
Filomat 31:8 (2017), 2211–2218
DOI 10.2298/FIL1708211A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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bUniversità degli Studi di Palermo, Dipartimento di Matematica e Informatica, Via Archirafi, 34, 90123 Palermo, Italy

cFaculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia
dDepartment of Mathematics, State University of Novi Pazar, Novi Pazar, Serbia

Abstract. We combine some classes of functions with a notion of hybrid GP(Λ,Θ)-H-F-contractive mapping
for establishing some fixed point results in the setting of GP-metric spaces. An illustrative example supports
the new theory.

1. Introduction

The well known Banach fixed point theorem for contraction mappings is universally recognized as the
fundamental result in the metric fixed point theory; see [6]. This result is a source of continuous inspiration
for researchers working in the specific topic of fixed point theory, but also for scientists working in other
branches of mathematics and applied sciences. Without enlarging the discussion too much, we point out
that the metric conditions of the space and the characterizations of the mappings play an essential role in
establishing the existence of solution for every mathematical problem, under investigation. A promising
direction of research brings authors to modify the classical metric statements for obtaining a more general
setting, useful in practical problems. Following this direction, the Banach fixed point theorem [6] has been
generalized and revised in various settings; see for instance [20, 21, 24, 25]. Here, we are interested in
combining the peculiarities of two of these abstract settings. Precisely, we refer to the partial metric space,
which is a generalized metric space introduced by Matthews [12] for application in theoretical computer
science. We point out that in a partial metric space, each element of the space does not necessarily have a
zero distance from itself. Subsequently, several authors studied the problem of existence and uniqueness of
fixed point in this setting; they considered mappings satisfying different contractive conditions and solved
various problems involving differential and functional equations; see [3, 9, 21, 23].

On the other hand, in 2006 Mustafa and Sims [13] introduced a new notion of generalized metric spaces
called G-metric spaces. Based on this notion, many fixed point results for different contractive conditions
have been presented and applied; for more details see [1, 5, 14–16, 19, 22]. An attempt to combine
the advantages of above two settings was successfully realized by Zand and Nezhad [26]. Precisely,
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these authors introduced a new generalized metric with the name of GP-metric space and some useful
properties. Following this idea, Aydi et al. [4] established some fixed point results in GP-metric spaces.
Other results in the setting of GP-metric spaces are available in [18], where the authors introduce the notion
of GP(Λ,Θ)-contractive mappings and give some fixed point results for GP(Λ,Θ)-contractive mappings.

In this paper we continue this line of research, combining some classes of functions in the setting of
GP-metric spaces. Consequently, the presented theorems are suitable for covering a wide class of abstract
problems, but without requiring rearrangements of the proofs. An illustrative example supports the new
theory.

2. Preliminaries

In this section, we recall the background and some results in the setting of GP-metric spaces. Throughout
this paper, letR,R+,Z+ andN denote the sets of reals, nonnegative reals, nonnegative integers and positive
integers, respectively.

Just to fix notation, we say that a (totally) ordered (abelian) group G is an additive group on which is
defined an order relation < such that if a < b then a + c < b + c, for all a, b, c ∈ G. We write ≤ for < or =, and
denote by G+ the set of nonnegative elements of G.

Definition 2.1 ([10]). Let G be an ordered group. An ordered group metric (for short, OG-metric) on a nonempty
set X is a symmetric function dG : X×X→ G+ such that dG(x, y) = 0 if and only if x = y and the triangle inequality
is satisfied. The pair (X, dG) is called ordered group metric space (for short, OG-metric space).

Definition 2.2 ([26]). Let X be a non empty set and G be an ordered group. A function Gp : X × X × X → G+ is
called an ordered group partial metric (for short, OGP-metric) if the following conditions are satisfied:

(GP1) x = y = z if Gp(x, y, z) = Gp(z, z, z) = Gp(y, y, y) = Gp(x, x, x);

(GP2) Gp(x, x, x) ≤ Gp(x, x, y) ≤ Gp(x, y, z) for all x, y, z ∈ X with z , y;

(GP3) Gp(x, y, z) = Gp(J{x, y, z}), where J{x, y, z} is any permutation of x, y, z (symmetry in all three variables);

(GP4) Gp(x, y, z) ≤ Gp(x, a, a) + Gp(a, y, z) − Gp(a, a, a) for all x, y, z, a ∈ X.

The triple (X,G,Gp) is called an OGP-metric space.

