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Abstract. In this paper, we consider the problem of planarity and outerplanarity of iterated line graphs of
the unit, unitary and total graphs when R is a finite commutative ring. We give a full characterization of all
these graphs with respect to their planarity and outerplanarity indexes.

1. Introduction

In recent years, the investigation of iterated line graphs has recorded a large progress. The kth iterated
line graph of G is denoted by Lk(G) and these graphs are defined inductively as follows: L0(G) = G,
L1(G) = L(G) is the line graph of G and Lk(G) = L(Lk−1(G)).

The planarity index of graph G was defined as the smallest k such that Lk(G) is non-planar. We denote
the planarity index of G by ξ(G). If Lk(G) is planar for all k > 0, we define ξ(G) = ∞. In [6], the authors gave
a full characterization of graphs with respect to their planarity index.

Theorem 1.1. [Theorem 10, [6]] Let G be a connected graph. Then:

(i) ξ(G) = 0 if and only if G is non-planar.

(ii) ξ(G) = ∞ if and only if G is either a path, a cycle, or K1,3.

(iii) ξ(G) = 1 if and only if G is planar and either ∆(G) > 5 or G has a vertex of degree 4 which is not a cut-vertex.

(iv) ξ(G) = 2 if and only if L(G) is planar and G contains one of the graphs Hi in Figure 1 as a subgraph.

(v) ξ(G) = 4 if and only if G is one of the graphs Xk or Yk (Figure 1) for some k > 2.

(vi) ξ(G) = 3 otherwise.
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The outerplanarity index of a graph G, which is denoted by ζ(G), is the smallest integer k such that the kth
iterated line graph of G is non-outerplanar. If Lk(G) is outerplanar for all k > 0, we define ζ(G) = ∞. In [7],
the authors gave a full characterization of all graphs with respect to their outerplanar index.

Theorem 1.2. Let G be a connected graph. Then:

(i) ζ(G) = 0 if and only if G is non-outerplanar.

(ii) ζ(G) = ∞ if and only if G is a path, a cycle, or K1,3.

(iii) ζ(G) = 1 if and only if G is planar and G has a subgraph homeomorphic to K1,4 or K1 + P3 in Figure 2.

(iv) ζ(G) = 2 if and only if L(G) is outerplanar and G has a subgraph isomorphic to one of the graphs G2 and G3 in
Figure 2.

(v) ζ(G) = 3 if and only if G ∈ I(d1, d2, . . . , dt) where di > 2 for i = 2, . . . , t − 1, and d1 > 1 (Figure 2).
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Figure 2

In Sections 2, 3 and 4, we study the planarity and outerplanarity indexes of the iterated line graphs of the
unit, unitary and total graphs, respectively. We give a full characterization of all these graphs with respect
to their indexes. Also, For all these graphs, we show that it’s iterated line graph is outerplanar if and only
if it is outerplanar, that is the outerplanarity index of these graphs is zero or infinity.

Now, we start to remind a belief necessary background of graphs. We use the standard terminology of
graphs in [5]. Let G be a graph. We say that G is the empty graph when its vertex set is empty. Also, we say



Z. Barati / Filomat 31:9 (2017), 2827–2836 2829

that G is totally disconnected if no two vertices of G are adjacent. A complete graph is a graph such that each
pair of distinct vertices are adjacent. We use the notation Kn to denote the complete graph with n vertices.
A bipartite graph is one whose vertices are partitioned into two disjoint parts such that the vertices of each
edge belong to different partitions. A complete bipartite graph is a bipartite graph in which each vertex in
the first set is joined to each vertex in the second set by exactly one edge. The complete bipartite graph
with n and m vertices is denoted by Kn,m. A graph G is connected if there exists a path between every two
vertices a and b of G, and otherwise we say G is disconnected. A vertex v is called a cut vertex if the number
of connected components in G \ {v} (a subgraph of G with removing the vertex v) is larger than that of G.

Throughout the paper, R is a finite commutative ring with non-zero identity. Also, we denote the set of
all zero-divisor and unit elements of R by Z(R) and U(R), respectively.

2. Planarity and Outerplanarity Indexes of the Unit Graphs

The unit graph of R, denoted by G(R), is the graph obtained by setting all the elements of R to be the
vertices and defining distinct vertices x and y to be adjacent if and only if x + y ∈ U(R). By [4, Theorem
2.4], if 2 < U(R), then the unit graph G(R) is a |U(R)|-regular graph. Otherwise, for every x ∈ U(R), we have
deg(x) = |U(R)| − 1 and, for every x ∈ R \U(R), we have that deg(x) = |U(R)|.

