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Abstract. In this paper, we introduce some definitions which are natural combination of the notions
of asymptotic equivalence, statistical convergence, lacunary statistical convergence, Wijsman convergence
and ideal. In addition, we also define the concept of asymptotically equivalent sequences of sets in the
sense of Wijsman convergence and prove some interesting results related to these concepts.

1. Introduction

Marouf [28], peresented definitions for asymptotically equivalent and asymptotic regular matrices.
Pobyvancts [41], introduced the concepts of asymptotically regular matrices, which preserve the asymptotic
equivalence of two nonnegative numbers sequences.

Patterson [39], extend these concepts by presenting an asymptotically statistical equivalent analog of
these definitions and natural regularity conditions for nonnegative summability matrices. Patterson and
Savaş [40], introduced the concepts of an asymptotically lacunary statistical equivalent sequences of real
numbers. In [24] Hazarika, introduced the notion of asymptotically ideal equivalent sequences and proved
some interesting results. The concept of convergence of sequences of points has been extended by several
authors to convergence of sequences of sets. The one of these such extensions considered in this paper is the
concept of Wijsman convergence. The concept of Wijsman statistical convergence which is implementation
of the concept of statistical convergence to sequences of sets presented by Nuray and Rhoades [38]. Similar
to the concept, the concept of Wijsman lacunary statistical convergence presented Ulusu and Nuray [49].
For more details on convergence of sequences of sets, we refer to [1–5, 7, 21–23, 50–52].

The notion of statistical convergence which is a generalization of the usual concept of sequential limit was
introduced by Fast [12] and Steinhaus [44] independently in the same year 1951. A lot of developments have
been made in this area after the works of S̆alát [42] and Fridy [14]. Over the years and under different names
statistical convergence has been discussed in the theory of Fourier analysis, ergodic theory and number
theory. Fridy and Orhan [15] introduced the concept of lacunary statistical convergence. Mursaleen and
Mohiuddine [33], introduced the concept of lacunary statistical convergence with respect to the intuitionistic
fuzzy normed space. For more details related to these concepts, we refer to (see [6, 15, 16, 27]) and references
therein.
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The notion of the ideal convergence is the dual (equivelant) to the notion of filter convergence introduced
by Cartan in 1937 [9]. The notion of the filter convergence is a generalization of the classical notion of
convergence of a sequence and it has been an important tool in general topology and functional analysis.
Nowadays many authors use an equivalent dual notion of the ideal convergence. Kostyrko et al. [25] and
Nuray and Ruckle [37] independently studied in detalis about the notion of ideal convergence which is based
on the structure of the admissible ideal I of subsets of natural numbers N. Quite recently, Das et al.[10],
unified these two approaches to indroduce new concepts I-statistical convergence, I-lacunary statistical
convergence and investigated some of its consequences. The notion of lacunary ideal convergence of real
sequences was introduced in [47, 48]. Hazarika [17, 18], was introduced the lacunary ideal convergent
sequences of fuzzy real numbers and studied some basic properties of this notion. For more details related
to the concept of ideals we refer to [8, 11, 19, 20, 26, 29, 34–36, 43, 45–48].

In this work, we define the notion of asymptotically lacunary statistical equivalent sequences of sets in
sense of Wijsman and establish some basic results regarding the notions asymptotically lacunary statistical
equivalent sequences of sets in the sense of Wijsman and asymptotically Wijsman lacunary statistical
equivalent sequences of sets using the notion of ideal.

2. Definitions, Notations and Preliminaries

We will assume throughout this paper that the symbols R andNwill denote the set of real and natural
numbers, respectively. Throughout the paper, we shall also denote by I an admissible ideal of subsets of
N, unless otherwise stated.

A family of sets I ⊂ P(N) (power sets of N) is called an ideal if and only if for each A,B ∈ I, we have
A ∪ B ∈ I and for each A ∈ I and each B ⊂ A, we have B ∈ I. A non-empty family of sets F ⊂ P(N) is a
filter onN if and only if Φ < F , for each A,B ∈ F , we have A ∩ B ∈ F and each A ∈ F and each A ⊂ B, we
have B ∈ F . An ideal I is called non-trivial ideal if I , Φ andN < I. Clearly I ⊂ P(N) is a non-trivial ideal
if and only if F = F (I) = {N − A : A ∈ I} is a filter onN. A non-trivial ideal I ⊂ P(N) is called admissible if
and only if {{x} : x ∈N} ⊂ I. A non-trivial ideal I is maximal if there cannot exists any non-trivial ideal J , I
containing I as a subset. Further details on ideals of P(N) can be found in Kostyrko et al. [25]. Recall that a
sequence x = (xk) of points in R is said to be I-convergent to a real number ` if {k ∈ N : |xk − `| ≥ ε} ∈ I for
every ε > 0 ([25]). In this case we write I − lim xk = `.

