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Abstract. Let P and Q be bounded linear operators on a Banach space. The existence of the Drazin inverse
of P + Q is proved under some assumptions, and the representations of (P + Q)P are also given. The results
recover the cases P2Q = 0, QPQ = 0 studied by Yang and Liu in [19] for matrices, Q*P = 0, PQP = 0 studied
by Cvetkovi¢ and Milovanovi¢ in [7] for operators and P2Q + QPQ = 0, P2Q = 0 studied by Shakoor, Yang
and Aliin [16] for matrices. As an application, we give representations for the Drazin inverse of the operator

matrix A = (é g).

1. Introduction

Let X be a Banach space. The set B(X) consists of all bounded linear operators on X. An operator
T € B(X) is said to be Drazin invertible, if there exists an operator TP € B(X) such that

TTP = TPT, TP = T(TP)?, T"'TP = T* for some integer k > 0,

where TP is called the Drazin inverse of T. The smallest integer k satisfying the previous system of equations
is called the index of T, and is denoted by ind(T). In particular, if ind(T) = 1, T? is called the group inverse
of T; if ind(T) = 0, it can be seen that T is invertible and T” = T~!. Note that T” may not exist, but T” must
be unique if it exists. Moreover, if T is nilpotent, then T is Drazin invertible, and TP = 0.

The Drazin inverse has become a useful tool in the researches of Markov chains, differential and
difference equations, optimal control and iterative methods|1, 3].

In [11], M. P. Drazin proves that (P + Q)P = PP + QP if PQ = QP = 0 in an associative ring. In
the sequel, many authors begin to consider this problem for matrices and operators, and present explicit
representations of (P + Q)P under the conditions such as

(1) PQ = QP =0 (see [11]),

(2) PQ =0 (see [9, 12]),

(3) P°Q = PQ* = 0 (see [5]),
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(4) P2Q + PQ* =0, P2Q = PQ® = 0 (see [13]),

(5) PQP = 0, Q*P = 0 (or QPQ = 0, P2Q =0 ) (see [7, 19]),

(6) P2Q + QPQ = 0, P2Q = 0 (see [16]),

(7) P2QP = P2Q? = PQ?P = PQ® = 0 (see [17]),

(8) PPQ = PQP = 0, Q"PQP™ = 0 (see [6]).

For more general Drazin inverse problems, we refer the reader to [2, 4, 14] and their references. Note that
the representation of (P + Q)P by P, Q, PP and QP is very difficult without any conditions.

In this paper, using the technique of the resolvent expansion, we investigate the existence of the Drazin
inverse of P + Q for bounded linear operators P and Q and the explicit representations of (P + Q)" in term
of P,PP,Q and QP under the conditions (1) P2Q + QPQ = 0, P"Q = 0, (2) PQ? + PQP = 0 PQ" = 0 for some
integer n, respectively, which extend the relevant results in [7, 12, 16, 19]. Then, we apply these results
to establish representations of the Drazin inverse of the operator matrix, which can be regarded as the
generalizations of some results given in [10, 16]. Actually, the proof of the main results show the efficiency
of the method employed to some extent.

Throughout this paper, we write p(T), o(T) and r(T) for the resolvent set, the spectrum and the spectral
radius of the operator T. Write T" = [ — TTP.

Before giving our main results, we state some auxiliary lemmas as follows.

Lemma 1.1.[4] Let T € B(X), then T is Drazin invertible if and only if 0 ¢ o(T) \ {0} and the point zero, provided
0 € o(T), is a pole of the resolvent R(A, T) = (AI — T)™, and in this case the following representation holds:

ind(T) oo
R(A,T)= Y, AFTHITT — ¥ AKTPY1, 1)
k=1 k=0
where 0 < |A] < (r(TP))~L.