First, we want to characterize the planarity index of the all unit graphs. By [4, Theorem 5.14], we have
that the unit graph G(R) is planar if and only if R is isomorphic to one of the following rings:

(i) R � Z5,

(ii) R � Z3 ×Z3,

(iii) R � Z2 × . . . ×Z2︸          ︷︷          ︸
`

×S, where ` ≥ 0 and S � Z2, S � Z3, S � Z4, S � F4, or S �
{ [

a b
0 a

]
| a, b ∈ Z2

}
.

Theorem 2.1. Let R be a finite ring. Then:

(i) ξ(G(R)) = ∞ if and only if R � Z2 × . . . ×Z2︸          ︷︷          ︸
`

×S, where ` ≥ 0 and S � Z2, S � Z3, S � Z4, or

S �
{ [

a b
0 a

]
| a, b ∈ Z2

}
.

(ii) ξ(G(R)) = 1 if and only if R � Z5 or Z3 ×Z3.

(iii) ξ(G(R)) = 2 if and only if R � Z2 × . . . ×Z2︸          ︷︷          ︸
`

×F4 where ` ≥ 0.

(iv) ξ(G(R)) = 0 otherwise.

Proof. First, since for every non-planar graphs we have that ξ(G(R)) = 0, it is sufficient to study the cases
which the graph G(R) is planar. Thus we have the following cases:

Case 1. R � Z5 or Z3 ×Z3.
The graphs G(Z5) and G(Z3 ×Z3) is pictured in Figure 3. The vertex 0 in the graph G(Z5) and the vertex 00
in the graph G(Z3 ×Z3) have degree 4 and they are not cut vertices. So ξ(G(Z5)) = ξ(G(Z3 ×Z3)) = 1.
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Case 2. R � Z2 × . . . ×Z2︸          ︷︷          ︸
`

×Z2, where ` ≥ 0.

If ` = 0, then R � Z2. The graph G(Z2) is a path and so ξ(G(Z2)) = ∞. Now, we assume that ` > 0. We have
that U(R) = {(1, 1, . . . , 1︸     ︷︷     ︸

`

, 1)}. Since 2 < U(R), G(R) is a 1-regular graph. Thus L(G(Z2 × . . . ×Z2︸          ︷︷          ︸
`

×Z2))

is a totally disconnected graph and so Lk(G(Z2 × . . . ×Z2︸          ︷︷          ︸
`

×Z2)) for k > 2, is an empty graph. Thus

ξ(G(Z2 × . . . ×Z2︸          ︷︷          ︸
`

×Z2)) = ∞.

Case 3. R � Z2 × . . . ×Z2︸          ︷︷          ︸
`

×Z3, where ` ≥ 0.

If ` = 0, then R � Z3. Since G(Z3) is a path, we have that ξ(G(Z3)) = ∞. Now, suppose that ` > 0. Since
U(R) = {(1, 1, . . . , 1︸     ︷︷     ︸

`

, 1), (1, 1, . . . , 1︸     ︷︷     ︸
`

, 2)}, G(R) is a 2-regular graph. So G(R) is the union of cycles. In fact every

connected component of this graph is a cycle. Therefore G(Z2 × . . . ×Z2︸          ︷︷          ︸
`

×Z3) � Lk(G(Z2 × . . . ×Z2︸          ︷︷          ︸
`

×Z3))

for all k > 1. So ξ(G(Z2 × . . . ×Z2︸          ︷︷          ︸
`

×Z3)) = ∞.

Case 4. R � Z2 × . . . ×Z2︸          ︷︷          ︸
`

×Z4

If ` = 0, then R � Z4. Since U(R) = {1, 3} and 2 < U(Z4), the graph G(Z4) is a 2-regular graph. So,
this graph is a cycle on 4 vertices which implies that ξ(G(Z4)) = ∞. Otherwise ` > 0. Since U(R) =
{(1, 1, . . . , 1︸     ︷︷     ︸

`

, 1), (1, 1, . . . , 1︸     ︷︷     ︸
`

, 3)} and 2 < U(R), the graph G(R) is a 2-regular graph. Now similar to Case 3, we

have that ξ(G(Z2 × . . . ×Z2︸          ︷︷          ︸
`

×Z4)) = ∞.

Case 5. R � Z2 × . . . ×Z2︸          ︷︷          ︸
`

×F4.