By a lacunary sequence θ = (kr), where k0 = 0 , we shall mean an increasing sequence of non-negative
integers with hr : kr − kr−1 → ∞ as r → ∞. The intervals determined by θ will be denoted by Jr = (kr−1, kr]
and the ratio kr

kr−1
will be defined by qr for r , 1 (see [13]).

Now we recall the difinitions of statistical convergence, lacunary statistical convergence and Wijsman
convergence.

Definition 2.1. A real or complex number sequence x = (xk) is said to be statistically convergent to L if for
every ε > 0

lim
n

1
n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case, we write S−lim x = L or xk → L(S) and S denotes the set of all statistically convergent sequences.
Definition 2.2 [15]. A sequence x = (xk) is said to be lacunary statistically convergent to the number L if

for every ε > 0

lim
r→∞

1
hr
|{k ∈ Jr : |xk − L| ≥ ε}| = 0.

By Sθ, we denote the set of all lacunary statistically convergent sequences.
Let (X, ρ) be a metric space. For any point x ∈ X and any non-empty subset A ⊂ X, the distance from x

to A is defined by

d(x,A) = inf
y∈A

ρ
(
x, y

)
.
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Definition 2.3 [2]. Let (X,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X (k ∈N) , we
say that the sequence (Ak) is Wijsman convergent to A if limk d(x,Ak) = d(x,A) for each x ∈ X. In this case
we write W − lim Ak = A.

Definition 2.4 [28]. Two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically
equivalent if

lim
k

xk

yk
= 1,

denoted by x ∼ y.
Definition 2.5 [39]. Two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically

statistical equivalent of multiple L provided that for every ε > 0

lim
n

1
n

∣∣∣∣∣∣
{

k ≤ n :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ = 0,

denoted by x ∼SL y and simply asymptotically statistical equivalent if L = 1. Patterson and Savaş [40]
defined the notion asymptotically lacunary statistical equivalent sequences as follows:

Definition 2.6. Two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically lacunary
statistical equivalent of multiple L provided that for every ε > 0

lim
r

1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣xk

yk
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ = 0, uniformly on m,

denoted by x ∼SL
θ y and simply asymptotically lacunary statistical equivalent if L = 1. If we take θ = (2r),

then we get the definition 2.2.
The concepts of Wijsman statistical convergence and boundedness for the sequence (Ak) were given by

Nuray and Rhoades [38] as follows:
Definition 2.7. Let (X, ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X (k ∈N), we

say that the sequence (Ak) is Wijsman statistical convergent to A if the sequence (d(x,Ak)) is statistically
convergent to d(x,A), i.e., for ε > 0 and for each x ∈ X

lim
n

1
n
|{k ≤ n : |d(x,Ak) − d(x,A)| ≥ ε}| = 0.

In this case, we write st − limk Ak = A or Ak → A (WS). The sequence (Ak) is bounded if supk d(x,Ak) < ∞
for each x ∈ X. The set of all bounded sequences of sets denoted by L∞.

In [50], Ulusu and Nuray defined the concepts of asymptotically equivalent, asymptotically statistical
equivalent and asymptotically lacunary statistical equivalent sequences of sets as follows:

Definition 2.8. Let (X, ρ) be a metric space. For any non-empty closed subsets Ak,Bk ⊆ X such that
d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences (Ak) and (Bk) are asymptotically
equivalent (Wijsman sense) if for each x ∈ X,

lim
k

d(x,Ak)
d(x,Bk)

= 1,

denoted by (Ak) ∼ (Bk).
Definition 2.9. Let (X, ρ) be a metric space. For any non-empty closed subsets Ak,Bk ⊆ X such that

d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences (Ak) and (Bk) are asymptotically
statistical equivalent (Wijsman sense) if for every ε > 0 and for each x ∈ X,

lim
n

1
n

∣∣∣∣∣∣
{

k ≤ n :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ = 0
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denoted by (Ak) ∼WSL
(Bk) and simply asymptotically statistical equivalent (Wijsman sense) if L = 1.