As special cases, one can consider G+ := Z+ or R+. In the case G+ = R+, the triple (X,R,Gp) is usually
denoted by (X,Gp) and called GP-metric space. In the sequel, for avoiding confusion and being more
familiar with notation, we assume that G+ = R+.

Example 2.3 ([26]). Let X = R+ = G+ and define Gp(x, y, z) = max{x, y, z}, for all x, y, z ∈ X. Then (X,Gp) is a
GP-metric space.

We recall the following facts, for further use.

Proposition 2.4 ([26], Proposition 1). Let (X,Gp) be a GP-metric space. Then, for all x, y, z, a ∈ X, the following
statements hold true:

(i) Gp(x, y, z) ≤ Gp(x, x, y) + Gp(x, x, z) − Gp(x, x, x);

(ii) Gp(x, y, y) ≤ 2Gp(x, x, y) − Gp(x, x, x);

(iii) Gp(x, y, z) ≤ Gp(x, a, a) + Gp(y, a, a) + Gp(z, a, a) − 2Gp(a, a, a);

(iv) Gp(x, y, z) ≤ Gp(x, a, z) + Gp(a, y, z) − Gp(a, a, a).
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Proposition 2.5 ([26], Proposition 2). Every GP-metric space (X,Gp) defines a metric space (X,DGp), where

DGp (x, y) = Gp(x, y, y) + Gp(y, x, x) − Gp(x, x, x) − Gp(y, y, y) for all x, y ∈ X.

Example 2.6 ([18]). Let X, G+ and Gp as in the Example 2.3 above. Then the metric DGp , induced by the GP-metric
Gp, is defined by

DGp (x, y) =
∣∣∣x − y

∣∣∣ for all x, y ∈ X.

Lemma 2.7 ([4], Lemma 1.10). Let (X,Gp) be a GP-metric space. Then

(i) if Gp(x, y, z) = 0, then x = y = z;

(ii) if x , y, then Gp(x, y, y) > 0.

Definition 2.8. [26]. Let (X,Gp) be a GP-metric space and let {xn} a sequence of points of X. A point x ∈ X is said
to be the limit of the sequence {xn} or xn → x as n→ +∞, if

lim
m,n→+∞

Gp(x, xm, xn) = Gp(x, x, x).

Proposition 2.9 ([26], Proposition 4). Let (X,Gp) be a GP-metric space. Then, for any sequence {xn} in X and a
point x ∈ X the following are equivalent:

(i) {xn} is GP-convergent to x;
(ii) Gp(xn, xn, x)→ Gp(x, x, x) as n→ +∞;

(iii) Gp(xn, x, x)→ Gp(x, x, x) as n→ +∞.

By using the definition of DGp , one can deduce an interesting proposition, as follows.

Proposition 2.10 ([18], Proposition 1.9). Let (X,Gp) be a GP-metric space. For any sequence {xn} in X convergent
to a point x ∈ X such that lim

n→+∞
Gp(xn, xn, xn) = Gp(x, x, x), then lim

n→+∞
DGP (xn, x) = 0.

Remark 2.11. Let (X,Gp) be a GP-metric space and let {xn} ⊂ X be a sequence convergent to a point x ∈ X such that
Gp(x, x, x) = 0, then lim

n→+∞
Gp(xn, xn, xn) = Gp(x, x, x). In fact, by property (GP2) and Proposition 1.9, we have

Gp(xn, xn, xn) ≤ Gp(xn, xn, x)→ 0 as n→ +∞.

Definition 2.12. [26]. Let (X,Gp) be a GP-metric space.

(i) A sequence {xn} is called a GP-Cauchy sequence if and only if lim
m,n→+∞

Gp(xn, xm, xm) exists (and is finite);

(ii) A GP-metric space (X,Gp) is said to be GP-complete if and only if every GP-Cauchy sequence in X is GP-
convergent to some x ∈ X such that Gp(x, x, x) = lim

m,n→+∞
Gp(xn, xm, xm).

The following lemma is a consequence of property (GP4).

Lemma 2.13. Let (X,Gp) be a GP-metric space, x, y ∈ X and {xn} be a sequence in X. Assume that

lim
n→+∞

Gp(x, xn, xn) = lim
n→+∞

Gp(xn, y, y),

then x = y.

