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Abstract. By using fixed point results of mixed monotone operators on cones and the concept of
φ−concavity, we study the existence and uniqueness of positive solutions for some nonlinear fractional
differential equations via given boundary value problems. Some concrete examples are also provided
illustrating the obtained results.

1. Introduction and Preliminaries

Fractional calculus has recently evolved as an interesting and important field of research. The much
interest in the subject owes to its extensive applications in the mathematical modeling of several phenomena
in many engineering and scientific disciplines such as physics, chemistry, biophysics, biology, blood flow
problems, control theory, aerodynamics, nonlinear oscillation of earthquake, the fluid-dynamic traffic
model, polymer rheology, regular variation in thermodynamics, economics, fitting of experimental data,
etc, ([14],[15]). A significant feature of a fractional order differential operator, in contrast to its counterpart
in classical calculus, is its non local behavior. It means that the future state of a dynamical system or
process based on the fractional differential operator depends on its current state as well its past states. It
is equivalent to say that differential equations of arbitrary order are capable of describing memory and
hereditary properties of certain important materials and processes. There are many methods to deal with
the existence of solutions of nonlinear initial value problems of fractional differential equations such as
fixed point results, the Leray-Schauder theorem, stability, etc. Mixed monotone operator method is an
important concept, which was introduced first by Guo and Lakshmikantham in [9]. Their study has
wide applications in the applied sciences such as engineering, biological chemistry technology, nuclear
physics and in mathematics (see[11, 12, 21]) and references therein). Various existence (and uniqueness)
theorems of fixed points for mixed monotone operators have been discussed extensively, see for example
([1]-[5],[8],[17], [19]). Bhaskar and Lakshmikantham [8], established some coupled fixed point theorems for
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mixed monotone operators in partially ordered metric spaces and discussed the existence and uniqueness
of a solution for a periodic boundary value problem. In [13], the authors considered

Dα

Dt
u(t) + f (t,u(t),u(t)) + 1(t,u(t)) = 0 t ∈ (0, 1), n − 1 < α ≤ n.

According to their limitations, the function 1(t, 0) must be a non-zero function. On the other hand, f (t,u, v)
depends on 1(t,u). In [20], Xu et al. studied the following boundary value problem

Dα

Dt
u(t) = f (t,u(t))

u(0) = u(1) = u′(0) = u′(1) = 0.

They used the following lemma for existence and uniqueness of a solution for the problem.

Lemma 1.1. [20] Suppose that A : Qe ×Qe → Qe is a mixed monotone operator and there exists a constant η with
0 ≤ η < 1 such that

A(tx,
1
t

y) ≥ tηA(x, y), ∀x, y ∈ Qe, 0 < t < 1.

Then A has a unique fixed point x∗ ∈ Qe.

Recently, Y. Sang [18] proved some new results on existence and uniqueness of a fixed point for mixed
monotone operators with perturbations. In this paper, by applying Sang’s results, we obtain new results
on the existence and uniqueness of positive solutions for some nonlinear fractional differential equations
of the form

Dα

Dt
u(t) = f (t,u(t)),

via given boundary conditions. Two examples are detailed to show the reliability and efficiency of the
considered fixed point theorem. The assumptions we make with the function f (t,u) are straight and clear
than previous results. The function f does not need to be contractive, in spite of [7]. In addition, our results
also couldn’t be studied by the techniques of [13, 20]. For other results on same field, see recent papers in
[6, 16, 19].

Definition 1.1. [14, 15] For a continuous function f : [0,∞) → R, the Caputo derivative of fractional order α is
defined by

cDα f (t) =
1

Γ(n − α)

∫ t

0
(t − s)n−α−1 f (n)(s)ds,

where n − 1 < α < n,n = [α] + 1 and [α] denotes the integer part of α.

Definition 1.2. [14, 15] The Riemann- Lioville fractional derivative of order α for a continuous function f is defined
by

Dα f (t) =
1

Γ(n − α)
(

d
dt

)n
∫ t

0

f (s)
(t − s)α−n−1 ds, (n = [α] + 1),

where the right-hand side is pointwise defined on (0,∞).