Definition 2.10. Let (X, ρ) be a metric space. For any non-empty closed subsets Ak,Bk ⊆ X such that
d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences (Ak) and (Bk) are asymptotically
lacunary statistical equivalent (Wijsman sense) if for every ε > 0 and for each x ∈ X,

lim
r

1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ = 0

denoted by (Ak) ∼WSL
θ (Bk) and simply asymptotically lacunary statistical equivalent (Wijsman sense) if

L = 1.
Definition 2.11 [38]. Let (X,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X, we say

{Ak} is Wijsman strongly almost convergent to A if for each x ∈ X,

lim
n→∞

1
n

n∑
k=1

|d(x,Ak+m) − d(x,A)| = 0 uniformly in m.

3. Asymptotically Wijsman Lacunary Statistical Equivalent Sequences Using Ideals

In this section, we define the notions of Wijsman ideal convergence, Wijsman I-statistical convergence,
asymptotically Wijsman I-equivalent, asymptotically Wijsman I-statistical equivalent, asymptotically Wijs-
man I-lacunary statistical equivalent and asymptotically Wijsman lacunary I-equivalent sequences of sets
and obtain some analogous results in view of these definitions.

Definition 3.1. Let I ⊂ P(N) be a non-trivial ideal. Let (X, ρ) be a metric space. For any non-empty closed
subsets A,Ak ⊆ X, we say that the sequence (Ak) is Wijsman I-convergent to A if the sequence (d(x,Ak)) is
I-convergent to d(x,A), i.e., for each ε > 0 and for each x ∈ X,

{k ∈N : |d(x,Ak) − d(x,A)| ≥ ε} ∈ I.

In this case we write IW − lim Ak = A.
Lemma 3.2 [25]. Let I ⊂ P(N) be an admissible ideal. Let (X, ρ) be a metric space. For any non-empty

closed subsets A,Ak ⊆ X. Sequential method IW is regular.
Definition 3.3. Let I ⊂ P(N) be a non-trivial ideal. Let (X, ρ) be a metric space. For any non-empty

closed subsets A,Ak ⊆ X, we say that the sequence (Ak) is Wijsman I-statistically convergent to A if the
sequence (d(x,Ak)) is Wijsman I-statistically convergent to d(x,A), i.e., for each ε > 0, δ > 0 and for each
x ∈ X,{

n ∈N :
1
n
|{k ≤ n : |d(x,Ak) − d(x,A)| ≥ ε}| ≥ δ

}
∈ I.

In this case we write I(S)W − lim Ak = A.
Definition 3.4. Let I ⊂ P(N) be a non-trivial ideal. For any non-empty closed subsets Ak,Bk ⊆ X such

that d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. Two sequences (Ak) and (Bk) are said to be asymptotically
Wijsman I-equivalent of multiple L provided that for every ε > 0{

k ∈N :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε} ∈ I,

denoted by (Ak) ∼WIL
(Bk) and simply asymptotically Wijsman I-equivalent if L = 1.

Lemma 3.5. Let I ⊂ P(N) be an admissible ideal. Let (X, ρ) be a metric space. For any non-empty closed
subsets Ak,Bk ⊆ X and (Ak), (Bk) ∈ L∞ with IW − limk Ak = {0} = IW − limk Bk such that (Ak) ∼WIL

(Bk). Then
there exists a sequence (Ck) ∈ L∞ with IW − limk Ck = {0} such that (Ak) ∼WIL

(Ck) ∼WIL
(Bk).

Definition 3.6. Let I ⊂ P(N) be a non-trivial ideal. Let (X, ρ) be a metric space. For any non-empty
closed subsets Ak,Bk ⊆ X such that d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. Two sequences (Ak) and (Bk)
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are said to be asymptotically Wijsman I-statistically equivalent of multiple L provided that for every ε > 0
and for every δ > 0,{

n ∈N :
1
n

∣∣∣∣∣∣
{

k ≤ n :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≥ δ
}
∈ I,

denoted by (Ak) ∼WI(S)L
(Bk) and simply asymptotically Wijsman I-statistical equivalent if L = 1.