Remark 1.2. From Lemma 1.1, TP can be obtained by the coefficient at A° in the Laurent expansion of the resolvent
R(A, T) in a punctured neighborhood of 0, i.e,

1 1
D_____ | =
" = i frAR(/\, T)dA, (2)
where I' := {A € C : |A| = €} with ¢ being sufficiently small such that {A € C : |A| < e} N o(T) = {0}.

Lemma 1.3.[18] Let A € B(X,Y) and B € B(Y, X). If BA is Drazin invertible, then AB is also Drazin invertible.
Moreover,

(AB)P = A((BA)P)?B, ind(AB) < ind(BA) + 1. (3)

Lemma 1.4. For the operator matrix A = (é g) with A € B(X),Be B(Y,X),Ce B(X,Y)and D € B(Y). IfAis
invertible, then A is invertible if and only if D — CA™'B is invertible.

Remark 1.5. The Lemma above is well known, see, e.g., [15, Lemma 2.1].

2. Main Results

In this section, we investigate the Drazin inverse of the sum of two operators P,Q € B(X). It is
interesting that the conditions when #n > 2 will share the same representation of the Drazin inverse of P + Q.
In order to show that P + Q is Drazin invertible, we need to find out the resolvent of the operator matrix
M= (1; Pg) defined on the Banach space X x X. Write A(A1) = AI — Q — R(A, P)PQ. Then, the following two
lemmas are necessary.
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Lemma 2.1. Let P,Q € B(X) be Drazin invertible, r = ind(P) and s = ind(Q). If P2Q + QPQ = 0 and P"Q = 0 for
some integer n > 0, then

A = A72(A’T + PQ)R(A, Q), 4)
where 0 < |A| < min{(r(PP))71, (r(QP))71}.

Proof. From P"Q = 0 and PP = (PP)?P, it follows that PPQ = 0, then P"'Q = 0 if the integer m > r. Moreover,
P"PQ = PQ. By P?Q + QPQ = 0, we have
PFIQ = (-D)H(PQ), P*Q=(-1)'Q(PQ)Y, k=1,2,:. (5

Since there always exists an integer ko such that 2 < n < 2k*1 —1 for each , we deduce P21 = 0 from
P"Q = 0. This together with Eq.(5) shows that PQ is Drazin invertible, (PQ)P = 0 and ind(PQ) < 2%. Thus,
using Lemma 1.1, we conclude that

(o8]

R(A,P)PQ = Z/\‘kPk‘lP”—Z/\k(PD)"“ PQ
k=1 k=0
_ Z A7kPRQ
k=1
2k0+1_2
= Y AFPRQ 6)
k=1
2ko—1
= (A-Q) ) (DA (P
k=1

(AL = QPQR(A?, -PQ),
where 0 < |A| < (¢(PP))~!. Then,

A(A)

Al —Q —R(A, P)PQ
= (M- Q)(I-PQR(A? -PQ))
A%(AI = Q)R(A?, —PQ).

Therefore, we have
AN = A2(A’T + PQ)R(A, Q),

where 0 < |A| < min{(r(PP))~!, (x(QP))"1}. O

Lemma 2.2. Under the assumptions of Lemma 2.1, the representation of the resolvent for the operator matrix
M= (Il)pg) is given by

AT2(AI = Q)(A%I + PQ)R(A, Q)R(A, P)  A™2(AI — Q)PQR(A, Q)

R(A'M)z( A1+ PQR(, QR(LP)  A2(A2I+ PQR(A,Q) )’ @

where 0 < |A| < min{(r(PP))71, (r(QP))1}.
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Proof. Let p(A) denote the set of all A € C such that A(A) is invertible in $(X). By Lemma 1.4, we obtain
p(M) N p(P) = p(P) N p(A). If A € p(M) N p(P), then

_( R(A,P) + R(A, PPQA(L)'R(A,P) R(A, PYPQA(A)™

R(A,M) = AMIR(A, P) A /

where 0 < |A| < min{(r(PP))7}, (r(QP))"!}. By (4) and (6), we immediately have the expression
R(A, P)PQA(A)™! (AI = Q)PQR(A?, =PQ)A(A)™!