Consider the field F4 = {0, f1, f2, f3}. Since U(R) = {(1, 1, . . . , 1︸     ︷︷     ︸
`

, f1), (1, 1, . . . , 1︸     ︷︷     ︸
`

, f2), (1, 1, . . . , 1︸     ︷︷     ︸
`

, f3)}, G(R) is a

3-regular graph. We also have char(F4) = 2. Thus the sum of each pair of distinct non-zero elements in F4
is non-zero. Therefore the vertex (a1, a2, . . . , a`, fi) is adjacent to (1 − a1, 1 − a2, . . . , 1 − a`, f j) for all ak ∈ Z2
and fi, f j ∈ F4, where 1 ≤ k ≤ ` and 1 ≤ i , j ≤ 3. So every component of G(R) has a form similar to that we
show in the following figure.
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(1 − a1, 1 − a2, . . . , 1 − a`, f1)(a1, a2, . . . , a`, f2)

(1 − a1, 1 − a2, . . . , 1 − a`, 0)

(a1, a2, . . . , a`, f3)

(a1, a2, . . . , a`, f1)

(1 − a1, 1 − a2, . . . , 1 − a`, f2)

(1 − a1, 1 − a2, . . . , 1 − a`, f3) (a1, a2, . . . , a`, 0)

Figure 4: One of the connected component of G(Z2 × . . . ×Z2 × F4)

Figure 5: The line graph of the connected component of the graph G(Z2 × . . . ×Z2 × F4)

Now, by Figure 5, the line graph of every component of G(R) is planar and so L(G(R)) is planar. Also, in
view of Figure 4, we can see that G(R) contains H3 as a subgraph. So, in this situation, ξ(G(R)) = 2.

Case 6. R � Z2 × . . . ×Z2︸          ︷︷          ︸
`

×

{ [
a b
0 a

]
| a, b ∈ Z2

}
.

In this case, we have that

U(R) =
{
(1, 1, . . . , 1︸     ︷︷     ︸

`

,

[
1 0
0 1

]
), (1, 1, . . . , 1︸     ︷︷     ︸

`

,

[
1 1
0 1

]
)
}
.

Since 2 < U(R), G(R) is a 2-regular graph. Similar to Case 3, ξ(G(R)) = ∞.
The converse statement follows easily.

Now, we consider the outerplanarity index of the unit graph. In the following theorem, we give a full
characterization of the unit graphs with respect to outerplanarity index.

Theorem 2.2. Let R be a finite ring. Then:

(i) ζ(G(R)) = ∞ if and only if R � Z2 × . . . ×Z2︸          ︷︷          ︸
`

×S, where ` ≥ 0 and S � Z2, S � Z3, S � Z4 or S �
{ [

a b
0 a

]
|

a, b ∈ Z2

}
.

(ii) ζ(G(R)) = 0 otherwise.

Proof. Since ζ(G(R)) = 0 when G(R) is not outerplanar, we may suppose that G(R) is outerplanar. In [1,
Theorem 2.2], the authors showed that the unit graph G(R) is outerplanar if and only if R is one of the
following rings:
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R � Z2 × . . . ×Z2︸          ︷︷          ︸
`

×S, where ` ≥ 0 and S � Z2, Z3, Z4 or
{ [

a b
0 a

]
| a, b ∈ Z2

}
.

Thus we have the following cases:
Case 1. R � Z2 × . . . ×Z2︸          ︷︷          ︸

`

×Z2, where ` ≥ 0.

Since G(R) is a 1-regular graph, so Lk(G(Z2 × · · · ×Z2︸          ︷︷          ︸
`

×Z2)) is outerplanar for all k ≥ 0. Therefore ζ(G(R)) =

∞.
Case 2. R is isomorphic to one of the following rings:

Z2 × . . . ×Z2︸          ︷︷          ︸
`

×S, where ` ≥ 0 and S � Z3, Z4 or
{ [

a b
0 a

]
| a, b ∈ Z2

}
.

In these cases, G(R) is a union of cycles and so the graph Lk(G(R)), for all k > 0, is an outerplanar graph.
Thus ζ(G(R)) = ∞.

The converse statement follows easily.

By previous theorem, we can conclude the following corollary.

Corollary 2.3. Let R be a finite ring. Then the following statements are equivalent:

(i) G(R) is outerplanar.

(ii) Lk(G(R)) is outerplanar for some k > 1.

(iii) Lk(G(R)) is outerplanar for all k > 1.

3. Planarity and Outerplanarity Index of the Unitary Graphs

The unitary graph GR = Cay(R,U(R)) is defined to be the graph whose vertex-set is R, with an edge
between x and y if x − y ∈ U(R). It is easy to see that GR is a |U(R)|-regular graph. In this section, we
provide a characterization of all finite rings with respect to planarity and outerplanarity indexes of iterated
line graphs of their unitary graphs.