Definition 3.7. Let I ⊂ P(N) be a non-trivial ideal. Let (X, ρ) be a metric space. For any non-empty
closed subsets Ak,Bk ⊆ X such that d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences
(Ak) and (Bk) are Cesaro asymptotically Wijsman I-equivalent (or I(σ1)-equivalent) of multiple L provided
that for every δ > 0 and for each x ∈ X,n ∈N :

1
n

n∑
k=1

(
d(x,Ak)
d(x,Bk)

− L
)
≥ δ

 ∈ I

denoted by (Ak) ∼WI(σ1)L
(Bk) and simply asymptotically Wijsman I(σ1)-equivalent if L = 1.

Definition 3.8. Let I ⊂ P(N) be a non-trivial ideal. Let (X, ρ) be a metric space. For any non-empty
closed subsets Ak,Bk ⊆ X such that d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences
(Ak) and (Bk) are strongly Cesaro asymptotically Wijsman I-equivalent (or I(|σ1|)-equivalent) of multiple L
provided that for every δ > 0 and for each x ∈ X,n ∈N :

1
n

n∑
k=1

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ δ

 ∈ I

denoted by (Ak) ∼WI(|σ1 |)L
(Bk) and simply strongly Cesaro asymptotically Wijsman I(|σ1|)-equivalent if L = 1.

Definition 3.9. Let (X, ρ) be a metric space. For any non-empty closed subsets Ak,Bk ⊆ X such that
d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X.We say that the sequences (Ak) and (Bk) are strongly asymptotically
Wijsman lacunary equivalent if for every ε > 0 and for each x ∈ X,

lim
r

1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ = 0

denoted by (Ak) ∼W[Nθ]L
(Bk) and simply strongly asymptotically Wijsman lacunary equivalent if L = 1.

Definition 3.10. Let I ⊂ P(N) be a non-trivial ideal. Let (X, ρ) be a metric space. For any non-empty
closed subsets Ak,Bk ⊆ X such that d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences
(Ak) and (Bk) are asymptotically Wijsman I-lacunary equivalent (or I(Nθ)-equivalent) of multiple L provided
that for every δ > 0 and for each x ∈ X,r ∈N :

1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ δ

 ∈ I

denoted by (Ak) ∼WI(Nθ)L
(Bk) and simply asymptotically Wijsman I(Nθ)-equivalent if L = 1.

Definition 3.11. Let I ⊂ P(N) be a non-trivial ideal. Let (X, ρ) be a metric space. For any non-empty
closed subsets Ak,Bk ⊆ X such that d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences
(Ak) and (Bk) are asymptotically Wijsman I-lacunary statistically equivalent (or I(Sθ)-equivalent) of multiple
L provided that for every ε > 0, for every δ > 0 and for each x ∈ X,{

r ∈N :
1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≥ δ
}
∈ I

denoted by (Ak) ∼WI(Sθ)L
(Bk) and simply asymptotically Wijsman I(Sθ)-equivalent if L = 1.
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Theorem 3.12. Let (X, ρ) be a metric space and Ak,Bk be two non-empty closed subsets of X (k ∈N) . If
(Ak) , (Bk) ∈ L∞ and (Ak) ∼WI(S)L

(Bk). Then (Ak) ∼WI(σ1)L
(Bk).

Proof. Suppose that (Ak) , (Bk) ∈ L∞ and (Ak) ∼WI(S)L
(Bk). Then we can assume that∣∣∣∣∣d(x,Ak)

d(x,Bk)
− L

∣∣∣∣∣ ≤M for almost all k.

Let ε > 0 be given. Then, we have∣∣∣∣∣∣∣1n
n∑

k=1

(
d(x,Ak)
d(x,Bk)

− L
)∣∣∣∣∣∣∣

≤
1
n

n∑
k=1

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣

≤
1
n

∑
k∣∣∣∣∣ d(x,Ak )

d(x,Bk ) −L
∣∣∣∣∣≥ε

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ +

1
n

∑
k∣∣∣∣∣ d(x,Ak )

d(x,Bk ) −L
∣∣∣∣∣<ε

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣

≤M ·
1
n

∣∣∣∣∣∣
{

k ≤ n :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ +
1
n
· n · ε.

Consequently for any δ > 0, we haven ∈N :
1
n

n∑
k=1

(
d(x,Ak)
d(x,Bk)

− L
)
≥ δ

 ⊆
{

n ∈N :
1
n

∣∣∣∣∣∣
{

k ≤ n :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≥ δ
M

}
∈ I.

This shows that (Ak) ∼WI(σ1)L
(Bk).