Lemma 2.14 ([18], lemma 1.13). Let (X,Gp) be a GP-metric space and {xn} ⊂ X be a sequence such that

Gp(xn, xn+1, xn+1) ≤ λGp(xn−1, xn, xn) for all n ∈N,

for some λ ∈ [0, 1). Then {xn} is a GP-Cauchy sequence in X such that

lim
m,n→+∞

Gp(xn, xm, xm) = 0.
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Definition 2.15 ([18]). Let (X,Gp) be a GP-metric space. A mapping f : X→ X is 0-GP-continuous if

lim
n→+∞

Gp(xn, xn, x) = 0 implies lim
n→+∞

Gp( f xn, f xn, f x) = 0.

Finally, we give some concepts and examples related to the classes of functions that we will use in proving
our results (see [2, 11]).

Definition 2.16. A function H : [1,+∞) ×R+
→ R is a subclass function if it is continuous and H(1, y) ≤ H(x, y)

for all x ∈ [1,+∞) and y ∈ R+.

Example 2.17. Let H : [1,+∞) ×R+
→ R be defined, for all x ∈ [1,+∞) and y ∈ R+, by one of the following rules:

(1) H(x, y) = (y + l)x, l > 1;

(2) H(x, y) = (x + l)y, l > 1;

(3) H(x, y) = xyn, n ∈N;

(4) H(x, y) = y;

(5) H(x, y) = ( x+1
2 )y;

(6) H(x, y) = 2x+1
3 y;

(7) H(x, y) = (

n∑
i=0

xn−i

n+1 )y;

(8) H(x, y) = (

n∑
i=0

xn−i

n+1 + l)y, l > 1.

Then H is a subclass function.

Definition 2.18. Let F : [0, 1)×R+
→ R and H : [1,+∞)×R+

→ R be two functions. We say that (F,H) is a pair
of upclass functions if H is a subclass function and H(1, r) ≤ F(s, t) implies r ≤ st for all r, t ∈ R+ and s ∈ [0, 1). We
denote byH the family of all (F,H) pairs.

Building on Example 2.17, we have the following example.

Example 2.19. Let F : [0, 1)×R+
→ R and H : [1,+∞)×R+

→ R be two functions and let the pair (F,H) defined,
for all x ∈ [1,+∞), y, t ∈ R+ and s ∈ [0, 1), by one of the following rules:

(1) H(x, y) = (y + l)x, l > 1 and F(s, t) = st + l;

(2) H(x, y) = (x + l)y, l > 1 and F(s, t) = (1 + l)st;

(3) H(x, y) = xyn and F(s, t) = sntn, n ∈N;

(4) H(x, y) = y and F(s, t) = st;

(5) H(x, y) = ( x+1
2 )y and F(s, t) = st;

(6) H(x, y) = 2x+1
3 y and F(s, t) = st;

(7) H(x, y) = (

n∑
i=0

xn−i

n+1 )y and F(s, t) = st;

(8) H(x, y) = (

n∑
i=0

xn−i

n+1 + l)y, l > 1 and F(s, t) = (1 + l)st.

Then the pair (F,H) satisfies Definition 2.18.
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3. Main Results

In this section, we introduce the notion of hybrid GP(Λ,Θ)-H-F-contractive mapping and establish some
results of existence of fixed point for this class of mappings.

Definition 3.1. Let f : X→ X and Θ,Λ : X ×X ×X→ R+ be mappings. We say that f is (Λ,Θ )-admissible with
respect to the real numbers λ > θ ≥ 0 if for x, y, z ∈ X we have

Λ(x, y, z) ≥ λ =⇒ Λ( f x, f y, f z) ≥ λ

and

Θ(x, y, z) ≤ θ =⇒ Θ( f x, f y, f z) ≤ θ.

Definition 3.2. Let (X,Gp) be a GP-metric space and f : X → X be a mapping. We say that f is a hybrid GP(Λ,Θ)-
H-F-contractive mapping with respect to the real numbers λ > θ ≥ 0 if there exists a pair (F,H) ∈ H such that the
condition

H(
Λ(x, y, z)

λ
,Gp( f x, f y, f z)) ≤ F(

Θ(x, y, z)
λ

,Gp(x, y, z) + LM(x, y, z)) (1)

holds for all x, y, z ∈ X such that Λ(x, y, z) ≥ λ and Θ(x, y, z) ≤ θ, where L ≥ 0 and

M(x, y, z) = min{max{DGp ( f x, y),DGp ( f x, z)},max{DGp ( f y, y),DGp ( f z, z)}}.

The first fixed point theorem is established for 0-GP-continuous mappings.