AT2(AL = QPQR(A, Q).

Then, we further have

R(A, P) + R(A, P)PQA(A)IR(A, P)

(I + R(A, P)PQA(A) HR(A, P)

(I + A72(AI = Q) PQR(A, Q)R(A, P)
AT2(AI = Q)(A*I + PQ)R(A, Q)R(A, P).

Moreover,
AMN)R(A,P) = A72(A%I + PQ)R(A, Q)R(A, P).
The proof is completed. [
We will give other two necessary lemmas in order to obtain the representation of (P + Q)P.

Lemma 2.3. Under the assumptions of Lemma 2.1, the following statements are true:
(1) The coefficients a; at A' (i = =1,0,1,2) of R(A, Q)R(A, P) are given by

ay = —(QToP +QPtPT),
a = —(Q"S(P°)* +(QV)yP™) + QP
ar = —(QS(PP) +(QVYP™) + Q(PP)* + (Q°)°PP, ()
ay = —(QO(PP) + (QP)'TP™) + Q(PP)’ + (Q7)*(PP)* + (QV)°PP,

s—1 r=1
where 5 = Y, QX(PP)k, T = Y. (QP)FP.
k=0 k=0

(2) a-1 — Qag + PQay — QPQa, and ag + PQu, are the coefficients at A% of (AI — Q)(A’I + PQ)R(A, Q)R(A, P)
and (A2I + PQ)R(A, Q)R(A, P), respectively.

(3) —PQP — P*(QP)? and —QP — P(QP)? are the coefficients at A of (Al — Q)PQR(A, Q) and (A’I + PQ)R(A, Q),
respectively.

Proof. (1) Note that P, Q are Drazin invertible. Applying Eq.(1) for P, Q in a punctured neighborhood of 0,
we have

R(Ar Q) = Z /\—ka—lgn — Z /\k(QD)k+1
k=1 k=0
and
R(A,P) = Z Akpk-1pm _ Z Ak(PD)k+1.
k=1 k=0

Then the coefficients a; at A’ (i = —1,0,1,2) of R(A, Q)R(A, P) can be easily obtained.



Hua Wang et al. / Filomat 31:8 (2017), 2391-2402 2395
(2) Since
(AI = QAT + PQ)R(A, QR(A, P) = (A’ = A*Q + APQ — QPQ)R(A, Q)R(A, P).

Thus, by Lemma 2.3 (1), @-1 — Qap + PQa; — QPQa; is the coefficient at A? of (Al - Q)(A%I + PQ)R(A, Q)R(A, P).
Analogously, (3) can be proved. [

Lemma 2.4. Under the assumptions of Lemma 2.1, the following statements are valid:
(1) 7Q = Q, and hence TP*?Q?* = P>Q>.
(2) TPQ = PQ + QPP?Q, and hence TPQP = PQP + QPP?QP.
B)to=1+0—-1L
(4) 0(,1PQ = (X()PQ = Ofpo = Q()QPQ =0.
(5) a-1Q=-Q”Q a;Q=-(Q”)*, i=0,1,23.
(6) aix_1 = —djy1, i= —1, 0, 1, 2.
(7) a;P*(QP)? = —(QP)**P*(Q")?, i=-1,0,1,2.
Here

a; = —(QU6(P7) +(Q")°1P") ©)
+QP(PP)* +(QP)*(PP)’ + (Q7)*PP + (Q7)*(PP)?,
and 6, T are defined as in Lemma 2.3.

r=1 r=1
Proof. (1) By © = ¥ (QP)*P¥, we have t1Q = Y (QP)*P*Q. If  is odd, then, by Eq.(5), we get
k=0 k=0

=1
2

Q+ ((QD)Zk—lPZk—1Q+ (QD)ZkPZkQ)

Q

=
—_

N
i

Q+ ) _(DHQ* PO + (-1 (QP)*Q(PQ))

=~
—_

Q+ ) (DHQ@* PO + (-1)MQP)* ' (PQ))
k=1

= Q.