Corollary 3.13. Let (X, ρ) be a metric space and Ak,Bk be two non-empty closed subsets of X (k ∈N) . If
(Ak) , (Bk) ∈ L∞ and (Ak) ∼WI(S)L

(Bk). Then (Ak) ∼WI(|σ1 |)L
(Bk).

Theorem 3.14. Let (X, ρ) be a metric space and Ak,Bk be two non-empty closed subsets of X (k ∈N) .
Then

(a) (Ak) ∼WI(Nθ)L
(Bk)⇒ (Ak) ∼WI(Sθ)L

(Bk).
(b) WI(Nθ)L is a proper subset of WI(Sθ)L.

(c) Let (Ak) , (Bk) ∈ L∞ and (Ak) ∼WI(Sθ)L
(Bk), then (Ak) ∼WI(Nθ)L

(Bk).
(d) WI(Sθ)L

∩ L∞ = WI(Nθ)L
∩ L∞.

Proof. (a) Let ε > 0 and (Ak) ∼WI(Nθ)L
(Bk). Then we can write∑

k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ∑

k∈Jr∣∣∣∣∣ d(x,Ak )
d(x,Bk ) −L

∣∣∣∣∣≥ε

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ .
It follows that

1
ε · hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ 1

hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ .
Thus for any δ > 0, we have

1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≥ δ
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which implies that

1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ εδ.

Therefore, we obtain{
r ∈N :

1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≥ δ
}
⊂

r ∈N :
1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ εδ

 .
Since (Ak) ∼WI(Nθ)L

(Bk), so thatr ∈N :
1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ εδ

 ∈ I

which implies that{
r ∈N :

1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≥ δ
}
∈ I.

This shows that (Ak) ∼WI(Sθ)L
(Bk).

(b) Suppose that WI(Nθ)L
⊂WI(Sθ)L. Let (Ak) and (Bk) be two sequences defined as follows:

Ak =

{
{k} , if kr−1 < k ≤ kr−1 + [

√
hr], r = 1, 2, 3, · · · ;

{0} , otherwise

and

Bk = {1} for all k ∈N.

It is clear that (Ak) < L∞ and for ε > 0 and for each x ∈ X,

1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− 1
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≤ [
√

hr]
hr

and
[
√

hr]
hr
→ 0 as r→∞. (1)

This implies that{
r ∈N :

1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− 1
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≥ δ
}
⊆

{
r ∈N :

[
√

hr]
hr
≥ δ

}
.

By virtue of last part of (3.1), the set on the right side is a finite set and so it belongs to I. Consequently, we
have {

r ∈N :
1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− 1
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≥ δ
}
∈ I.

Therefore (Ak) ∼WI(Sθ)1
(Bk).

On the other hand we shall show that (Ak) ∼WI(Nθ)1
(Bk) is not satisfied. Suppose that (Ak) ∼WI(Nθ)1

(Bk).
Then for every δ > 0, we haver ∈N :

1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− 1
∣∣∣∣∣ ≥ δ

 ∈ I. (2)
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Now,

lim
r

1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− 1
∣∣∣∣∣ =

1
hr

(
[
√

hr]([
√

hr] − 1)
2

)
→

1
2

as r→∞.

It follows that for the particular choice δ = 1
4 ,r ∈N :

1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− 1
∣∣∣∣∣ ≥ 1

4

 =

{
r ∈N :

(
[
√

hr]([
√

hr] − 1)
hr

)
≥

1
2

}
= {m,m + 1,m + 2, · · · }

for some m ∈Nwhich belongs to F as I is admissible. This contradicts (3.2) for the choice δ = 1
4 . Therefore

(Ak) /WI(Nθ)1
(Bk).

(c) Suppose that (Ak) ∼WI(Sθ)L
(Bk) and (Ak) , (Bk) ∈ L∞. We assume that

∣∣∣∣ d(x,Ak)
d(x,Bk) − L

∣∣∣∣ ≤ M for each x ∈ X
and for all k ∈N. Given ε > 0, we get

1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ =

1
hr

∑
k∈Jr∣∣∣∣∣ d(x,Ak )

d(x,Bk ) −L
∣∣∣∣∣≥ε

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ +

1
hr

∑
k∈Jr∣∣∣∣∣ d(x,Ak )

d(x,Bk ) −L
∣∣∣∣∣<ε

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣

≤
M
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ + ε.