Definition 1.3. [14, 15] Let [a, b] be an interval in R and α > 0. The Riemann-Liouville fractional order integral of
a function f ∈ L1([a, b],R) is defined by

Iαa f (t) =
1

Γ(α)

∫ t

a

f (s)
(t − s)1−α ds,

whenever the integral exists.
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Suppose that (E, ‖ . ‖) is a Banach space partially ordered by a cone P ⊆ E, that is, x ≤ y if and only if
y − x ∈ P. If x , y, then we denote x < y or x > y. We denote the zero element of E by θ. Recall that a
non-empty closed convex set P ⊂ E is a cone if it satisfies
(i) x ∈ P, λ ≥ 0 =⇒ λx ∈ P,
(ii) x ∈ P, − x ∈ P =⇒ x = θ.
A cone P is called normal if there exists a constant N > 0 such that θ ≤ x ≤ y implies ‖ x ‖≤ N ‖ y ‖. We also
define the order interval [x1, x2] = {x ∈ E|x1 ≤ x ≤ x2} for all x1, x2 ∈ E. We say that an operator A : E→ E is
nondecreasing whenever x ≤ y implies Ax ≤ Ay.

Definition 1.4. [9, 10] Let D ⊂ E. An operator A : D × D → D is said to be a mixed monotone operator if
A(x, y) is nondecreasing in x and is nonincreasing in y, i.e., ui, vi(i = 1, 2) ∈ D, u1 ≤ u2 and v1 ≥ v2 imply that
A(u1, v1) ≤ A(u2, v2).

An element x∗ ∈ D is called a fixed point of A if it satisfies A(x∗, x∗) = x∗. Letting h > θ, we write
Ph = {x ∈ E, ∃λ, µ > 0 such that λh ≤ x ≤ µ h}.
Let e > θ. An operator A : P→ P is said to be e-concave if it satisfies the following two conditions:
(i) A is e- positive, i.e, A(P − {θ}) ⊂ Pe;
(ii) ∀x ∈ Pe and ∀ 0 < t < 1, there exists η = η(t, x) > 0 such that A(tx) ≥ (1 + η)tAx, where η = η(t, x) is called
the characteristic function of A.

Theorem 1.1. [18] Let P be a normal cone of the real Banach space E, e > θ and u0, v0 ∈ P with u0 ≤ v0. Let
A : P × P→ P be a mixed monotone operator. Suppose that:
(i) there exists a real positive number r0 such that u0 ≥ r0v0;
(ii) u0 ≤ A(u0, v0) and A(v0,u0) ≤ v0;
(iii) for a fixed v, A(., v) : P→ P is e-concave with its characteristic function η(t, x) which is assumed to be monotone
in x and continuous in t from the left;
(iv) for a fixed u ∈ P, there exists N > 0 such that for A(u, .) : P→ P, we have

A(u, v1) − A(u, v2) ≥ −N(v1 − v2), ∀v1 ≥ v2, v1, v2 ∈ P.

Then A has exactly one fixed point x∗ in [u0, v0].

2. Main Result

We study the existence and uniqueness of a solution for the fractional differential equation

Dα

Dt
u(t) = f (t,u(t)),

on partially ordered Banach spaces with two types of boundary conditions and two types of fractional
derivatives, Riemann-Liouville and Caputo.

2.1. Existence results for the fractional differential equation with the Riemann-Liouville fractional derivative
First, we study the existence and uniqueness of a positive solution for the fractional differential equation

Dα

Dt
u(t) = f (t,u(t)), t ∈ [0, 1], 3 < α ≤ 4, (1)

under the conditions

u(0) = u′(0) = u(1) = u′(1) = 0, (2)

where Dα is the Riemann-Liouville fractional derivative of orderα. Consider the Banach space of continuous
functions on [0, 1] endowed with the norm

‖y‖ = max{|y(t)|, t ∈ [0, 1]}.
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Take

P = {y ∈ C[0, 1] : min
t∈[0,1]

y(t) ≥ 0}. (3)

Then P is a normal cone. From [20], we have the following lemma.

Lemma 2.1. Given f ∈ C[0, 1] and 3 < α ≤ 4. The unique solution of the fractional differential equation

Dα

Dt
u(t) = f (t,u(t)), t ∈ [0, 1], 3 < α ≤ 4, (4)

where

u(0) = u′(0) = u(1) = u′(1) = 0, (5)

is given by u(t) =
∫ 1

0 G(t, s) f (s,u(s))ds, where

G(t, s) =

 (t−1)α−1+(1−s)α−2tα−2[(s−t)+(α−2)(1−t)s]
Γ(α) , 0 ≤ s ≤ t ≤ 1,

(1−s)α−2tα−2[(s−t)+(α−2)(1−t)s]
Γ(α) , 0 ≤ t ≤ s ≤ 1.

If f (t,u(t)) = 1, the unique solution of (4)-(5) is given by

u(t) =

∫ 1

0
G(t, s)ds =

1
Γ(α + 1)

tα−2(1 − t)2.

