Filomat 31:9 (2017), 2779–2785 https://doi.org/10.2298/FIL1709779H

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Pointwise Topological Convergence and Topological Graph Convergence of Set-Valued Maps

Ľ. Holá^a, G. Kwiecińska^b

^aAcademy of Sciences, Institute of Mathematics Štefánikova 49, 81473 Bratislava, Slovakia ^bPomeranian Akademy in Słupsk, Institute of Mathematics Arciszewskego 22 d, 76 200 Slupsk, Poland

Abstract. Let *X*, *Y* be topological spaces and $\{F_n : n \in \omega\}$ be a sequence of set-valued maps from *X* to *Y* with the pointwise topological limit *G* and with the topological graph limit *F*. We give an answer to the question from ([19]): which conditions on *X*, *Y* and/or $\{F, G, F_n : n \in \omega\}$ are needed to F = G.

1. Introduction

The topological (Painlevè-Kuratowski) convergence of graphs of set-valued maps was studied in many books and papers (see for example ([1]), ([2]), ([5]), ([8]), ([9]), ([19]), ([26]). In the books ([1]), ([2]), ([26]) we can find many applications of this convergence to variational and optimization problems, differential equations and approximation theory. We will call this convergence topological graph convergence of set-valued maps. Topological graph convergence of preference relations is used also in mathematical economics ([3]).

In our paper we will be interested in pointwise topological convergence and in topological graph convergence of set-valued maps. Our paper is motivated by the question of S. Kowalczyk in ([19]):

Let *X*, *Y* be topological spaces and $\{F_n : n \in \omega\}$ be a sequence of set-valued maps from *X* to *Y* with the pointwise topological limit *G* and with the topological graph limit *F*. Which conditions on *X*, *Y* and/or $\{F, G, F_n : n \in \omega\}$ are needed to ensure F = G. The main result of our paper is the following one:

Theorem 1.1. Let X be a Baire topological space and let Y be a regular T_1 locally countably compact space. Let $\{F, F_n : n \in \omega\}$ be lower quasicontinuous set-valued maps from X to Y. Suppose $\{F_n : n \in \omega\}$ is topologically graph convergent to F and $\{F_n : n \in \omega\}$ is pointwise topologically convergent to a second set-valued function G with closed graph. Then F = G.

Our Theorem 1.1 generalizes Theorem 5 from ([19]) which is stated for locally compact Hausdorff spaces *X* and *Y* and for lower semicontinuous set-valued maps.

Notice that the pointwise and graph upper (Painlevè-Kuratowski) limits of a sequence of lower quasicontinuous set-valued maps were also studied by M. Matejdes in ([22]).

²⁰¹⁰ Mathematics Subject Classification. Primary 54C05; Secondary 54C08, 54C60

Keywords. quasicontinuity, lower quasicontinuous set-valued map, pointwise topological convergence, topological graph convergence, usco map, minimal usco map.

Received: 19 October 2015; Revised: 08 April 2016; Accepted: 01 June 2016

Communicated by Ljubiša D.R. Kočinac

Ľ. Holá would like to thank to grant Vega 2/0018/13 and APVV-0269-11

Email addresses: lubica.hola@mat.savba.sk(L. Holá), grazyna.kwiecinska@apsl.edu.pl(G. Kwiecińska)

2. Definitions and Preliminaries

Let *Z* be a topological space. Let $\{C_n : n \in \omega\}$ be a sequence of nonempty subsets of *Z*. The lower limit LiC_n and the upper limit LsC_n of $\{C_n : n \in \omega\}$ are defined as follows (see ([21]): LiC_n (resp. LsC_n) is the set of all points $z \in Z$ each neighbourhood of which meets all but finitely (resp. infinitely many) sets C_n . We say that $\{C_n : n \in \omega\}$ topologically converges to a set *C* if $LiC_n = LsC_n = C$ and we denote it by $LtC_n = C$.