If we put

A(ε) =

r ∈N :
1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε


and

B(ε) =

{
r ∈N :

1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≥ ε
M

}
,

then we have A(ε) ⊂ B(ε) and so A(ε) ∈ I. This shows that (Ak) ∼WI(Nθ)L
(Bk).

(d) It follows from (a), (b) and (c).
Theorem 3.15. Suppose for given δ > 0 and every ε > 0{

n ∈N :
1
n

∣∣∣∣∣∣
{

0 ≤ k ≤ n − 1 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ < δ
}
∈ F

then (Ak) ∼WI(S)L
(Bk).

Proof. Let δ > 0 be given. For every ε > 0, choose n1 such that

1
n

∣∣∣∣∣∣
{

0 ≤ k ≤ n − 1 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ < δ
2

for all n ≥ n1. (3)

It is sufficient to show that there exists n2 such that for n ≥ n1

1
n

∣∣∣∣∣∣
{

0 ≤ k ≤ n − 1 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ < δ. (4)
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Let n0 = max{n1,n2}. The relation (3.3) will be true for n > n0. If m0 chosen fixed, then we get∣∣∣∣∣∣
{

0 ≤ k ≤ m0 − 1 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ = M.

Now, for n > m0, we have

1
n

∣∣∣∣∣∣
{

0 ≤ k ≤ n − 1 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣
≤

1
n

∣∣∣∣∣∣
{

0 ≤ k ≤ m0 − 1 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ +
1
n

∣∣∣∣∣∣
{

m0 ≤ k ≤ n − 1 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣
≤

M
n

+
1
n

∣∣∣∣∣∣
{

m0 ≤ k ≤ n − 1 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≤ M
n

+
δ
2
.

Thus for sufficiently large n

1
n

∣∣∣∣∣∣
{

m0 ≤ k ≤ n − 1 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≤ M
n

+
δ
2
< δ.

This established the result.
Theorem 3.16. Let (X, ρ) be a metric space and Ak,Bk be two non-empty closed subsets of X (k ∈N). Let

θ = (kr) be a lacunary sequence with lim infr qr > 1. Then (Ak) ∼WI(S)L
(Bk)⇒ (Ak) ∼WI(Sθ)L

(Bk).
Proof. Suppose that lim infr qr > 1, then there exists a α > 0 such that qr ≥ 1 + α for sufficiently large r.

Then, we have

hr

kr
≥

α
1 + α

.

If (Ak) ∼WI(SL) (Bk) then for every ε > 0 and for sufficiently large r, we have

1
kr

∣∣∣∣∣∣
{

k ≤ kr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≥ 1
kr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣
≥

α
1 + α

·
1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ .
Therefore, for any δ > 0, we have{

r ∈N :
1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≥ δ
}
⊆

{
r ∈N :

1
kr

∣∣∣∣∣∣
{

k ≤ kr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ ≥ αδ
1 + α

}
∈ I

This completes the proof.
Theorem 3.17. Let I = I f in = {A ⊂ N : A is a finite set} be a non-trivial ideal. Let (X, ρ) be a metric

space and Ak,Bk be two non-empty closed subsets of X (k ∈N) . Let θ = (kr) be a lacunary sequence with
lim supr qr < ∞. Then (Ak) ∼WI(Sθ)L

(Bk)⇒ (Ak) ∼WI(S)L
(Bk).

Proof. If lim supr qr < ∞. Then there exists an K > 0 such that qr < K for all r ≥ 1. Let (Ak) ∼WSL
θ,σ (Bk) and

δ > 0. Then there exists B > 0 and ε > 0 such that for every j ≥ B

M j =
1
h j

∣∣∣∣∣∣
{

k ∈ J j :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ < δ.
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Also we can find A > 0 such that M j < A for all j = 1, 2, 3, · · · . Now, let i be an integer satisfying kr−1 < i ≤ kr,
where r > B. Then, we can write

1
n

∣∣∣∣∣∣
{

k ≤ i :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣
≤

1
kr−1

∣∣∣∣∣∣
{

k ≤ kr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣
=

1
kr−1

∣∣∣∣∣∣
{

k ∈ J1 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ +
1

kr−1

∣∣∣∣∣∣
{

k ∈ J2 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣
+ · · · +

1
kr−1

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣
=

k1

kr−1k1

∣∣∣∣∣∣
{

k ∈ J1 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣ +
k2 − k1

kr−1(k2 − k1)

