 2


∑
x∈V

c(x)
(
χ(x)δϕ(x)

)2

︸                   ︷︷                   ︸
I

+
∑
x∈V

c(x)

 1
2c(x)

∑
e,e+=x

r(e)d(χ)(e)ϕ(e)


2

︸                                        ︷︷                                        ︸
J


.
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So, for the first term we have

I =
∑

x∈V\K

c(x)
(
δϕ(x)

)2
≤

∥∥∥δϕ∥∥∥2

l2(V)
(3.10)

and for the second one, we get

J =
∑
x∈K

1
2c(x)

 ∑
e,e+=x

r(e)d(χ)(e)ϕ(e)


2

︸                                   ︷︷                                   ︸
J1

+
∑

x∈V\K

1
2c(x)

 ∑
e,e+=x

r(e)d(χ)(e)ϕ(e)


2

︸                                     ︷︷                                     ︸
J2

. (3.11)

Using that supp(dχ) = ∂EK ⊂ EK̃ and the Cauchy-Schwarz inequality, we obtain

J1 =
∑
x∈K

1
2c(x)


∑

e,e+=x
e∈suppdχ

r(e)ϕ(e)


2

= CK

 ∑
e∈suppdχ

r(e)ϕ(e)


2

≤ CK

 ∑
e∈suppdχ

r(e)


 ∑

e∈suppdχ

r(e)ϕ2(e)


≤ CKC′K

∑
e∈EK̃

r(e)ϕ2(e)

= C2

∥∥∥ϕ∥∥∥2

l2(EK̃)
,

where CK = max
x∈K

1
2c(x) , C′K = ]EK̃ max

e∈EK̃

r(e) and C2 = CKC′K.

And for J2, we have e = (e−, e+) ∈ suppdχ = ∂EK, so if e− ∈ K, e+
∈ ∂K.

J2 =
∑
x∈∂K

1
2c(x)


∑

e,e+=x
e∈suppdχ

r(e)ϕ(e)


2

= C′′K

 ∑
e∈suppdχ

r(e)ϕ(e)


2

≤ C′′K

 ∑
e∈suppdχ

r(e)


 ∑

e∈suppdχ

r(e)ϕ2(e)


≤ C′′KC′K

∑
e∈EK̃

r(e)ϕ2(e)

= C′2
∥∥∥ϕ∥∥∥2

l2(EK̃)
,

where C′′K = max
x∈∂K

1
2c(x) and C′2 = C′′KC′K.
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Thus, (3.11) becomes

J ≤ C′′2
∥∥∥ϕ∥∥∥2

l2(EK̃)
, (3.12)

where C′′2 = max(C2,C′2).

So by (3.10) and (3.12), we get∥∥∥δ(χϕ)
∥∥∥2

l2(V)
≤ max(2, 2C′′2 )

(∥∥∥δϕ∥∥∥2

l2(V)
+

∥∥∥ϕ∥∥∥2

l2(EK̃)

)
. (3.13)

Finally, (3.9) and (3.13) give

ϕ2(e) ≤ C̃
(∥∥∥δϕ∥∥∥2

l2(V)
+

∥∥∥ϕ∥∥∥2

l2(EK̃)

)
where C̃ =

2max(1,C′′2 )
C . �

Proposition 3.6. If D is non-parabolic at infinity, then we can construct a Hilbert space W such that :

1. C0(V) ⊕ Ca
0(E) is dense in W.

2. The injection of C0(V) ⊕ Ca
0(E) to C(V) ⊕ Ca(E) extends by continuity to W.

3. D : W −→ l2(G) is a bounded operator.

Remark 3.7. In 1) and 2) we use the topology of ponctual convergence on C(V) ⊕ Ca(E), it means, the sequence
( fn, ϕn) converges ponctually to ( f , ϕ) on C(V) ⊕ Ca(E) if fn(x) converges to f (x), ∀x ∈ V and ϕn(e) converges to
ϕ(e), ∀e ∈ E.