In what follows let *X*, *Y* be T_1 topological spaces. By a set-valued map from *X* to *Y* we mean a map which assigns to every point of *X* a nonempty subset of *Y*. If *F* is a set-valued map from *X* to *Y*, we denote it by *F* : *X* \rightsquigarrow *Y*.

A sequence $\{F_n : n \in \omega\}$ $(F_n : X \rightsquigarrow Y, n \in \omega)$ pointwise topologically converges to $F : X \rightsquigarrow Y$ iff $LtF_n(x) = F(x)$ for every $x \in X$.

If $F : X \rightsquigarrow Y$, by Gr(F) we denote the graph of F, i.e.

$$Gr(F) = \{(x, y) \in X \times Y : y \in F(x)\}$$

A sequence $\{F_n : n \in \omega\}$ $(F_n : X \rightsquigarrow Y, n \in \omega)$ topologically graph converges to $F : X \rightsquigarrow Y$ iff $LtGr(F_n) = Gr(F)$.

In the paper ([18]) Kempisty introduced a notion of quasicontinuity for real-valued functions defined in *R*. For general topological spaces this notion can be given the following equivalent formulation ([23]).

Definition 2.1. A function $f : X \to Y$ is called quasicontinuous at $x \in X$ if for every open set $V \subset Y$, $f(x) \in V$ and open set $U \subset X$, $x \in U$ there is a nonempty open set $W \subset U$ such that $f(W) \subset V$. If f is quasicontinuous at every point of X, we say that f is quasicontinuous.

Notice that the topological graph convergence of continuous and quasicontinuous functions was studied in ([5]) and ([6]).

Easy examples show that in the context of metric spaces, pointwise (topological) convergence of a sequence of continuous functions does not ensure topological graph convergence, and topological graph convergence does not ensure pointwise convergence. However, if both limits exist for a sequence of functions as single-valued functions themselves, then they must coincide.

The notion of lower quasicontinuity (upper quasicontinuity) for set-valued maps was introduced in ([23]). First we will mention the notion of lower (upper) semicontinuity for set-valued maps.

A set-valued map $F : X \rightsquigarrow Y$ is lower (upper) semicontinuous at a point $x \in X$, if for every open set V such that $F(x) \cap V \neq \emptyset$ ($F(x) \subset V$), there exists an open neighbourhood U of x such that

$$F(z) \cap V \neq \emptyset$$
 for every $z \in U$ ($F(U) = \bigcup \{F(u) : u \in U\} \subset V$).

F is (lower) upper semicontinuous if it is (lower) upper semicontinuous at each point of X.

A set-valued map $F : X \rightsquigarrow Y$ is lower (upper) quasicontinuous at a point $x \in X$, if for every open set V in Y with $F(x) \cap V \neq \emptyset$ ($F(x) \subset V$) and every neighbourhood U of x there is a nonempty open set $G \subset U$ such that

$$F(z) \cap V \neq \emptyset$$
 ($F(z) \subset V$) for every $z \in G$.

A set-valued map $F : X \rightsquigarrow Y$ is lower (upper) quasicontinuous if it is lower (upper) quasicontinuous at each point of X.

We will mention some important examples of lower quasicontinuous set-valued maps.

Lemma 2.2. Let X, Y be topological spaces and $f : X \to Y$ be a quasicontinuous function. Then Gr(f) is the graph of a lower quasicontinuous set-valued map.

The above Lemma in conjuction with Theorem 2.1 below show that every minimal usco map with values in a regular T_1 -space is lower quasicontinuous.

Following Christensen ([12]) we say that a set-valued mapping F is usco if it is upper semicontinuous and takes nonempty compact values. Finally, a set-valued mapping F is said to be minimal usco ([10]) if it is a minimal element in the family of all usco maps (with domain X and range Y); that is if it is usco and does not contain properly any other usco map.

A very useful characterization of minimal usco maps using quasicontinuous subcontinuous selections was given in ([15]) and it will be important also for our analysis.

A function $f : X \to Y$ is subcontinuous at $x \in X$ ([11]) if for every net $\{x_i : i \in I\}$ (I is a directed set) convergent to x, there is a convergent subnet of $\{f(x_i) : i \in I\}$. If f is subcontinuous at every $x \in X$, we say that f is subcontinuous.

