A Novel Subclass of Analytic Functions Specified by a Family of Fractional Derivatives in the Complex Domain

Zainab Esa ${ }^{\text {a }}$, H. M. Srivastava ${ }^{\text {b }}$, Adem Kılıçman ${ }^{\text {c }}$, Rabha W. Ibrahim ${ }^{\text {d }}$
${ }^{a}$ Department of Mathematics, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
${ }^{b}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada and
China Medical University, Taichung 40402, Taiwan, Republic of China
${ }^{\text {c D Department of Mathematics, University Putra Malaysia, } 43400 \text { UPM Serdang, Selangor, Malaysia }}$
${ }^{d}$ Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

In this paper, by making use of a certain family of fractional derivative operators in the complex domain, we introduce and investigate a new subclass $\boldsymbol{\mathcal { P }}_{\tau, \mu}(k, \delta, \gamma)$ of analytic and univalent functions in the open unit disk \mathbb{U}. In particular, for functions in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$, we derive sufficient coefficient inequalities and coefficient estimates, distortion theorems involving the above-mentioned fractional derivative operators, and the radii of starlikeness and convexity. In addition, some applications of functions in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$ are also pointed out.

1. Introduction

Let \mathcal{H} be the class of functions which are analytic in the open unit disk

$$
\mathbb{U}:=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$

Also let $\mathcal{H}[a, k]$ denote the subclass of \mathcal{H} consisting of analytic functions of the form:

$$
f(z)=a+\sum_{j=k}^{\infty} a_{j} z^{j}=a+a_{k} z^{k}+a_{k+1} z^{k+1}+\cdots
$$

We denote by $\mathcal{A}(k)$ the class of functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=z+\sum_{v=k+1}^{\infty} a_{v} z^{v} \quad(z \in \mathbb{U} ; k \in \mathbb{N}:=\{1,2,3, \cdots\}) \tag{1}
\end{equation*}
$$

[^0]which are analytic in the open unit disk \mathbb{U}. In particular, we write
$$
\mathcal{A}(1)=: \mathcal{A} .
$$

Let $\mathcal{S}(k)$ denote the subclass of $\mathcal{A}(k)$ consisting of functions which are univalent in \mathbb{U}. Then, by definition, a function $f(z)$ belonging to the univalent function class $\mathcal{S}(k)$ is said to be a starlike function of order α $(0 \leqq \alpha<1)$ in \mathbb{U} if and only if

$$
\begin{equation*}
\mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1) . \tag{2}
\end{equation*}
$$

Furthermore, a function $f(z)$ in the univalent function class $\mathcal{S}(k)$ is said to be a convex function of order α $(0 \leqq \alpha<1)$ in in \mathbb{U} if and only if

$$
\begin{equation*}
\mathfrak{R}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U} ; 0 \leqq \alpha<1) . \tag{3}
\end{equation*}
$$

We denote by $\mathcal{S}^{*}(k, \alpha)$ and $\mathcal{K}(k, \alpha)$ the classes of all functions in $\mathcal{S}(k)$ which are, respectively, starlike of order $\alpha(0 \leqq \alpha<1)$ in \mathbb{U} and convex of order $\alpha(0 \leqq \alpha<1)$ in \mathbb{U}.

Let $\mathcal{P}(k)$ denote the subclass of $\mathcal{S}(k)$ consisting of functions $f(z)$ which are analytic and univalent in \mathbb{U} with negative coefficients, that is, of the form:

$$
\begin{equation*}
f(z)=z-\sum_{v=k+1}^{\infty} a_{v} z^{v} \quad\left(z \in \mathbb{U} ; a_{v} \geqq 0\right) . \tag{4}
\end{equation*}
$$

For $0 \leqq \alpha<1$ and $k \in \mathbb{N}$, we write

$$
\begin{equation*}
\mathcal{P}^{*}(k, \alpha):=\mathcal{S}^{*}(k, \alpha) \cap \mathcal{P}(k) \quad \text { and } \quad \mathcal{L}(k, \alpha):=\mathcal{K}(k, \alpha) \cap \mathcal{P}(k) . \tag{5}
\end{equation*}
$$

Chatterjea [3] studied the classes $\mathcal{P}^{*}(k, \alpha)$ and $\mathcal{L}(k, \alpha)$, which are, respectively, starlike and convex of order α in \mathbb{U}. Subsequently, Srivastava et al. [12] observed and remarked that some of the results of Chatterjea [3] would follow immediately by trivially setting

$$
a_{k}=0 \quad(k \in \mathbb{N} \backslash\{1\}=\{2,3,4, \cdots\})
$$

in the corresponding earlier results of Silverman [11, p. 110, Theorem 2; p. 111, Corollary 2] (see, for details, [12, p. 117]).