Remark 3.8. In Carron’s paper [5], the injection of the space of functions with compact support to l2loc extends by
continuity to W. But, in our case we didn’t need to introduce the space l2loc because in discrete case this notion is
trivial.

Proof: Let us denote by W the closure of C0(V) ⊕ Ca
0(E) for the norm

NK̃( f , ϕ) =
(∥∥∥( f , ϕ)

∥∥∥2

l2(GK̃)
+

∥∥∥D( f , ϕ)
∥∥∥2

l2(G)

) 1
2

,

where GK̃ is a neighborhood of GK (see Definition (3.3)).

Aim i): NK̃ is a norm on W, we just look at the nullity, we have

NK̃( f , ϕ) = 0 ⇔

∥∥∥( f , ϕ)
∥∥∥

l2(GK̃)
= 0 and

∥∥∥D( f , ϕ)
∥∥∥

l2(G)
= 0

⇔

∥∥∥ f
∥∥∥

l2(K̃)
= 0,

∥∥∥ϕ∥∥∥
l2(EK̃)

= 0,
∥∥∥d f

∥∥∥
l2(E)

= 0 and
∥∥∥δϕ∥∥∥

l2(V)
= 0.

For any x ∈ V and as ]K̃ < ∞, from Lemma (3.5), we get

f 2(x) ≤ C1

(∥∥∥ f
∥∥∥2

l2(K̃)
+

∥∥∥d f
∥∥∥2

l2(E)

)
. (3.14)

But,
∥∥∥ f

∥∥∥
l2(K̃)

= 0 and
∥∥∥d f

∥∥∥
l2(E)

= 0. So it follows immediately that f = 0 onV.

It remains to show that if
∥∥∥ϕ∥∥∥

l2(EK̃)
= 0 and

∥∥∥δϕ∥∥∥
l2(V)

= 0 then ϕ = 0. We suppose that ϕ , 0.
ϕ is a finite support function in E \ EK̃ and therefore, by Lemma (3.5) where U equals to the support of

ϕ, there exists a positive constant C such that

C
∥∥∥ϕ∥∥∥

l2(EU)
≤

∥∥∥ϕ∥∥∥
l2(EK̃)

+
∥∥∥δϕ∥∥∥

l2(V)
.
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But,
∥∥∥ϕ∥∥∥

l2(EK̃)
=

∥∥∥δϕ∥∥∥
l2(V)

= 0, since we get ϕ = 0 on EU, which is impossible.

Aim ii) Show that the space W is independent of the choice of GK̃.

Let GK̃1
be another neighborhood of GK such that K ⊂ K̃0 ⊂ K̃1.

So, we have
NK̃0

( f , ϕ) ≤ NK̃1
( f , ϕ).

Moreover, to show the existence of a constant C > 0 such that NK̃1
( f , ϕ) ≤ CNK̃0

( f , ϕ), it suffices to show

the existence of a constant C > 0 such that
∥∥∥( f , ϕ)

∥∥∥2

l2(K̃1\K̃0̂)
≤ CN2

K̃0
( f , ϕ). Indeed, we have

N2
K̃1

( f , ϕ) =
∥∥∥( f , ϕ)

∥∥∥2

l2(K̃1)
+

∥∥∥D( f , ϕ)
∥∥∥2

l2(G)

=
∥∥∥( f , ϕ)

∥∥∥2

l2(K̃1\K̃0)
+

∥∥∥( f , ϕ)
∥∥∥2

l2(K̃0)
+

∥∥∥D( f , ϕ)
∥∥∥2

l2(G)

=
∥∥∥( f , ϕ)

∥∥∥2

l2(K̃1\K̃0)
+ N2

K̃0
( f , ϕ).

Using lemma (3.5) and as we have ](K̃1 \ K̃0) < ∞, we get

∥∥∥ f
∥∥∥2

l2(K̃1\K̃0)
≤ C

(∥∥∥ f
∥∥∥2

l2(K̃0)
+

∥∥∥d f
∥∥∥2

l2(E)

)
,

where C = C(K̃1 \ K̃0, K̃0).