Theorem 2.3. Let X, Y be topological spaces and Y be a regular T_1 -space. Let $F : X \rightsquigarrow Y$ be a set-valued map. The following are equivalent:

(1) *F* is a minimal usco map;

(2) Every selection f of F is quasicontinuous, subcontinuous and Gr(f) = Gr(F);

(3) There exists a quasicontinuous, subcontinuous selection f of F with Gr(f) = Gr(F).

Minimal usco maps are a very convenient tool in functional analysis, in optimization, in selection theorems, in the study of differentiability of Lipschitz functions ([16]).

3. Main Results

In the main result of our paper we will use Oxtoby's characterization of Baire spaces. In ([13]), ([17]), ([27]) we can find the following definition of the Choquet game and a characterization of Baire spaces using the Choquet game proved by Oxtoby in ([25]).

Definition 3.1. Let *X* be a nonempty topological space. The Choquet game G_X of *X* is defined as follows: Players I and II take turns in playing nonempty open subsets of *X*

I ...
$$U_0...U_1$$

II ... $V_0...V_1$

so that $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1$ We say that II wins this run of the game if $\bigcap_n V_n (= \bigcap_n U_n) \neq \emptyset$. (Thus I wins if $\bigcap_n U_n (= \bigcap_n V_n) = \emptyset$.)

A strategy for I in this game is a "rule" that tells him how to play, for each *n*, his *n*th move U_n , given II's previous moves $V_0, ..., V_{n-1}$. Formally, this is defined as follows: Let *T* be the tree of legal positions in the Choquet game G_x , i.e. consists of all finite sequences $(W_0, ..., W_n)$, where W_i are nonempty open subsets of *X* and $W_0 \supseteq W_1 \supseteq ... \supseteq W_n$. A strategy for I in G_X is a subtree $\sigma \subset T$ such that

1) $\sigma \neq \emptyset$;

2) if $(U_0, V_0, ..., U_n) \in \sigma$, then for all open nonempty $V_n \subseteq U_n, (U_0, V_0, ..., U_n, V_n) \in \sigma$;

3) if $(U_0, V_0, ..., U_{n-1}, V_{n-1}) \in \sigma$, then for a unique $U_n, (U_0, V_0, ..., U_{n-1}, V_{n-1}, U_n) \in \sigma$.

Intuitevely, the strategy σ works as follows: I starts playing U_0 where $(U_0) \in \sigma$ (and this is unique by 3); II then plays any nonempty open $V_0 \subseteq U_0$; by 2) $(U_0, V_0) \in \sigma$. Then I responds by playing the unique nonempty open $U_1 \subseteq V_0$ such that $(U_0, V_0, U_1) \in \sigma$, etc.

A position $(W_0, ..., W_n) \in T$ is compatible with σ if $(W_0, ..., W_n) \in \sigma$. A run of the game $(U_0, V_0, U_1, V_1, ...)$ is compatible with σ if for every $n \in \omega$ we have

$$(U_0, V_0, ..., U_{n-1}, V_{n-1}, U_n) \in \sigma$$
 and $(U_0, V_0, ..., U_n, V_n) \in \sigma$.

The strategy σ is a winning strategy for I if he wins every compatible with σ run $(U_0, V_0, ...)$ (i.e., if $(U_0, V_0, ...)$ is a run compatible with σ , then $\bigcap_n U_n = \bigcap_n V_n = \emptyset$).

The corresponding notions of strategy and winning strategy for II are defined mutatis mutandis.

Theorem 3.2. ([25]) A nonempty topological space *X* is a Baire space if and only if player I has no winning strategy in the Choquet game G_X .

Proof of Theorem 1.1.