™
L

If  is even, then

Q Q+ Y Q)P PPQ + (QO*P*Q) + (@Y PIQ
k=1

= Q+@)'P'Q

= Q+(-)Y(Q”y ' (PQ):

= Q+ (-1 Y(QPyQ(PQ):

= Q-(@"PQ

= Q

since P'Q = P"*'PPQ = 0, and hence tQ = Q. Thus, (1) is proved.
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r=1
(2) Obviously, TPQ = Y. (QP)"P"PQ. If r is even, then
n=0

r

TPQ PQ + QDP2Q + Z((QD)2kp2k+1Q 4 (QD)2k+1P2k+2Q)
k=1

£

PQ+QPP*Q+ ) (F1F(@QD*(PQI! + (—1)M QP Q(PQ))
k=1

r

PQ+QPP*Q + Z‘((—1)"((2'3)2"(13(2)'”1 + (=1)HQP* P

k=1

PQ + QPP?Q.

Similarly, if 7 is odd, then

TPQ PQ + QDPZQ + ZZ‘((QD)ZkIﬂkHQ + (QD)2k+1P2k+2Q) 4 (QD),_lprQ
k=1

PQ+Q"P*Q+(Q°y'P'Q
PQ + QPP?Q.

Therefore, the relation TPQ = PQ + QPP?Q is proved.
On the other hand, by P2Q = —QPQ, it is obvious that

tP?2Q? = —tQPQ? = —-QPQ? = P*Q?.

(3) In view of 7Q = Q, we clearly have

70

s—1
) Q(PP)
k=0

T+ (QPD + QZ(PD)Z 4ot Qs—l(PD)s—l)
T+6—-1L

(4) We only prove a_1PQ = 0, and the proof of others are similar.
Since P"PQ = PQ, TPQ = PQ + QPP?Q and P?Q + QPQ = 0, it follows that

-QPtPQ

= -Q°(PQ+Q°P*Q)
= -Q°PQ+(Q")PQPQ
= 0.

Oé_po

(5) The conclusion can be immediately obtained from PPQ = 0, P"Q = Q and tQ = Q.
(6) We only prove the case i = —1, and other cases are similar.
Note that PPQ™ = PP, p*QP = QP, PPQP = 0 and P*"Q™ = P™ — QQ", so

aa_1 = (Q76PP + QPtP™?,
= Q™5PPsPP + (QP)rQPtP™ + QPtP™5PP — QPrQQPoPP.
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On the other hand, the relation PPQ = 0 implies PP6 = PP and P"6 = 6 — PPP. Also, TQ" = QP can be
obtained based on 7Q = Q. Therefore, we have

asar = Q76(PP)? + (QP)* 1P + QP (6 — PPP)PP — QPQQPsPP
— Q"(S(PD)2 + (QD)ZTPTL _ QDPD
= —ap,
since, by Lemma 2.4 (3),

QPt(6 - PPP)PP = QP(16 - 7PPP)PP
= QP(t+6-1-1PPP)PP
= QP(t+6-1)PP - QPrPP
= QP©B-1PP.

(7) Note that TP?2Q? = P>Q?. Then, the claim follows from PPQP = 0 and P*P?>(QP)? = P2(QP)>. O
The following is the main result of this section.

Theorem 2.5. Let P,Q € B(X) be Drazin invertible, r = ind(P) and s = ind(Q). If P2Q + QPQ = 0 and P"Q = 0
for some integer n > 0, then P + Q is Drazin invertible, and

(P+ Q)" = —agP - PQayP + P(Q°)* + Q°, (10)

s—1 r—1 r—1
(P + Q)D — QT( Z Qi(PD)i+l + Z(QD)HIPZ'PTL + PZ(QD)HZPI'PTZ
i=0 i=0 i=0
5—2
+ PQT! Z Qi+l(PD)i+3 _ PQDPD _ PQQD(PD)Z (11)

i=0

Moreover, ind(P + Q) <r+s+3.