And

∥∥∥ϕ∥∥∥2

l2(EK̃1
\EK̃0

)
≤ C

(∥∥∥ϕ∥∥∥2

l2(EK̃0
)
+

∥∥∥δϕ∥∥∥2

l2(V)

)
.

where C = C(K̃1 \ K̃0, K̃0).

So, we obtain ∥∥∥( f , ϕ)
∥∥∥2

l2(GK̃1
\GK̃0

)
≤ CN2

K̃0
( f , ϕ).

Thus, we have shown that the construction of a norm on W is independent of the choice of the neigh-
borhood associated to the subgraph GK. We set:

∥∥∥( f , ϕ)
∥∥∥

W :=
(∥∥∥( f , ϕ)

∥∥∥2

l2(GK̃0
)
+

∥∥∥D( f , ϕ)
∥∥∥2

l2(G)

) 1
2

,

for ( f , ϕ) ∈ C0(V) ⊕ Ca
0(E).

Aim iii): By Lemma (3.5), we have the injection of C0(V)⊕Ca
0(E) to C(V)⊕Ca(E) extends by continuity

to W.
Aim iv): we have ∥∥∥D( f , ϕ)

∥∥∥2

l2(G)
≤

∥∥∥( f , ϕ)
∥∥∥2

l2(GK̃)
+

∥∥∥D( f , ϕ)
∥∥∥2

l2(G)
=

∥∥∥( f , ϕ)
∥∥∥2

W .

Consequently, D : W −→ l2(G) is a bounded operator. �
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4. Semi-Fredholmness of the Discrete Gauss-Bonnet Operator

Definition 4.1. An operator is semi-Fredholm if its range is closed and its kernel is finite dimensional .

Now we come to our main result:

Theorem. Let W be a Hilbert space satisfying:

1. C0(V) ⊕ Ca
0(E) is dense in W.

2. The injection of C0(V) ⊕ Ca
0(E) to C(V) ⊕ Ca(E) extends by continuity to W.

3. D : W −→ l2(G) is a bounded operator.

Then, the following conditions are equivalent:
i) D : W −→ l2(G) is semi-Fredholm.
ii) There exists a finite subgraph GK of G and a positive constant C = CK such that

C
∥∥∥( f , ϕ)

∥∥∥
W ≤

∥∥∥D( f , ϕ)
∥∥∥

l2(G)
, ∀( f , ϕ) ∈ C0(V \ K) × Ca

0(E \ EK). (4.15)

Proof: We take the same arguments used by Carron [5]. We start by showing the direct implication, we
assume that the conclusion is false. Then, we can find an increasing sequence of finite subgraph {GKn }n such
that G =

⋃
n GKn and a sequence {σn}n with finite support inV \ Kn satisfying the following conditions, for

all n ≥ 1 
σn = ( fn, ϕn) ∈ C0(V \ Kn) × Ca

0(E \ EKn ),

‖σn‖W = 1,

‖Dσn‖l2(G) ≤
1
n .

On the other hand, it was assumed that D : W −→ l2(G) is semi-Fredholm. Therefore, by [13] there exists
a bounded operator P : l2(G) −→W such that

P ◦D = IdW −H, (4.16)

where H is the orthogonal projection onto the kernel of D, it is an operator with finite rank.
Then, we obtain

‖σn‖W ≤ ‖(P ◦D)σn‖W + ‖Hσn‖W

≤ ‖P‖ ‖Dσn‖l2(G) + ‖Hσn‖W

≤

(
‖P‖
n

+ ‖Hσn‖W

)
.

If
lim
n→∞
‖Hσn‖W = 0 =⇒ lim

n→∞
‖σn‖W = 0,

which contradicts the assumption ‖σn‖W = 1.