Theorem 3.3. Let (X,Gp) be a GP-complete GP-metric space and let f : X → X be a mapping. Assume that there
exist two real numbers λ > θ ≥ 0 such that the following conditions hold:

(i) f is a hybrid GP(Λ,Θ)-H-F-contractive mapping with respect to λ and θ;

(ii) f is a (Λ,Θ)-admissible mapping with respect to λ and θ;

(iii) there exists x0 ∈ X such that Λ(x0, f x0, f x0) ≥ λ and Θ(x0, f x0, f x0) ≤ θ;

(iv) f is a 0-GP-continuous mapping.

Then f has a fixed point in X.

Proof. Let x0 ∈ X be such that Λ(x0, f x0, f x0) ≥ λ and Θ(x0, f x0, f x0) ≤ θ. Let {xn} be a Picard sequence
starting at x0, that is, xn = f xn−1 = f nx0 for all n ∈ N. Since f is a (Λ,Θ)-admissible mapping and
Λ(x0, x1, x1) = Λ(x0, f x0, f x0) ≥ λ, we deduce that Λ(x1, x2, x2) = Λ( f x0, f x1, f x1) ≥ λ. By continuing this
process, we get Λ(xn, xn+1, xn+1) ≥ λ for all n ∈ N ∪ {0}. Similarly, Θ(xn, xn+1, xn+1) ≤ θ for all n ∈ N ∪ {0}.
Now, if xm−1 = xm for some m ∈N, then xm is a fixed point of f and we have nothing to prove. Thus, we can
assume that xn−1 , xn for all n ∈N. This, by Lemma 2.7, ensures that Gp(xn, xn+1, xn+1) > 0 for all n ∈N∪{0}.

Now, by using (1) with x = xn−1 and y = z = xn, we get

H(1,Gp(xn, xn+1, xn+1)) ≤ H(
Λ(xn−1, xn, xn)

λ
,Gp(xn, xn+1, xn+1))

≤ F(
Θ(xn−1, xn, xn)

λ
,Gp(xn−1, xn, xn) + L M(xn−1, xn, xn)).

Therefore

Gp(xn, xn+1, xn+1) ≤
Θ(xn−1, xn, xn)

λ
[Gp(xn−1, xn, xn) + L M(xn−1, xn, xn)].
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Since Θ(xn−1, xn, xn) ≤ θ < λ for all n ∈N, we obtain

Gp(xn, xn+1, xn+1) ≤
θ
λ

[Gp(xn−1, xn, xn) + L M(xn−1, xn, xn)],

but M(xn−1, xn, xn) = 0 for all n ∈N. Thus

Gp(xn, xn+1, xn+1) ≤
θ
λ

Gp(xn−1, xn, xn) for all n ∈N. (2)

Since, 0 ≤
θ
λ

< 1, by Lemma 2.14, we deduce that {xn} is a GP-Cauchy sequence such that
limm,n→+∞ Gp(xn, xm, xm) = 0. The hypothesis that X is GP-complete ensures that there exists z ∈ X such
that the sequence {xn} GP-converges to z and

Gp(z, z, z) = lim
m,n→+∞

Gp(xn, xm, xm) = 0.

Now, using the 0-GP-continuity of the mapping f and Proposition 2.4 (ii), we get

lim
n→+∞

Gp( f z, f z, xn+1) ≤ lim
n→+∞

2Gp( f z, xn+1, xn+1) − lim
n→+∞

Gp(xn+1, xn+1, xn+1)

≤ lim
n→+∞

2Gp( f z, f xn, f xn) = 0.

Consequently,

lim
n→+∞

Gp(xn, f z, f z) = 0.

As

lim
n→+∞

Gp(xn, xn, z) = 0,

by Lemma 2.13, we deduce that z = f z.

The second fixed point theorem is established for hybrid GP(Λ,Θ)-H-F-contractive mappings that are not
0-GP-continuous.

Theorem 3.4. Let (X,Gp) be a GP-complete GP-metric space and let f : X → X be a mapping. Assume that there
exist two real numbers λ > θ ≥ 0 such that the following conditions hold:

(i) f is a hybrid GP(Λ,Θ)-H-F-contractive mapping with respect to λ and θ;

(ii) f is a (Λ,Θ)-admissible mapping with respect to λ and θ;

(iii) there exists x0 ∈ X such that Λ(x0, f x0, f x0) ≥ λ and Θ(x0, f x0, f x0) ≤ θ;

(iv) if {xn} ⊂ X is a sequence convergent to z ∈ X such that Λ(xn, xn+1, xn+1) ≥ λ and Θ(xn, xn+1, xn+1) ≤ θ for all
n ∈N ∪ {0}, then Λ(xn, z, z) ≥ λ and Θ(xn, z, z) ≤ θ for all n ∈N ∪{0}.