The modified convolution of two analytic functions $f(z)$ and $\psi(z)$ in the class $\mathcal{P}(k)$ is defined by (see [10])

$$
f * \psi(z):=z-\sum_{v=k+1}^{\infty} a_{v} \lambda_{v} z^{v}=: \psi * f(z),
$$

where $f(z)$ is given by (4) and $\psi(z)$ is defined as follows:

$$
\begin{equation*}
\psi(z)=z-\sum_{v=k+1}^{\infty} \lambda_{v} z^{v} \quad\left(\lambda_{v} \geqq 0 ; k \in \mathbb{N}\right) . \tag{6}
\end{equation*}
$$

Definition 1. The fractional integral of order ς is defined, for a function $f(z)$, by

$$
\begin{equation*}
I_{\Sigma}^{\varsigma} f(z):=\frac{1}{\Gamma(\varsigma)} \int_{0}^{z} f(\zeta)(z-\zeta)^{\zeta-1} \mathrm{~d} \zeta, \tag{7}
\end{equation*}
$$

where $0 \leqq \varsigma<1$, the function $f(z)$ is analytic in a simply-connected region of the complex z-plane \mathbb{C} containing the origin and the multiplicity of $(z-\zeta)^{\varsigma-1}$ is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$.

Here, and in what follows, we refer to $I_{z}^{\varsigma} f(z)$ as the Srivastava-Owa operator of fractional integral. Similarly, we have the following definition of the Srivastava-Owa operator of fractional derivative (see also [7]).

Definition 2. The fractional derivative of order ς is defined, for a function $f(z)$, by

$$
\begin{equation*}
\mathfrak{D}_{z}^{\zeta} f(z):=\frac{1}{\Gamma(1-\varsigma)} \frac{\mathrm{d}}{\mathrm{~d} z}\left\{\int_{0}^{z} f(\zeta)(z-\zeta)^{-\varsigma} \mathrm{d} \zeta\right\}, \tag{8}
\end{equation*}
$$

where $0 \leqq \varsigma<1$, the function $f(z)$ is analytic in a simply-connected region of the complex z-plane \mathbb{C} containing the origin and the multiplicity of $(z-\zeta)^{-\zeta}$ is removed as in Definition 1.

Now, by using Definition 2, the Srivastava-Owa fractional derivative of order $n+\varsigma$ can easily be defined as follows:

$$
\begin{equation*}
\mathfrak{D}_{z}^{n+\varsigma} f(z):=\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}}\left\{\mathfrak{D}_{z}^{\varsigma} f(z)\right\} \quad\left(0 \leqq \varsigma<1 ; n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}=\{0,1,2,3, \cdots\}\right) \tag{9}
\end{equation*}
$$

which readily yields

$$
\mathfrak{D}_{z}^{0+\varsigma} f(z)=\mathfrak{D}_{z}^{\varsigma} f(z) \quad \text { and } \quad \mathfrak{D}_{z}^{1+\varsigma} f(z)=\frac{\mathrm{d}}{\mathrm{~d} z}\left\{\mathfrak{D}_{z}^{\varsigma} f(z)\right\} \quad(0 \leqq \varsigma<1)
$$

Recently, by applying the Srivastava-Owa definition (9), Tremblay [6] introduced and studied an interesting fractional derivative operator $\mathfrak{I}^{\tau, \mu}$, which was defined in the complex domain and whose properties in several spaces were discussed systematically (see, for details, [5] and [6]).

Definition 3. For $0<\tau \leqq 1,0<\mu \leqq 1$ and $0 \leqq \tau-\mu<1$, the Tremblay operator $\mathfrak{I}^{\tau, \mu}$ of a function $f \in \mathcal{A}$ is defined for all $z \in \mathbb{U}$ by

$$
\begin{equation*}
\mathfrak{I}^{\tau, \mu} f(z):=\frac{\Gamma(\mu)}{\Gamma(\tau)} z^{1-\mu} \mathfrak{D}_{z}^{\tau-\mu} z^{\tau-1} f(z) \quad(z \in \mathbb{U}) \tag{10}
\end{equation*}
$$

In the special case when $\tau=\mu=1$ in (10), we have

$$
\begin{equation*}
\mathfrak{I}^{1,1} f(z)=f(z) \tag{11}
\end{equation*}
$$

We note also that $\mathfrak{D}_{z}^{\tau-\mu}$ represents a Srivastava-Owa operator of fractional derivative of order $\tau-\mu$ $(0 \leqq \tau-\mu<1)$, which is given by Definition 2 .

The main purpose of this paper is to present coefficient inequalities and coefficient estimates, distortion theorems, and the radii of starlikeness and convexity, for functions belonging to the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$ which we introduce in Section 2 below. We also consider some other interesting results involving closure and convolution of functions in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$.