So, our aim is to prove that {Hσn}n converges to 0 in W. Indeed, we set

σn = σ1
n + σ2

n (4.17)

with σ1
n(= Hσn) ∈ KerD and σ2

n ∈ (KerD)⊥.
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Such as 
(P ◦D)σn = σ2

n,

‖P ◦Dσn‖W ≤ ‖P‖ ‖Dσn‖l2(G) −→n→∞ 0.

Then, for the norm of W

lim
n→∞

σ2
n = 0. (4.18)

Moreover, {σ1
n}n is a bounded sequence of KerD which is of finite dimension. So we can extract a subse-

quence converging to σ in W, which we denote {σ1
ϕ(n)}n.

Using (4.17) and (4.18), {σϕ(n)}n converges in W to σ (as a sum of two converging sequences) and as a
consequence ‖σ‖W = 1.

Let us prove that σ = 0 where σ = lim σϕ(n) = lim σ1
ϕ(n).

We suppose that σ , 0. As W is injected continuously in C(V) ⊕ Ca(E) , there exists x ∈ V such
that {σϕ(n)(x)}n converges to σ(x) , 0. But, by construction the sequence {σϕ(n)}n converges ponctually to 0
( the sequence {σϕ(n)}n has a finite support outside of GKn ). Hence, we conclude that σ(x) = 0 which is absurd.

It remains to prove ii)⇒ i).

First step: We construct a bounded operator Q : l2(G) −→W such that Q◦D− IdW is a compact operator,
this will show that D : W −→ l2(G) has a finite kernel and a closed range [13].

Let D1 be the restriction of D on G \GK, so D1 : W(G \GK) −→ l2(G) is bounded, where W(G \GK) = {σ =
( f , ϕ) ∈W; σ = 0 on GK}. Moreover, by assumption we have

C
∥∥∥( f , ϕ)

∥∥∥
W ≤

∥∥∥D( f , ϕ)
∥∥∥

l2(G)
, ∀( f , ϕ) ∈ C0(V \ K) × Ca

0(E \ EK).

Then, D1 is injective with closed range, which allows the existence of a left inverse P1 such that

P1 ◦D1 = Id.

On the other hand, we denote
D2 : l2(K̃1) −→ l2(G)

where K̃1 is a neighborhood (see Definition (3.3)) of K̃0, such that K̃0 is the smallest neighborhood of K.

Since l2(K̃1) is a vector space of finite dimension, then D2 is continuous with closed range. We denote P2
”the parametrix” which is a continuous operator satisfying

P2 ◦D2 = Id −H2,

where H2 is the orthogonal projection onto the kernel of D2.

We consider now the indicator function χ as in (3.8) by replacing K by K̃0, which gives dχ, χ, 1 − χ and
1 − χ where

(1 − χ)(x) =


1 if x ∈ K̃0

0 otherwise.
and (1 − χ)(e) =


1 if e ∈ EK̃0

,

1
2 if e ∈ ∂EK̃0

,

0 otherwise.
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Furthermore, we define the operator χ. depending on the domain by:

If χ. : C0(V) −→ C0(V) so we have χ. f = χ f , for all f ∈ C0(V).

If χ. : Ca
0(E) −→ Ca

0(E) we get χ.ϕ = χϕ, for all ϕ ∈ Ca
0(E).

If χ. : C0(V) ⊕ Ca
0(E) −→ C0(V) ⊕ Ca

0(E) hence we obtain χ.( f , ϕ) = (χ f , χϕ),

for all ( f , ϕ) ∈ C0(V) ⊕ Ca
0(E).

We set
Qσ := P2(1 − χ)σ + P1χσ,

where σ = ( f , ϕ).

Second step: Let us check that the operator Q ◦D − Id is compact.
We denote the following bracket for any two operators A and B:

[A,B] = AB − BA.

Then, we obain

Q ◦D = P2(1 − χ)D + P1χD
= P2D(1 − χ) + P2[1 − χ,D] + P1Dχ + P1[χ,D]
= P2D2(1 − χ) + P2[1 − χ,D] + P1D1χ + P1[χ,D]
= (Id −H2)(1 − χ) + P2[1 − χ,D] + Id(χ) + P1[χ,D]
= Id −H2(1 − χ) + P2[1 − χ,D] + P1[χ,D].