Lemma 2.2. [20] The Green’s function G(t, s) defined in lemma 2.1 has the following properties:
(1) G(t, s) > 0 and G(t, s) is continuous for t, s ∈ [0, 1];
(2)

(α − 2)h(t)k(s)
Γ(α)

≤ G(t, s) ≤
M0k(s)
Γ(α)

,

where
M0 = max{α − 1, (α − 2)2

}, h(t) = tα−2(1 − t)2 and k(s) = s2(1 − s)α−2.

Now, we are ready to state and prove our first main result.

Theorem 2.1. Let f (t,u(t), v(t)) ∈ C([0, 1] × [0,∞] × [0,∞]) be nondecreasing in u and be nonincreasing in v. Let
e > θ and u0, v0 ∈ P with u0 ≤ v0. Suppose that
(i) there exists a real positive number r0 such that u0 ≥ r0v0;
(ii)

u0(t) ≤
∫ 1

0
G(t, s) f (s,u0(s), v0(s))ds

and ∫ 1

0
G(t, s) f (s,u0(s), v0(s))ds ≤ v0(t);

(iii) for all t ∈ [0, 1] and 0 < c < 1, there exists η = η(c, x) > 0 such that

f (t, cu(t), v(t)) ≥ (1 + η)c f (t,u(t), v(t)),

where η(c, x) is nonincreasing in x and is continuous in t from the left;
(iv) for a fixed u ∈ P, there exists N > 0 such that for all v1, v2 ∈ P with v1 ≥ v2∫ 1

0
G(t, s) f (s,u(s), v1(s))ds −

∫ 1

0
G(t, s) f (s,u(s), v2(t))ds ≥ −N(v1 − v2).

Then the problem (1) with the boundary value condition (2) has a unique solution u∗ in [u0, v0].



H. Afshari et al. / Filomat 31:9 (2017), 2675–2682 2679

Proof. By using Lemma 2.1, the problem (1)-(2) is equivalent to the integral equation

u(t) =

∫ 1

0
G(t, s) f (s,u(s))ds,

where

G(t, s) =

 (t−1)α−1+(1−s)α−2tα−2[(s−t)+(α−2)(1−t)s]
Γ(α) , 0 ≤ s ≤ t ≤ 1,

(1−s)α−2tα−2[(s−t)+(α−2)(1−t)s]
Γ(α) , 0 ≤ t ≤ s ≤ 1.

Define the operator A : P × P→ P by

A(u(t), v(t)) =

∫ 1

0
G(t, s) f (s,u(s), v(s))ds,

then u is a solution of the problem (1) if and only if u = A(u,u). It is easy to see that the operator A is
nondecreasing in u and nonincreasing in v on P. By assumptions on u0 and v0, we have

u0 ≤ A(u0, v0) and A(v0,u0) ≤ v0.

Moreover, for a fixed v, A(., v) : P→ P is e-concave with its characteristic function. For a fixed u ∈ P, there
exists N > 0 such that A(u, .) : P→ P satisfies the following property

A(u, v1) − A(u, v2) ≥ −N(v1 − v2), ∀v1 ≥ v2, v1, v2 ∈ P.

Therefore, A satisfies all conditions of Theorem 1.1. Consequently, the operator A has a unique positive
solution u∗ ∈ [u0, v0] verifying A(u∗,u∗) = u∗. This completes the proof.

We illustrate Theorem 2.1 by the following example which can not be solved by the previous results in the
literature.

Example 2.1. Consider the periodic boundary value problem

D
7
2 u(t) = f (t,u(t)) = 1(t) + u(t) +

1
u(t)

, t ∈ [0, 1], (6)

with

u(0) = u′(0) = u(1) = u′(1) = 0,

such that 1 is continuous on [0, 1] satisfying min
t∈[0,1]

1(t) = 103 and max
t∈[0,1]

1(t) =
1
4
× 107.

So, we seek the solution of the nonlinear integral equation

u(t) =

∫ 1

0
G(t, s)[1(s) + u(s) +

1
u(s)

]ds. (7)

From Lemma 2.2, we have

M1 = min
t∈[0,1]

∫ 1

0
G(t, s)ds = 0.00001

and

M2 = max
t∈[0,1]

∫ 1

0
G(t, s)ds = 0.004.

We shall use Theorem 2.1. Obviously, the integral equation (7) can be written in the form u = A(u,u) such that

A(u, v) = A1(u) + A2(v),
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where

A1(u) =

∫ 1

0
G(t, s)[1(s) + u(s)]ds,

and

A2(v) =

∫ 1

0
G(t, s)[

1
v(s)

]ds.