Proof. Clearly $Gr(G) \subset Gr(F)$. Let us assume that $Gr(F) \nsubseteq Gr(G)$. Let $(x, y) \in Gr(F) \setminus Gr(G)$. There are open sets $U \subset X$, $V \subset Y$, such that $x \in U$, $y \in V$, \overline{V} is countably compact and

(1)
$$(U \times \overline{V}) \cap Gr(G) = \emptyset.$$

The lower quasicontinuity of *F* at *x* implies that there is a nonempty open set $H \subset U$ with

(2)
$$F(z) \cap V \neq \emptyset$$
 for every $z \in H$.

We will define the following strategy σ for the first player I in the Choquet game: Since $LtGr(F_n) = Gr(F)$, there is $n_0 \ge 1$ such that $Gr(F_{n_0}) \cap (H \times V) \ne \emptyset$. Let $(x_{n_0}, y_{n_0}) \in Gr(F_{n_0}) \cap (H \times V)$. The lower quasicontinuity of F_{n_0} at x_{n_0} implies that there is a nonempty open set $H_{n_0} \subset H$ such that $F_{n_0}(z) \cap V \ne \emptyset$ for every $z \in H_{n_0}$.

Define the first move U_0 of I as follows: $U_0 = H_{n_0}$.

If $(U_0, V_0) \in \sigma$, we will define U_1 . Since $V_0 \subset U_0 \subset H$, for every $z \in V_0$ we have $F(z) \cap V \neq \emptyset$. There is $n_1 > max\{1, n_0\}$ such that

$$Gr(F_{n_1}) \cap (V_0 \times V) \neq \emptyset.$$

Let $(x_{n_1}, y_{n_1}) \in Gr(F_{n_1}) \cap (V_0 \times V)$. There is a nonempty open set $H_{n_1} \subset V_0$ such that $F_{n_1}(z) \cap V \neq \emptyset$ for every $z \in H_{n_1}$. Define the second move U_1 of I as follows: $U_1 = H_{n_1}$.

Suppose now that $(U_0, V_0, U_1, V_1, ..., U_{k-1}, V_{k-1}) \in \sigma$, where $U_i = H_{n_i}$, $n_0 < n_1 < ..., n_{k-1}$ and $n_i > i$ for every $i \le k-1$. We will define U_k . Since $V_{k-1} \subset H$, $F(z) \cap V \neq \emptyset$ for every $z \in V_{k-1}$, by (2). There is $n_k > \max\{n_{k-1}, k\}$ such that

$$Gr(F_{n_k}) \cap (V_{k-1} \times V) \neq \emptyset.$$

Let $(x_{n_k}, y_{n_k}) \in Gr(F_{n_k}) \cap (V_{k-1} \times V)$. There is a nonempty open set $H_{n_k} \subset V_{k-1}$ such that $F_{n_k}(z) \cap V \neq \emptyset$ for every $z \in H_{n_k}$. Define $U_k = H_{n_k}$.

Since *X* is a Baire space, there is no winning strategy for the first player I. Thus, for an appropriate choice of $V_0, V_1, ..., V_n, ..., \bigcap_n U_n \neq \emptyset$. Let $p \in \bigcap_n U_n$.

For every $k \in \omega$ let $s_{n_k} \in F_{n_k}(p) \cap V$. The countable compactness of \overline{V} implies that there is a cluster point y_0 of the sequence $\{s_{n_k} : k \in \omega\}$. Then $y_0 \in LtF_n(p) = G(p)$, thus $(p, y_0) \in Gr(G)$, which contradicts (1). \Box

Notice that the above theorem generalizes Theorem 5 from ([19]).

The following Theorem shows that the Baireness of X in Theorem 1.1 is necessary.

Theorem 3.3. If X is not a Baire space, then for every T_1 topological space Y with at least two different points, there are lower quasicontinuous set-valued maps $\{F, G, F_n : n \in \omega\}$ from X to Y such that $LtF_n(x) = G(x)$ for every $x \in X$, G has a closed graph, $LtGr(F_n) = Gr(F)$ and $F \neq G$.