We just calculate P2[χ,D]. We have
[χ,D] = [χ, d] + [χ, δ].

For the first bracket, we obtain

[χ, d] f (e) = χ(e)d( f )(e) − d(χ f )(e)

=
1
2
[
χ(e+) + χ(e−)

]
d( f )(e) − χ(e+)d( f )(e) − f (e−)dχ(e)

= −
1
2

dχ(e)d( f )(e) − f (e−)dχ(e).

And for the second one, we get

[χ, δ]ϕ(x) = χ(x)δ(ϕ)(x) − δ(χϕ)(x)

= χ(x)δ(ϕ)(x) − χ(x)δ(ϕ)(x) +
1
2

∑
e,e+=x

d(χ)(e)ϕ(e)

=
1
2

∑
e,e+=x

d(χ)(e)ϕ(e).

But, the support of d(χ) is included in ∂EK̃0
⊂ K̃1 which is finite. Then, [χ,D] has a finite range so it is a

compact operator.
Finally, Q ◦D = Id + H where H is a compact operator . �

Remark 4.2. In the Theorem , we obtain D Fredholm if it is an essential-selfadjoint operator [5].
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Remark 4.3. There is a second method inspired from [2] to show ii)⇒ i) of the Theorem . This can be demonstrated
with the aid of the following claim: ”If σn = ( fn, ϕn) ∈ C0(V) × Ca

0(E) is W-bounded and (Dσn)n is convergent in
l2(G), then (σn)n has a W-convergent subsequence”.

We have the following result:

Proposition 4.4. Let W be a Hilbert space satisfying:

1. C0(V) ⊕ Ca
0(E) is dense in W.

2. The injection of C0(V) ⊕ Ca
0(E) to C(V) ⊕ Ca(E) extends by continuity to W.

3. D : W −→ l2(G) is a bounded operator.

Then if there exists a finite subgraph GK of G and a positive constant C = CK such that

C
∥∥∥( f , ϕ)

∥∥∥
W ≤

∥∥∥D( f , ϕ)
∥∥∥

l2(G)
, ∀( f , ϕ) ∈ C0(V \ K) × Ca

0(E \ EK), (4.19)

so necessarily, the operator D : W −→ l2(G) is semi-Fredholm.

Proof: We start by proving the following claim: if σn = ( fn, ϕn) ∈ C0(V) × Ca
0(E) is W-bounded and (Dσn)n

is convergent in l2(G), then (σn)n has a W-convergent subsequence.

Let GK̃ be a neighborhood of the subgraph GK (see Definition 3.3), then (σn �K̃)n is a bounded sequence
in a vector space with finite dimension. Hence, it admits a convergent subsequence.

In G\GK̃, we consider the indicator function χ as in (3.8) by replacing K by K̃. Then, we obtain a function
χσn with finite support in G \ GK and we can apply the inequality (4.19) to χσn, in particular to (χ fn, 0) and
(0, χϕn). First, we obtain ∥∥∥χ fn

∥∥∥
W ≤ C

∥∥∥d(χ fn)
∥∥∥

l2(E)
.

But, from the equality (2.3) of Lemma (2.3), we get

d(χ fn)(e) = χ(e+)d( fn)(e) + fn(e−)d(χ)(e).

We have (d( fn))n is a convergent sequence and supp(dχ) ⊂ EK̃ is finite, thus, fn(x) �K̃ admits a convergent
subsequence.
Then we may conclude that χ fn admits a W-convergent subsequence, i.e, ( fn �V\K̃)n admits a W-convergent
subsequence.

Second, we have ∥∥∥χϕn

∥∥∥
W ≤ C

∥∥∥δ(χϕn)
∥∥∥

l2(V)
.

Since the equality (2.4) of Lemma (2.3) gives

δ(χϕn)(x) = χ(x)δ(ϕn)(x) −
1

2c(x)

∑
e,e+=x

r(e)d(χ)(e)ϕn(e), ∀x ∈ V.