Theorem 3.1. Let R be a finite ring. Then:

(i) ξ(GR) = ∞ if and only if R � Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

×Z2, R � Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

×Z3, R � Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

×Z4.

(ii) ξ(GR) = 2 if and only if R � Z2 × . . . ×Z2︸          ︷︷          ︸
`

×F4.

(iii) ξ(GR) = 0 otherwise.

Proof. We know that ξ(GR) = 0 if and only if GR is not planar. So it is sufficient to study the planar unitary
graph. By [2, Theorem 8.2], GR is planar if and only if R is one of the following rings:

Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

×Z2, Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

×Z3, Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

×Z4 and Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

×F4.
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Therefore we have the following cases:
Case 1. R � Z2 × . . . ×Z2︸          ︷︷          ︸

`≥0

×Z2.

Since U(R) = {(1, 1, . . . , 1︸     ︷︷     ︸
`

, 1)}, GR is a 1-regular graph. Therefore ξ(GR) = ∞.

Case 2. R � Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

×Z3.

We have that U(R) = {(1, 1, . . . , 1︸     ︷︷     ︸
`

, 1), (1, 1, . . . , 1︸     ︷︷     ︸
`

, 2)}. Hence GR is a 2-regular graph and thus every connected

component of GR is a cycle. Thus GR � Lk(GR), for all k > 1, which implies that ξ(GR)) = ∞.
Case 3. R � Z2 × . . . ×Z2︸          ︷︷          ︸

`≥0

×Z4.

Similar to Case 2, one can see that ξ(GR) = ∞
Case 4. R � Z2 × . . . ×Z2︸          ︷︷          ︸

`≥0

×F4.

Let F4 = {0, f1, f2, f3}. Since U(R) = {(1, 1, . . . , 1︸     ︷︷     ︸
`

, fi)| i = 1, 2, 3}, the graph GR is a 3-regular graph. So L(GR)) is

planar. Also, for all 1 ≤ i , j ≤ 3, the vertices (a1, a2, . . . , a`, fi) and (1− a1, 1− a2, . . . , 1− a`, f j) are adjacent in
GR, where ak ∈ Z2. So every connected component of the graph GR has a similar form of Figure 6.

(1 − a1, 1 − a2, . . . , 1 − a`, f1)(a1, a2, . . . , a`, f2)

(1 − a1, 1 − a2, . . . , 1 − a`, 0)

(a1, a2, . . . , a`, f3)

(a1, a2, . . . , a`, f1)

(1 − a1, 1 − a2, . . . , 1 − a`, f2)

(1 − a1, 1 − a2, . . . , 1 − a`, f3) (a1, a2, . . . , a`, 0)

Figure 6: One of the connected component of the unitary graph of the ring Z2 × . . . ×Z2 × F4

One can easily see that GR has H3 as a subgraph. Now, by Theorem 1.1, we have that ξ(GR) = 2.

In the following of this section, we study the outerplanarity index of the unitary graphs and give a full
characterization for thses graphs with respect to their outerplanarity index.

Theorem 3.2. Let R be a finite ring. Then:

(i) ζ(GR) = ∞ if and only if R � Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

, Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

×Z3 and Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

×Z4.

(ii) ζ(GR) = 0 otherwise.

Proof. Since the line graph of a non-outerplanar graph is non-outerplanar, we need to calculate the out-
erplanarity index of GR, whenever GR is an outerplanar graph. By Theorem 3.2 of [1], we know that the
unitary graph GR is outerplanar if and only if R is isomorphic to one of the following rings:

Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

, Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

×Z3 or Z2 × . . . ×Z2︸          ︷︷          ︸
`≥0

×Z4.
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But for the above cases GR is a 1-regular or a 2-regular graph. Thus ζ(GR) = ∞.
The converse statement follows easily.

By Theorem 3.2, we can consider the following corollary.

Corollary 3.3. Let R be a finite ring. Then the following statements are equivalent:

(i) GR is outerplanar.

(ii) Lk(GR) is outerplanar for some k > 1.

(iii) Lk(GR) is outerplanar for all k > 1.

4. Planarity and Outerplanarity of the Total Graphs

The total graph T(Γ(R)) is a graph with vertex-set R and two distinct vertices a and b are adjacent if and
only if a+b ∈ Z(R). In this section, we investigate the planarity and outerplanarity index of the total graphs.

Theorem 4.1. Let R be a finite ring. Then:

(i) ξ(T(Γ(R))) = ∞ if and only if R is a field or isomorphic to Z4, Z2[X]
(X2) or Z2 ×Z2.