∣∣∣∣∣∣
{

k ∈ J2 :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣
+ · · · +

kB − kB−1

kr−1(kB − kB−1)

∣∣∣∣∣∣
{

k ∈ JB :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣
+ · · · +

kr − kr−1

kr−1(kr − kr−1)

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣ ≥ ε}

∣∣∣∣∣∣
=

k1

kr−1M1
+

k2 − k1

kr−1
M2 + · · · +

kB − kB−1

kr−1
MB +

kB+1 − kB

kr−1
MB+1 + · · · +

kr − kr−1

kr−1
Mr

≤

{
sup
i≥1

Mi

}
kB

kr−1
+

{
sup
i≥B

Mi

}
kr − kB

kr−1
≤ A

kB

kr−1
+ δK.

This completes the proof of the theorem.

Definition 3.18. Let p ∈ (0,∞). Let (X, ρ) be a metric space. For any non-empty closed subsets Ak,Bk ⊆ X
such that d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences (Ak) and (Bk) are strongly
asymptotically Wijsman lacunary p-equivalent if for every ε > 0 and for each x ∈ X,

lim
r

1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣p = 0

denoted by (Ak) ∼W[Nθ]L
p (Bk) and simply strongly asymptotically Wijsman lacunary p-equivalent if L = 1.

Definition 3.19. Let p ∈ (0,∞). Let (X, ρ) be a metric space. For any non-empty closed subsets Ak,Bk ⊆

X such that d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences (Ak) and (Bk) are
asymptotically Wijsman lacunary p-statistically equivalent if for every ε > 0 and for each x ∈ X,

lim
r

1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣p ≥ ε}

∣∣∣∣∣∣ = 0

denoted by (Ak) ∼WSL
θp (Bk) and simply asymptotically Wijsman lacunary p-statistical equivalent if L = 1.

Theorem 3.20. Let (X, ρ) be a metric space and Ak,Bk be two non-empty closed subsets of X (k ∈N) .
Then

(a) (Ak) ∼W[Nθ]L
p (Bk)⇒ (Ak) ∼WSL

θp (Bk).
(b) W[Nθ]L

p is a proper subset of WSL
θp
.
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(c) Let (Ak) , (Bk) ∈ L∞ and (Ak) ∼WSL
θp (Bk), then (Ak) ∼W[Nθ]L

p (Bk).
(d) WSL

θp
∩ L∞ = W[Nθ]L

p ∩ L∞.

The proof of the above theorem is similar to Theorem 3.14 for I = I f in.
Definition 3.21. Let p ∈ (0,∞). Let (X, ρ) be a metric space. For any two non-empty closed subsets

Ak,Bk ⊆ X such that d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences (Ak) and (Bk) are
strongly asymptotically Wijsman I-lacunary p-equivalent if for every ε > 0 and for each x ∈ X,r ∈N :

1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣p ≥ ε

 ∈ I,

denoted by (Ak) ∼WI(Nθ)L
p (Bk) and simply strongly asymptotically Wijsman I-lacunary p-equivalent if L = 1.

Definition 3.22. Let p ∈ (0,∞). Let (X, ρ) be a metric space. For any two non-empty closed subsets
Ak,Bk ⊆ X such that d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences (Ak) and (Bk) are
asymptotically Wijsman I-lacunary p-statistically equivalent if for every ε > 0, for every δ > 0 and for each
x ∈ X,{

r ∈N :
1
hr

∣∣∣∣∣∣
{

k ∈ Jr :
∣∣∣∣∣d(x,Ak)
d(x,Bk)

− L
∣∣∣∣∣p ≥ ε}

∣∣∣∣∣∣ ≥ δ
}
∈ I,

denoted by (Ak) ∼WI(Sθp )L
(Bk) and simply asymptotically Wijsman I-lacunary p-statistical equivalent if L = 1.

Theorem 3.23. Let (X, ρ) be a metric space and Ak,Bk be non-empty closed subsets X (k ∈N). Then

(a) (Ak) ∼WI(Nθp )L
(Bk)⇒ (Ak) ∼WI(Sθp )L

(Bk).
(b) WI(Nθp )L is a proper subset of WI(Sθp )L.

(c) Let (Ak) , (Bk) ∈ L∞ and (Ak) ∼WI(Sθp )L
(Bk), then (Ak) ∼WI(Nθp )L

(Bk).
(d) WI(Sθp )L

∩ L∞ = WI(Nθp )L
∩ L∞.