Then f has a fixed point.

Proof. Let x0 ∈ X be such that Λ(x0, f x0, f x0) ≥ λ and Θ(x0, f x0, f x0) ≤ θ and let {xn} be a Picard sequence
starting at x0. Following the proof of above Theorem 3.3, we can say that {xn} is a GP-Cauchy sequence
such that Λ(xn, xn+1, xn+1) ≥ λ and Θ(xn, xn+1, xn+1) ≤ θ for all n ∈ N ∪ {0}. Since X is GP-complete, then
there is z ∈ X such that the sequence {xn} GP-converges to z; again from the proof of Theorem 3.3, we have
Gp(z, z, z) = 0. Then by (iv), we get Λ(xn, z, z) ≥ λ and Θ(xn, z, z) ≤ θ for all n ∈N ∪ {0}.
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Now, by using the contractive condition (1), we write

H(1,Gp(xn+1, f z, f z)) ≤ H(
Λ(xn, z, z)

λ
,Gp(xn, xn+1, xn+1))

≤ F(
Θ(xn, z, z)

λ
,Gp(xn, z, z) + L M(xn−1, z, z)).

Since Θ(xn,z,z)
λ < 1, we have

Gp(xn+1, f z, f z) ≤ Gp(xn, z, z) + L M(xn−1, z, z).

Now, by (GP4), we obtain that

Gp(z, f z, f z) ≤ Gp(z, xn+1, xn+1) + Gp(xn+1, f z, f z)
≤ Gp(z, xn+1, xn+1) + Gp(xn, z, z) + L M(xn−1, z, z)

holds for all n ∈N.
Since the sequence xn → z and Gp(z, z, z) = 0, by Proposition 2.10 and Remark 2.11, we get

lim
n→+∞

DGp (xn+1, z) = 0.

Consequently, we have

lim
n→+∞

M(xn, z, z) = 0.

It follows easily that Gp(z, f z, f z) ≤ 0, that is, z = f z. Hence, f has a fixed point.

We conclude this section with a simple illustrative example.

Example 3.5. Let X = R+ and let Gp : X×X×X→ R+ be a GP-metric defined by Gp(x, y, z) = max{x, y, z} for all
x, y, z ∈ X. Also, let f : X→ X be given by

f (x) =

 1
4 x3 if x ∈ [0, 3]
1
2 ln(x + 1) if x ∈ R+

\ [0, 3].

Now, consider the mappings Θ,Λ : X × X × X→ R+ defined by

Θ(x, y, z) = 2 for all x, y, z ∈ X and Λ(x, y, z) =

4 if x, y, z ∈ [0, 1]
0 otherwise.

Clearly, f is (Λ,Θ)-admissible with respect to λ = 4 and θ = 2. Now, for all x, y, z ∈ X such that Λ(x, y, z) ≥ 4 and
Θ(x, y, z) ≤ 2, that is x, y, z ∈ [0, 1]. we have

Gp( f x, f y, f z) =
1
4

max{x3, y3, z3
}

≤
1
4

Gp(x, y, z)

≤
1
2

Θ(x, y, z)
λ

[Gp(x, y, z) + LM(x, y, z)].

It is immediate to conclude that f is a hybrid GP(Λ,Θ)-H-F-contractive mapping with respect to λ = 4 and θ = 2, by
assuming that F : [0, 1) × R+

→ R and H : [1,+∞) × R+
→ R are defined as in (4) of Example 2.19. Finally, we

note that all the hypotheses of Theorem 3.3 hold true and hence f has a fixed point.
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4. Conclusions

The abstract developments of fixed point theory in generalized metric spaces are interesting as useful
exercises for investigating the possibility to enlarge applicability of the constructive techniques at the basis
of the proof of Banach fixed point theorem. The proposed theorems realize this idea by combining some
classes of functions in the setting of GP-metric spaces. Consequently, we design statements and proofs
of theorems with the goal of covering a wide class of abstract problems, but without requiring specific
rearrangements of the proofs.
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46 (2008) 141–160.
[22] R. Saadati, S. M. Vaezpour, P. Vetro, B. E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces,

Mathematical and Computer Modelling 52 (2010) 797–801.
[23] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Analysis. Theory, Methods &

Applications 75 (2012) 2154–2165.
[24] F. Vetro, On approximating curves associated with nonexpansive mappings, Carpathian Journal of Mathematics 27 (2011) 142–147.
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