Now, we show that the operator A satisfies all the conditions of Theorem 2.1. Consider f (1(t),u(t), v(t)) = 1(t) +
u(t) + 1

v(t) . For fixed value functions u0 and v0, it is clear that∫ 1

0
G(t, s) f (s,u0, v0)ds = A1(u0) + A2(v0) ≥ 10−5(103 + u0 +

1
v0

), (8)

∫ 1

0
G(t, s) f (s,u0, v0)ds ≤ 4 × 10−3(

1
4
× 107 + u0 +

1
v0

). (9)

Especially, if we choose u0 = 10−2 and v0 = 100, we can easily get

A(u0, v0) =

∫ 1

0
G(t, s) f (s,u0(s), v0(s))ds ≥ u0,

and

A(v0,u0) =

∫ 1

0
G(t, s) f (s, v0(s),u0(s))ds ≤ v0.

For a fixed v and ∀ t ∈ (0, 1), there exists η = η(t,u) =
1(t)(1−t)

t[1(t)+u(t)] > 0 such that

A(tu, v) ≥ (1 + η)tA(u, v),

where η(t,u) is nonincreasing in u and is continuous in t from left.
Also, for v1, v2 ∈ [10−2, 102] and for a fixed u, we have

A(u, v1) − A(u, v2) =

∫ 1

0
G(t, s)( f (s,u(s), v1(s)) − f (s,u(s), v2(s)))ds,

≥ 10−5(
1
v1
−

1
v2

).

Hence, there exists N = 10−9 such that

A(u, v1) − A(u, v2) ≥ −N (v1 − v2).

Therefore, the problem (6)-(??) has a u unique solution.

2.2. Existence results for the fractional differential equation with the Caputo fractional derivative
In this paragraph, we study the existence and uniqueness of a positive solution for the fractional

differential equation
cDα

Dt
u(t) = f (t,u(t)), t ∈ [0, 1], (10)

where

u(0) +

∫ 1

0
u(s)ds = u(1).

Mention that cDα is the Caputo fractional derivative of order α. Consider the Banach space of continuous
functions on [0, 1] endowed with the sup norm. Take the normal cone P given by (3). We have the following
lemma.
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Lemma 2.3. Let 0 < α ≤ 1 and h ∈ C([0,T],R) be a given function. Then the boundary value problem

cDαy(t) = h(t), (t ∈ [0,T], T ≥ 1),

and

y(0) +

∫ T

0
y(s)ds = y(T),

has a unique solution given by

y(t) =

∫ T

0
G(t, s)h(s)ds,

where G(t, s) is the Green’s function given as follows

G(t, s) =

 −(T−s)α+αT(t−s)α−1

TΓ(α+1) +
(T−s)α−1

TΓ(α) , 0 ≤ s < t,
−(T−s)α

TΓ(α+1) +
(T−s)α−1

TΓ(α) , t ≤ s < T.

By using a similar proof, Theorem 2.1 holds for the Green’s function defined in lemma 2.3. As a consequence,
we have a similar result in this case.

Example 2.2. Consider the periodic boundary value problem

cD
1
2 u(t) = f (t,u(t)) = 1(t)

√
u(t) −

1
4

u(t)
1
3 , t ∈ [0, 1], (11)

with

u(0) +

∫ 1

0
u(s)ds = u(1),

where 1 is continuous on [0, 1] verifying min
t∈[0,1]

1(t) = 4 and max
t∈[0,1]

1(t) = 6.

It is easily that M1 = min
t∈[0,1]

∫ 1

0
G(t, s)ds =

1
3

and M2 = max
t∈[0,1]

∫ 1

0
G(t, s)ds =

80
51

. Now, we show that the operator A

satisfies all the conditions of Theorem 2.1.
Indeed, let v0 = 1 and u0 = 10−2. We can easily get

A(u0, v0) =

∫ 1

0
G(t, s) f (s,u0(s), v0(s))ds ≥ u0,

and

A(v0,u0) =

∫ 1

0
G(t, s) f (s, v0(s),u0(s))ds ≤ v0.

For a fixed v and for all t ∈ (0, 1), there exists η = η(t,u) =
√

t−t
t > 0 such that

A(tu, v) ≥ (1 + η)t A(u, v),

where η(t,u) is nonincreasing in u and is continuous in t from the left.
For a fixed u, there exists N = 400

153 such that

A(u, v1) − A(u, v2) ≥ −N (v1 − v2).

Thus the problem has a unique solution in [10−2, 1].
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