The proof of this theorem follows from Theorem 3.14 and Theorem 3.20.
Definition 3.24. Let (X, ρ) be a metric space. For any non-empty closed subsets Ak,Bk ⊆ X such that

d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences (Ak) and (Bk) are asymptotically
Wijsman strongly almost equivalent if for every ε > 0 and for each x ∈ X,

lim
n

1
n

n∑
k=1

∣∣∣∣∣d(x,Ak+m)
d(x,Bk+m)

− L
∣∣∣∣∣ = 0 uniformly in m

denoted by (Ak) ∼W|AC|L (Bk) and simply asymptotically Wijsman strongly almost equivalent if L = 1.
Definition 3.25. Let θ = (kr) be a lacunary sequence. Let (X, ρ) be a metric space. For any non-empty

closed subsets Ak,Bk ⊆ X such that d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences
(Ak) and (Bk) are asymptotically Wijsman lacunary strongly almost equivalent if for every ε > 0 and for
each x ∈ X,

lim
r

1
hr

∑
k∈Jr

∣∣∣∣∣d(x,Ak+m)
d(x,Bk+m)

− L
∣∣∣∣∣ = 0 uniformly in m,

denoted by (Ak) ∼W|AC|Lθ (Bk) and simply asymptotically Wijsman lacunary strongly almost equivalent if
L = 1.

Theorem 3.26. Let θ = (kr) be a lacunary sequence. Let (X, ρ) be a metric space and Ak,Bk be two
non-empty closed subsets of X (k ∈N) . Then (Ak) ∼W|AC|L (Bk)⇒ (Ak) ∼W[Nθ]L

(Bk) but converse need not be
true.
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Proof. If (Ak) ∼W|AC|L (Bk) and ε > 0 then there exists a n0 > 0 such that

1
n

m+n∑
i=m+1

∣∣∣∣∣d(x,Ai)
d(x,Bi)

− L
∣∣∣∣∣ < ε

for every n > n0 amd m = 1, 2, 3, · · · . Since θ is a lacunary sequence we can choose M > 0 such that r ≥ M
implies that hr > n0, respectively

1
hr

∑
i∈Jr

∣∣∣∣∣d(x,Ai)
d(x,Bi)

− L
∣∣∣∣∣ < ε.

Hence (Ak) ∼W[Nθ]L
(Bk).

In general, the converse implication is not true. Let us consider L = 2 and the two sequences (Ai) and
(Bi) defined as follow:

Ai =

{
{3} , if kr−1 < i ≤ kr−1 + [

√
hr], r = 1, 2, 3, · · · ;

{2} otherwise

and

Bi = {1} for all i ∈N.

Then it is easy to prove that (Ak) ∼W[Nθ]L
(Bk) and (Ak) /W|AC|L (Bk).

Theorem 3.27. Let θ = (kr) be a lacunary sequence. Let (X, ρ) be a metric space and Ak,Bk be non-empty
closed subsets X (k ∈N) . Then the following relations are valid:

(a) If lim infr qr > 1 then (Ak) ∼W|AC|L (Bk)⇒ (Ak) ∼W|AC|Lθ (Bk).
(b) If lim supr qr < ∞ then (Ak) ∼W|AC|Lθ (Bk)⇒ (Ak) ∼W|AC|L (Bk).
(c) If 1 < lim infr qr ≤ lim supr qr < ∞ then (Ak) ∼W|AC|L (Bk)⇔ (Ak) ∼W|AC|Lθ (Bk).

The proof of the above theorem is similar to Theorem 3.16 and Theorem 3.17 for I = I f in.
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[8] H. Çakalli, B. Hazarika, Ideal quasi-Cauchy sequences, J. Inequa. Appl. 2012 (2012) pages 11, doi:10.1186/1029-

242X-2012-234.
[9] H. Cartan, Filters et ultrafilters, C. R. Acad. Sci. Paris 205 (1937), 777-779.

[10] P. Das, E. Savas, S. Ghosal, On generalization of certain summability methods using ideal, Appl. Math. Let-
ters,24(2011), 1509-1514.

[11] A. Esi, B. Hazarika, Lacunary summable sequence spaces of fuzzy numbers defined by ideal convergence and an
orlicz function, Afrika Matematika, DOI: 10.1007/s13370-012-0117-3.

[12] H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951) 241-244.
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