Furthermore by assumptions the sequence (δ(ϕn))n is convergent and supp(dχ) ⊂ EK̃ is finite, hence, (ϕn �EK̃
)

admits a convergent subsequence. As a result, we deduce that the sequence (χϕn)n admits a W-convergent
subsequence. So, the sequence (ϕn �E\EK̃

)n admits a W-convergent subsequence.

Now we can show that our operator D is semi-Fredholm.
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1. We start by proving that KerD is finite dimensional, which is equivalent to show that {σ ∈ KerD; ‖σ‖W =
1} is compact.

Let (σn)n ⊂ KerD be such that ‖σn‖W = 1 and Dσn = 0. Then, by the claim, (σn)n admits a convergent
subsequence. So the result occurs.

2. Let us show that ImD is closed.

Let (yn)n be a sequence of ImD such that (yn)n converges to y in l2(G). Is that y in ImD?

Since (yn)n ⊂ ImD, then there exist (σn)n ⊂ KerD⊥ and σn , 0 ∀n, such that yn = Dσn. (σn)n must be
bounded. If not, by extraction we can construct sn = σn

‖σn‖W
, such that

(sn)n ⊂ KerD⊥

‖sn‖W = 1

Dsn → 0.

Using the claim, we can conclude that (sn)n admits a convergent subsequence with limit denoted s
such that 

s ∈ KerD⊥

‖s‖W = 1

Ds = 0.

Then, s ∈ KerD ∩ KerD⊥ = {0}. So s = 0, which is absurd.

Hence the sequence (σn)n is bounded and since (Dσn)n converges to y, using the claim, the sequence
(σn)n admits a convergent subsequence and let σ be this limit. But, the operator D is bounded. Then,
Dσn converges to Dσ and by uniqueness of the limit y = Dσ.

�

Corollary 4.5. D is non-parabolic at infinity if and only if there exists a finite subgraph GK of G such that if we
complete C0(V) × Ca

0(E) by the norm∥∥∥( f , ϕ)
∥∥∥

W =
(∥∥∥( f , ϕ)

∥∥∥2

l2(K̃)
+

∥∥∥D( f , ϕ)
∥∥∥2

l2(G)

) 1
2

,

in order to obtain W satisfying
1. C0(V) ⊕ Ca

0(E) is dense in W.
2. The injection of C0(V) ⊕ Ca

0(E) to C(V) ⊕ Ca(E) extends by continuity to W.
3. D : W −→ l2(G) is semi-Fredholm.

5. Examples

5.1. A star-like graph
Definition 5.1. The disjoint union of two graphs Gα = (Vα,Eα) and Gβ = (Vβ,Eβ) is the disjoint union of their
vertex and edge with no edge joiningVα andVβ.

According to [6], we have the following definition:

Definition 5.2. An infinite graph G = (V,E) is called star-like, if there exists a finite subgraph GK of G so that
G \ GK is the union of a finite number of disjoint copies Gα of the graphN.
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KG

Figure 1: Star-like graph

Proposition 5.3. In the case where c = r = 1, D is non-parabolic at infinity in the star-like graph.

Proof: By the definition of the star-like graph, there exists a finite subgraph GK of G so that G\GK =
⊔
α∈J Gα.

Let U be a finite subset of G \ GK then, there exists α ∈ J such that U ⊂ Gα. We look for a positive constant
C = C(U) such that

C
∥∥∥( f , ϕ)

∥∥∥
l2(U)
≤

∥∥∥D( f , ϕ)
∥∥∥

l2(G)
, ∀( f , ϕ) ∈ C0(V \ K) ⊕ Ca

0(E \ EK). (5.20)

Let f ∈ C0(V \ K) such that U is included in the support of f .

For U = {a}, we have ∥∥∥ f
∥∥∥2

l2(U)
= f 2(a).