Proof. There is a nonempty open set *O* in *X* which is of the first Baire category. Let $\{K_n : n \in \omega\}$ be a sequence of subsets of *O* such that $\overline{K_n} \cap O$ is nowhere dense in *O* for every $n \in \omega$ and $O = \bigcup_{n \in \omega} \overline{K_n} \cap O$. For every $n \in \omega$ we put

$$U_n = O \setminus \bigcup_{i \le n} \overline{K_i}.$$

Then each set U_n is open and dense in O. For every $n \in \omega$ let $F_n : X \rightsquigarrow Y$ be a lower semicontinuous set-valued map defined as follows:

$$F_n(x) = \begin{cases} A & \text{if } x \in U_n, \\ B & \text{if } x \notin U_n, \end{cases}$$

where *A* and *B* are two closed and different subsets of *Y* such that $B \subset A$. Then $LtF_n(x) = G(x)$ for every $x \in X$, where *G* is a set-valued map identically equal to *B*.

Note that $LtGr(F_n) = Gr(F)$, where *F* is a set-valued map defined as follows:

$$F(x) = \begin{cases} A & \text{if } x \in \overline{O}, \\ B & \text{if } x \notin \overline{O}. \end{cases}$$

Moreover *F* is a lower quasi-continuous set-valued map. \Box

For single-valued functions there was in ([5]) a Baire category result that says that if *X* is a complete metric space and *Y* is any metric space and $\{f_n : n \in \omega\}$ topologically graph converges to f, $\{f, f_n : n \in \omega\}$ are continuous functions from *X* to *Y*, then there exists a G_{δ} -set *A* such that for each $x \in A$, f(x) is a subsequential limit of $\{f_n(x) : n \in \omega\}$. S. Kowalczyk showed in ([19]) that for set-valued maps this is not true even if *X* and *Y* are compact. However, if the limit set-valued map is minimal usco, then we have this variant of Beer's result under certain connectivity assumptions.

Theorem 3.4. Let X be a Baire locally connected space and Y be a locally compact metric space. Let $\{F_n : n \in \omega\}$ be a sequence of set-valued maps from X to Y which preserve connected sets. Let $F : X \rightsquigarrow Y$ be a minimal usco map such that $LtGr(F_n) = Gr(F)$. There is a dense G_{δ} -set H such that $F(x) = LtF_n(x)$ for every $x \in H$.

Proof. Since, by assumption, $F : X \rightsquigarrow Y$ is a minimal usco set-valued map, there is a quasicontinuous selection f of F with $\overline{Gr(f)} = Gr(F)$, by Theorem 2.1. By quasicontinuity of f, the set C(f) of all continuity points of f, is a dense G_{δ} -subset of X. Note that

(1)
$$|F(x)| = 1$$
 for every $x \in C(f)$.

Indeed, if not, then there is $y \in F(x)$ such that $y \neq f(x)$. Then there are open sets $U \subset Y$ and $V \subset Y$ such that

(2)
$$y \in U, f(x) \in V \text{ and } U \cap V = \emptyset.$$

Since $x \in C(f)$, there is an open set $G \subset X$ such that $x \in G$ and $f(G) \subset V$. Moreover $y \in F(x)$, thus $(x, y) \in Gr(F) = \overline{Gr(f)}$. Since $G \times U$ is an open neighbourhood (x, y), $G \times U \cap Gr(f) \neq \emptyset$, which contradicts (2). Therefore (1) is true.

Let us put $L = \{x \in X : |F(x)| = 1\}$. We will show that for every $x \in L$, $F(x) = LtF_n(x)$. Let $x \in L$. Note that if $z \in LsF_n(x)$, then $(x, z) \in LsGr(F_n) = Gr(F)$. Thus

$$LsF_n(x) \subseteq F(x)$$

If we prove that

 $(4) F(x) \in LiF_n(x),$

the assertion follows. So, we will prove (4). Suppose that $F(x) \notin LiF_n(x)$. There is an open set *U* in *Y* such that $F(x) \in U$ and

(5)
$$\forall n \in \omega \ \exists k_n \in \omega, k_n \ge n, \ F_{k_n}(x) \cap U = \emptyset$$

Let *O* be an open set in *Y* such that

(6)

$$F(x) \in O \subset \overline{O} \subset U$$

and \overline{O} is compact. Put

 $\mathcal{B}(x) = \{V : x \in V, V \text{ is open and connected}\}.$

For every $V \in \mathcal{B}(x)$ we denote

$$N_V = \{n \in \omega : (x_n, y_n) \in GrF_n, x_n \in V, y_n \in O \setminus O\}.$$

We claim that for every $V \in \mathcal{B}(x)$, for every $n \in \omega$ there is $l \ge n$ with $l \in N_V$.