(ii) ξ(T(Γ(R))) = 2 if and only if R is isomorphic to one of the rings:

F4[X]
(X2) , Z4[X]

(X2+X+1) ,
Z2[X]
(X3) , Z2[X,Y]

(X,Y)2 , Z4[X]
(2X,X2) ,

Z4[X]
(2X,X2−2) , Z8 or Z6.

(iii) ξ(T(Γ(R))) = 0 otherwise.

Proof. First suppose that T(Γ(R)) is planar. Then we have the following cases:
Case 1. R is local. Then, by [8, Theorem 1.5(a)] , R is a field or it is isomorphic to one of the following

rings:

Z4,
Z2[X]
(X2)

,
Z2[X]
(X3)

,
Z2[X,Y]
(X,Y)2 ,

Z4[X]
(2X,X2)

,
Z4[X]

(2X,X2 − 2)
, Z8,

F4[X]
(X2)

,
Z4[X]

(X2 + X + 1)
.

If R is a field, then T(Γ(R)) is union of a totally disconnected graph and a 1-regular graph and so ξ(T(Γ(R))) =

∞. For rings F4[X]
(X2) and Z4[X]

(X2+X+1) we have T(Γ(R)) is the union of four K4. Since L(T(Γ(R))) is planar and T(Γ(R))
has H2 as a subgraph, we have that:

ξ(T(Γ(F4[X]
(X2) ))) = ξ(T(Γ( Z4[X]

(X2+X+1) ))) = 2.

Let R is isomorphic to one of the following rings:

Z2[X]
(X3)

,
Z2[X,Y]
(X,Y)2 ,

Z4[X]
(2X,X2)

,
Z4[X]

(2X,X2 − 2)
, Z8.

Then for these rings we have that T(Γ(R)) is the union of two K4, and so

ξ(T(Γ(
Z2[X]
(X3)

))) = ξ(T(Γ(
Z2[X,Y]
(X,Y)2 )))

= ξ(T(Γ(
Z4[X]

(2X,X2)
)))

= ξ(T(Γ(
Z4[X]

(2X,X2 − 2)
)))

= ξ(T(Γ(Z8)))
= 2.

For the remaining two rings Z4 and Z2[X]
(X2) , we have T(Γ(R)) � 2K2 and so:
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ξ(T(Γ(Z4))) = ξ(T(Γ(Z2[X]
(X2) ))) = ∞.

Case 2. R is non-local. Then since T(Γ(R)) is planar and R is finite, by [8, Theorem 1.5(b)], we have that
R is isomorphic to the ring Z2 ×Z2 or Z6. If R � Z6, then T(Γ(R)) is a 3-regular graph which is shown that
in Figure 7.

4

5

2

1

0

3

Figure 7: T(Γ(Z6))

Thus the line graph of the graph T(Γ(Z6))) is planar. Also T(Γ(Z6))) has H3 as a subgraph. So ξ(T(Γ(Z6))) = 2.
In the case that R � Z2 ×Z2, we have T(Γ(R)) � C4 which implies that ξ(T(Γ(Z2 ×Z2))) = ∞.

Theorem 4.2. Let R be a finite ring. Then:

(i) ζ(T(Γ(R))) = ∞ if and only if R is a field or isomorphic to one of the rings Z4, Z2[X]
(X2) or Z2 ×Z2,

(ii) ζ(T(Γ(R))) = 0 otherwise.

Proof. Assume that T(Γ(R)) is outerplanar. By [1, Theorem 4.2], T(Γ(R)) is outerplanar if and only if R
is a field or isomorphic to one of the rings Z4, Z2[X]

(X2) or Z2 × Z2. For two rings Z4 and Z2[X]
(X2) , we have

T(Γ(R)) � 2K2 , and therefore ζ(T(Γ(Z4))) = ζ(T(Γ(Z2[X]
(X2) ))) = ∞. Also, T(Γ(Z2 × Z2)) � C4 which implies

that ζ(T(Γ(Z2 × Z2))) = ∞. If R is a field, then T(Γ(R)) is the union of a totally disconnected graph and a
1-regular graph, and so L(T(Γ(R))) is a totally disconnected graph and Lk(T(Γ(R))) is an empty graph for all
k > 2. Thus ζ(T(Γ(R))) = ∞.

The converse statement follows easily.

By previous theorem, we deduce that the outerplanarity index of the total graph is zero or infinity. Also,
we can see the following corollary is true for all total graphs when R is a finite ring.

Corollary 4.3. Let R be a finite ring. Then the following statements are equivalent:

(i) T(Γ(R)) is outerplanar.

(ii) Lk(T(Γ(R))) is outerplanar for some k > 1.

(iii) Lk(T(Γ(R))) is outerplanar for all k > 1.
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