Proof. LetA=(I Q): X&X - XandB=(]): X > X®X. Then P + Q = AB and BA = M, where M is
defined as in Lemma 2.2. By Lemma 2.2, we obtain

AT2(AL = Q)(A?L + PQ)R(A, Q)R(A, P)  A=2(AI — Q)PQR(A, Q)

A-2(A2I + PQ)R(A, Q)R(A, P) A-2(A2I + PQ)R(A, Q) (12)

R(A, BA) = (

for A belonging to a punctured neighborhood of 0, which shows that R(A, BA) has a pole at A = 0 of order
at most 7 + s + 2. So, according to Lemma 1.1, BA is Drazin invertible and R(A, BA) has the Laurent series

R(A, BA) = :gl ’ AKBAY-YBA) - go AK((BA)PY<+1

in a punctured neighborhood of 0. Thus, by Lemma 2.1, AB is Drazin invertible, i.e.,, P + Q is Drazin
invertible. In addition, we have

(P+Q)° = (AB)” = A(BA)")’B (13)

and ind(P + Q) <ind(BA)+ 1 <r+s+3.
According to Lemma 2.3 and the expression (12) for R(A, BA), a—1 — Qap + PQa1 — QPQa; , ap + PQay,
—PQP — P>(QP)? and —QP — P(QP)? are the coefficients at A° of A=2(AI — Q)(A%I + PQ)R(A, Q)R(A, P), A=2(A%I +
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PQ)R(A, Q)R(A, P), A72(AI — Q) PQR(A, Q) and A~2(A%I + PQ)R(A, Q), respectively. Thus, applying Eq.(2), we
obtain that

(BAP = —% fr %R(A, BA)dA
_ a1 — Qap + PQay — QPQa,  —PQP — P2(QP)?
- ap + PQCYZ _QD - P(QD)Z
Then
@@= 2) (19
where
Cin = (a-1—Qap+PQar — QPQas)* — (PQ + P*(Q)*)(ao + PQay),
Ciz = —(a-1 - Qap + PQa; — QPQaz)(PQP + P*(QP)?)

+(PQP + P2(QP)*)(Q" + P(QP)%),
Cu = (a0+PQa)(a—1 — Qag + PQar — QPQa) — (Q° + P(QP)*) (g + PQw2),
Cn = —(ao+PQax)(PQ” + P*(Q")*) + (Q° + P(Q")*).

By Lemma 2.3 and Lemma 2.4, together with P2Q+QPQ = 0, Q° = Q(QP)? and (QP)?P?(QP)? = —QPP(QP)?,
we can deduce that

Ci = —ao+Q"Qay+Q°QPQa, — Q°Qay — QQPPQa, + PQ(Q")*ag
+PQPPQas + QPQas — QPQ(QP)’ap — QPQ(QP)’PQa; + Qa
—PQa, — PQPag — PQPPQa; — PX(QP)*ap — P*(Q)*PQas
= —ag+ Qar — PQaz + QPQas,
C = QPPQP)* - Q(QP)°P*(Q°)* + PQ(QP)’P*(QP)* — QPQ(QP)*P*(Q")?
+P(QP)* + PQPP(QP)* + PA(QP)* + P*(QP)*P(QP)*
= P(Q")*+PXQ"),
Ca = —a1+Q o+ Q°PQaz — PQas + PQ(Q")*Qay + PQ(QP)*PQas
—-QPag — Q°PQa; — P(Q°)*ap — P(QP)*PQa
= —m — PQags,
Cxn = (Q°)°PX(QP)* + PQ(Q")*P*(QP)* + (Q°)* + Q°P(QP)
+P(QP)’ + P(Q)*P(QP)*
= (Q")*+P(Q°).
Thus,