Indeed, let $V \in \mathcal{B}(x)$ and $n \in \omega$ be fixed. Since, by assumption, $LtGr(F_n) = Gr(F)$, there is $m \ge n$ such that

 $(V \times O) \cap Gr(F_l) \neq \emptyset$, for every $l \ge m$.

By (5), there is $k_m \ge m$ such that $F_{k_m}(x) \cap O = \emptyset$. Since *V* is connected and F_{k_m} preserves connected sets, $F_{k_m}(V)$ is connected too. Thus there must exists

$$(x_{k_m}, y_{k_m}) \in Gr(F_{k_m}), x_{k_m} \in V, \text{ and } y_{k_m} \in O \setminus O,$$

i.e. $k_m \in N_V$. Thus every N_V contains an increasing sequence $S(N_V)$ in ω .

The compactness of $O \setminus O$ implies that for every $V \in \mathcal{B}(x)$, the sequence $\{y_k : k \in S(N_V)\}$ has a cluster point $y_V \in \overline{O} \setminus O$. The net $\{y_V : V \in \mathcal{B}(x)\}$ has a cluster point $y \in \overline{O} \setminus O$. Note that

(7)
$$(x, y) \in LsGr(F_n).$$

Indeed, let $n \in \omega$, $G \in \mathcal{B}(x)$ and L be an open neighbourhood of y. There is $V \in \mathcal{B}(x)$ such that $V \subset G$ and $y_V \in L$. Since y_V is a cluster point of the sequence $\{y_k : k \in S(N_V)\}$, there must exist $k \ge n$ such that $y_k \in L$ and $x_k \in V$. Thus $(x_k, y_k) \in (V \times L) \cap Gr(F_k) \subset (G \times L) \cap Gr(F_k)$, i.e. (7) is true, contrary to (6). Now put H = C(f).

Finishing our paper it is worthwhile to ask whether our main theorem is true for the nets.

Definition 3.5. ([4]), ([20]) Let *Z* be a topological space and Σ be a directed set. Let $\{G_{\sigma} : \sigma \in \Sigma\}$ be a net of subsets of *Z*. The lower limit LiG_{σ} and the upper limit LsG_{σ} of $\{G_{\sigma} : \sigma \in \Sigma\}$ are defined as follows: LiG_{σ} is the set of all points $z \in Z$ such that for every neighbourhood *U* of *z* there is $\sigma_0 \in \Sigma$ such that $G_{\sigma} \cap U \neq \emptyset$ for each $\sigma \ge \sigma_0$ and, respectively, LsG_{σ} is the set of all points $z \in Z$ such that $G_{\eta} \cap U \neq \emptyset$.

Claim 3.6. Theorem 1.1 does not work for nets as the following example shows.

Example 3.7. Let X = Y = [0, 1] with the usual Euclidean topology. Let \mathcal{K} be the family of all finite sets in X ordered by the inclusion. Then \mathcal{K} equipped with the set inclusion is a directed set. Define a net { $F_K : K \in \mathcal{K}$ } of lower semicontinuous set-valued maps from X to Y as follows:

$$F_K(x) = \begin{cases} \{0\} & \text{if } x \in K, \\ \{0, 1\} & \text{if } x \notin K, \end{cases}$$

Let a set-valued map $G : X \rightsquigarrow Y$ be given by $G(x) = \{0\}$ for every $x \in X$. Then $Lt\{F_K(x) : K \in \mathcal{K}\} = G(x)$ for every $x \in X$ and G has a closed graph. Let $F : X \rightsquigarrow Y$ be a set-valued map given by $F(x) = \{0, 1\}$ for every $x \in X$. It is easy to verify that $Lt\{Gr(F_K) : K \in \mathcal{K}\} = Gr(F)$.