For o ∈ K and as G is connected we can find a path γoa joining o to a. Suppose that this path is of length n
such that x0 = a and xn = o, using the Jensen’s inequality and f (xn) = 0, we obtain

f 2(a) =
(

f (x0) − f (x1) + f (x1) − f (x2) + f (x2) − ... − f (xn−1) + f (xn−1) − f (xn) + f (xn)
)2

≤ n
((

f (a) − f (x1)
)2 +

(
f (x1) − f (x2)

)2 + ... +
(

f (xn−1) − f (xn)
)2
)
,

which implies

f 2(a) ≤ n
∥∥∥d f

∥∥∥2

l2(V)
. (5.21)

Remark 5.4. n depends only on U and K.

Similarly, for ϕ ∈ Ca
0(E \ EK), we obtain ∥∥∥ϕ∥∥∥2

l2(EU)
≤ CU

∥∥∥δϕ∥∥∥2

l2(V)
.

Moreover, for U = {a1, ..., an}, we prove the inequality (5.20).

By the inequality (5.21), for all i ∈ {1, ...,n}, we get

f 2(ai) ≤ ni

∥∥∥d f
∥∥∥2

l2(V)
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where ni is the number of edge of the shortest path between ai and any vertex of K.

For thus, we have
n∑

i=1

f 2(ai) ≤
n∑

i=1

ni

∥∥∥d f
∥∥∥2

l2(V)
.

Hence ∥∥∥ f
∥∥∥2

l2(U)
≤ CU

∥∥∥d f
∥∥∥2

l2(V)
.

And similarly, we show that ∥∥∥ϕ∥∥∥2

l2(EU)
≤ CU

∥∥∥δϕ∥∥∥2

l2(V)
.

�

5.2. The triadic tree

Definition 5.5. A tree is a connected graph containing no cycles. The triadic tree is the tree such that all the vertices
have degree 3.

G1 o
G2

Figure 2: Triadic tree

Proposition 5.6. In the triadic graph the condition of ”non-parabolicity at infinity” is not verified.

Proof: We fix a vertex o, see the figure 2, we can find an increasing sequence of finite subgraph {Gn}n such
that Gn = {x ∈ V; d(o, x) ≤ n} and G =

⋃
n Gn. The contradiction of non-parabolicity at infinity property

could be: for all n there exists U outside of Gn and a 1-form ϕn with finite support outside of Gn such that
δϕn = 0 and

∥∥∥ϕn

∥∥∥
l2(U)
, 0. Such ϕn exist. Indeed one can construct a skewsymmetric function ϕn supported

on the outward tree of every vertex xn ∈ Gn with δϕn = 0 in the following way: let e0 and b0 be the two
outward edges of xn (the third one rely xn to xn−1) and denote ek

m, m > 1, 1 6 k 6 2m, resp. bk
m, m > 1,

1 6 k 6 2m, the outward edges emanating from e0, resp. b0, of generation m. We define ϕn to be 0 excepted
on these edges where ϕn(ek

m) = 1
2m and ϕn(bk

m) = − 1
2m (the edge are oriented outward). So, we deduce that δ

does not satisfy the property of non-parabolicity at infinity. �

Remark 5.7. We can generalize this example for the tree with degree d ≥ 3, we can use the same argument with
ϕn = ±( 1

d−1 )m.
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Remark 5.8. a) The importance of non-parabolicity at infinity appears with the operator δ. In fact, this property for
the operator d is always true on any connected graph.
b) In probability [8] and potential theory [15] there exists an interesting notion of non-parabolic for the graph which
is equivalent ([1] Theorem 2.1) to the following statement: there exists x ∈ V and C > 0 such that

f 2(x) ≤ C
∥∥∥d f

∥∥∥2

l2(E)
,∀ f ∈ C0(G).

This notion is different from the non-parabolicity at infinity. Indeed, the graphZ andZ2 are parabolic, butZn, n ≥ 3
is non-parabolic. On the other side, we have δ is non-parabolic at infinity in Z but in Zn, n ≥ 2, δ does not verify
this property (since it has cycles supported outside any finite subgraph).
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