((BA)D)Z_ - + Qal - PQ(XZ + QPQO(:; P(QD)2 + PZ(QD)3
- —a1 — PQas Q) +PQ°) |

Therefore, from Eq.(13), we obtain

(P+Q)P

I 0) —ap + Qa1 — PQu, + QPQas  P(QP)* + P2(QP)? (P)
—ay — PQas QP>+ P(QPy J\1I

= —aoP - PQu,P + P(QP)* + P(QP)’ + Q(Q")* + QP(Q")’

= —aoP — PQa,P + P(QP)* + QP. (15)
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Instituting the expression (8) of a, a; into Eq.(15), then we have
s—1 ' . r—1 4 ' r—1 , '
(P + Q)D — QT( Z Ql(pD)Hl + Z(QD)HIPZPTL + PZ(QD)HZPIPTZ
i=0 i=0 i=0
5—2 ] )
+ PQT! Z Q1+1(PD)1+3 _ PQDPD _ PQQD(PD)Z
i=0

from Q™Q° =0, P'P™ = 0, QP — QPPPP = QPP™ and P(QP)? — P(QP)?PRP = P(QP)?’P™. O
Remark 2.6. In Theorem 2.5, we find that the representation (11) of (P + Q) is the same when 1 > 2.

IfletA=(Q I): X@X—u\’andB:(]I,): X > X® X, then P+ Q = AB, and we have

Theorem 2.7. Let P,Q € B(X) be Drazin invertible, r = ind(P) and s = ind(Q). If PQ* + PQP = 0 and PQ" = 0
for some integer n > 0, then P + Q is Drazin invertible, and

s—1 r—1 r—2
(P + Q)D — Qn Qi(PD)i+1 + Z(QD)HlPiPT[ + Z(QD)i+3Pi+1PT[Q
i=0 i=0

i=0
S—

1
+Q Y QU(PP)*2Q - QPPPQ - (Q)?PPPQ.
i=0

The following corollary is the case when n = 1 of Theorem 2.5.

Corollary 2.8.[9, 12] Let P,Q € B(X) is Drazin invertible, r = ind(P) and s = ind(Q). If PQ =0. Then P + Q is
Drazin invertible, and

s—1 r—1
(P + Q)D — Qn Z Qi(PD)i+1 + Z(QD)i+1pipn.
i=0 i=0

Remark 2.9. When n = 2 in Theorem 2.5 and Theorem 2.7, we obtain the results of [19, Theorem 2.1, Theorem
2.2] and [7, Lemma 4]. When n = 3 in Theorem 2.5, we get the result of [16, Theorem 5].
In fact, the condition PQPQ = 0 in [16, Theorem 5] can be obtained from P2Q+QPQ =0and PP°Q =0.

On the other hand, since ind(P?) = [md(%] and PP™ = 0 (k > ind(P)), X in [16, Theorem 5] can be simplified
r—1 s—1

as X = Z(Q%”Bpipn + Z Q" Q/(PP)*3 — (QP)2PP — QP(PPY?, where r = ind(P),s = ind(Q). Thus, the
i=0 i=0

representation of (P + Q)P in [16, Theorem 5] is reduced to the formula of (11).

3. Application to Bounded Operator Matrices

Let Y, Z be Banach spaces, and let A = (’é E) be a bounded linear operator matrix on Y X Z. In

the following, we illustrate an application of our results to establish representations for A° under some
conditions.
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Lemma 3.1.[8] Let M; = (Ié g),Mz = (13 g) be operator matrices. If ind(A) = a,ind(D) = d, then M; and

M, are Drazin invertible, and

AP 0 AP X
D _ D _ 2
W=l o) e=(o 5

d-1 a-1
where X, = D™ Z DIC(AP)*2 + Z(DD)”ZCAfA" — DPCAP,
i=0 i=0
d-1 ‘ A a-1 { '
X2 :AT(ZAZB(DD)H—Z + (AD)HZBDZDH —ADBDD.
0

i=0 i=

The case BC = 0, BDC = 0 and BD? = 0 has been studied in [10] and the case ABC = 0, BDC = 0,CBC =0
and D*C = 0 in [16] for matrices. We focus our attention in the generalization of the mentioned results.