Acknowledgement

The authors would like to thank the referee for his (her) valuable comments.

References

- [1] Attouch, H.: Variational Convergence for Functions and Operators, Appl. Math. Ser., Pitman, London, 1984.
- [2] Aubin, J.P.-Frankowska, H.:Set-Valued Analysis, Birhauser, Cambridge, MA, 1990.
- [3] Back, K.:Concepts of similarity for utility functions, J. Math. Econom. 15, (1986), 129–142.
- [4] Beer, G.: Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers, 1993.
- [5] Beer, G.: More on convergence of continuous functions and topological convergence of sets, Canad. Math. Bull. 28, (1985), 52-59.
- [6] Borsík, J.—Holá, Ľ.—Holý D.: Baire spaces and quasicontinuous mappings, Filomat 25, (2011), 69-83.
- [7] Berge, C.: *Topological Spaces*, Oliver and Boyd, Edinburgh 1963.
- [8] Bagh, A.-Wets, R.J.B.: Convergence of set-valued mappings: Equi-outer semicontinuity, Set-Valued Analysis 4 (1996), 333-360.
- [9] Del Prete, I.—Di Iorio, M.—Holá, L.: Graph convergence of set-valued maps and its relationship to other convergences, J. Appl. Anal. 6, (2000), 213–226.
- [10] Drewnowski, L.—Labuda I.: On minimal upper semicontinuous compact valued maps, Rocky Mountain J. Math. 20, (1990), 737–752.
- [11] R.V. Fuller, Sets of points of discontinuity, Proc. Amer. Math. Soc. 38 (1973), 193-197.
- [12] Christensen, J.P.R.: Theorems of Namioka and R.E. Johnson type for upper semicontinuous and compact valued mappings, Proc. Amer. Math. Soc. 86, (1982), 649–655.
- [13] Choquet, G.: Lectures on Analysis Volume 1, W.A. Benjamin, New York, 1969.
- [14] Engelking, R.: General Topology, PWN 1977.
- [15] Holá, Ľ.—Holý, D.: Minimal usco maps, densely continuous forms and upper semicontinuous functions, Rocky Mountain J. Math. 39, (2009), 545–562.
- [16] Holá, Ľ.–Holý, D.:Relations between minimal usco and minimal cusco maps, Portugaliae Mathematica 70, (2013), 211–224.
- [17] Kechris, A. S.: Classical descriptive set theory, Springer-Verlag, New York, 1995.
- [18] Kempisty, S.: Sur les fonctions quasi-continues, Fund. Math. 19, (1932), 184-197.
- [19] Kowalczyk, S.: Topological convergence of multivalued maps and topological convergence of graphs, Demonstratio Mathematica XXVII, (1994), 79–87.
- [20] Klein, E.—Thompson, A.C.: Theory of Correspondences, Wiley, 1984.
- [21] Kuratowski, K.: Topology, Academic Press, New York, 1966.
- [22] Matejdes M.: Topological and pointwise upper Kuratowski limits of a sequence of lower quasi continuous multifunctions, preprint.
- [23] Neubrunn, T.: Quasi-continuity, Real Anal. Exchange, 14 (1988), 259-306.
- [24] McCoy R. A.—Ntantu I.: Topological properties of spaces of continuous functions, Lecture Notes in Mathematics, Springer-Verlag, 1315, (1988).
- [25] Oxtoby, J.C.: The Banach-Mazur game and Banach category Theorem, Contribution to the theory of games, Vo. III, Annals of Mathematics Studies 39, Princeton University Press.
- [26] Rockafellar, R.T.-Wets, R.J.B.: Variational Analysis, Springer, Berlin, 1998.
- [27] Telgársky, R.: Topological games: On the 50th anniversary of the Banach Mazur game, Rocky Mountain J. Math. 17 (1987), 227-276.