Theorem 3.2. Let A € B(Y), D € B(Z) be Drazin invertible, a = ind(A), d = ind(D). Assume that one of the
following holds:

(1) ABC + BDC = 0,CBC + D*C = 0 and D"C = 0 for some integer n > 0. further, BD"1C = 0 if n is odd;
(2) CAB + CBD = 0,CBC + CA? = 0 and CA™ = 0 for some integer n > 0. further, CA"'B = 0 if n is odd.
Then the operator matrix A is Drazin invertible, and

AP = ( AP +BC(AP) X+BC(APY2 X+BCAPXDP +BCX(DP)2 )
~ \ C(AP)2+DC(AP)®  DP+CAPX+CXDP+DC((APY2X+APXDP+X(DP)?) ) *
a-1 d-1
where X = A™ Z AIB(DP)*2 + Z(AD)’”BDlD" — APBDP.
=0 i=0

Proof. We consider the splitting A = P + Q, where P = (‘3 g), Q= (g 8). Then

n=1 sk n—1-k
A*BD c o
n — k=0
PQ‘( D'C o)'

If (1) holds, then D*C = C(~BC)* by CBC + D>C = 0. Thus, using ABC + BDC = 0, we have

[y

AkBDn—l—kC — (A2k+1BDn—2—2kC + AZkBDn—l—ch)

—_
[N

n—

=
Il
=~
Il
(=}

0

[N
|
_

n=2-2k n=2-2k

= (AZ*1BC(-BC)" 7 + A*BDC(-BC)" 7 )

=~
I}
(==}

IS
|
_

n=2-2k

A%(ABC + BDC)(-BC) =

Il Il
o 7[7‘1
o
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when 7 is even, and

—_

n-1
ABD"1kC = BD™IC + Z AFBD"1kC
0 k=1

n—

=~
1l

n-1
2

— (AZkBDn—l—ZkC+A2k—1BDH—2kc)

T
X

N‘T
iR

n-1-2k n-1-2k

= (A*BC(-BC)" = + A*'BDC(-BC)" =)

T
X

[
AN

n=1-2k

A% 1(ABC + BDC)(—BC) =

gl

—_

k=
= 0

when 7 is odd. So, P"Q = 0 according to D"C = 0. On the other hand, a straightforward calculation shows
that P>Q + QPQ = 0. The desired result follows from Theorem 2.5 and Lemma 3.1.

Similarly, if (2) holds, then we conclude that QP? + QPQ = 0 and QP" = 0. Therefore, the claim follows
from Theorem 2.7. [

If we consider the splitting M = P + Q, where P = (é g), Q= (8 g), then we obtain the following result.

Theorem 3.3. Let A € B(Y), D € B(Z) be Drazin invertible, a = ind(A),d = ind(D). Assume that one of the
following holds:
(1) CAB + DCB = 0, BCB + A2B = 0 and A"B = 0 for some integer n > 0. further, CA"™"'B = 0 if n is odd;
(2) BCA + BDC = 0, BCB + BD? = 0 and BD" = 0 for some integer n > 0. further, BD""'C = 0 if n is odd.
Then the operator matrix A is Drazin invertible, and

AP = (AD+BXAD+BDDX+AB((DD)2X+DDXAD+X(AD)2) B(DD)2+AB(DD)3)

X+CBX(AP)?+CBDPXAP+CB(DPY2 X DP+CB(DP)%)
d-1 a—1
where X = D™ Z DIC(AP)*2 + Z(DD)”ZCAlA” — DPCAP.
i=0 i=0
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