2. A Set of Main Results

In this section, we define a new analytic class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$ by considering the fractional derivative operator given by Definition 3 and establish a sufficient condition for a function $f(z) \in \mathcal{P}(k)$ to be in the function class $\boldsymbol{\mathcal { P }}_{\tau, \mu}(k, \delta, \gamma)$. The following two lemmas will be needed in our investigation.

Lemma 1. Let the function $f(z)$ defined by (4) belong to the class $\mathcal{P}(k)(k \in \mathbb{N})$. Then

$$
\mathfrak{I}^{\tau, \mu} f(z)=\frac{\tau}{\mu} z-\sum_{v=m+1}^{\infty} \frac{\Gamma(v+\tau) \Gamma(\mu)}{\Gamma(v++\mu) \Gamma(\tau)} a_{v} z^{v}
$$

where $0<\tau \leqq 1, \quad 0<\mu \leqq 1$ and $0 \leqq \tau-\mu<1$.

Proof. By using Definition 3 and Definition 2, we find for $z \in \mathbb{U}$ that

$$
\begin{aligned}
\mathfrak{I}^{\tau, \mu} f(z) & =\frac{\Gamma(\mu)}{\Gamma(\tau)} z^{1-\mu} \mathfrak{D}_{z}^{\tau-\mu} z^{\tau-1} f(z) \\
& =\frac{\Gamma(\mu)}{\Gamma(\tau)} z^{1-\mu} \mathfrak{D}_{z}^{\tau-\mu} z^{\tau-1}\left(z-\sum_{v=m+1}^{\infty} a_{v} z^{v}\right) \\
& =\frac{\Gamma(\mu)}{\Gamma(\tau)} z^{1-\mu} \mathfrak{D}_{z}^{\tau-\mu}\left(z^{\tau}-\sum_{v=k+1}^{\infty} a_{v} z^{v+\tau-1}\right) \\
& =\frac{\Gamma(\mu)}{\Gamma(\tau)} z^{1-\mu}\left(\frac{\Gamma(\tau+1)}{\Gamma(\mu+1)} z^{\mu}-\sum_{v=k+1}^{\infty} \frac{\Gamma(v+\tau)}{\Gamma(v+\mu)} a_{v} z^{v+\mu-1}\right) \\
& =\frac{\tau}{\mu} z-\sum_{v=k+1}^{\infty} \frac{\Gamma(v+\tau) \Gamma(\mu)}{\Gamma(v+\mu) \Gamma(\tau)} a_{v} z^{v}
\end{aligned}
$$

which proves Lemma 1.
Lemma 2. Let the function $f(z)$ defined by (4) belong to the class $\mathcal{P}(k)(k \in \mathbb{N})$. Then

$$
\left(\mathfrak{I}^{\tau, \mu} f(z)\right)^{\prime}=\frac{\tau}{\mu}-\sum_{v=k+1}^{\infty} \frac{v \Gamma(v+\tau) \Gamma(\mu)}{\Gamma(v+\mu) \Gamma(\tau)} a_{v} z^{v-1} \quad(z \in \mathbb{U})
$$

where $0<\tau \leqq 1, \quad 0<\mu \leqq 1$ and $0 \leqq \tau-\mu<1$.
Proof. By using Lemma 1 and the definition 9, we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} z}\left\{\mathfrak{I}^{\tau, \mu} f(z)\right\} & =\frac{\mathrm{d}}{\mathrm{~d} z}\left\{\frac{\Gamma(\mu)}{\Gamma(\tau)} z^{1-\mu} \mathfrak{D}_{z}^{\tau-\mu} z^{\tau-1} f(z)\right\} \\
& =\frac{\tau}{\mu}-\sum_{v=k+1}^{\infty} \frac{v \Gamma(v+\tau) \Gamma(\mu)}{\Gamma(v+\mu) \Gamma(\tau \alpha)} a_{v} z^{v-1} \quad(z \in \mathbb{U})
\end{aligned}
$$

which evidently completes the proof of Lemma 2.
By employing Lemma 1 and Lemma 2, we now introduce a new class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$ of analytic functions in \mathbb{U} as follows.

Definition 4. Let $0<\tau \leqq 1,0<\mu \leqq 1,0 \leqq \delta<1$ and $0 \leqq \gamma<1$. A function $f(z)$ belonging to the analytic function class $\mathcal{P}(k)$ is said to be in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$ if and only if

$$
\begin{equation*}
\mathfrak{R}\left(\frac{\Gamma(\mu+1) \Gamma(\tau)}{\Gamma(\tau+1) \Gamma(\mu)} z^{-1}\left[(1-\delta) \mathfrak{I}^{\tau, \mu} f(z)+z \delta\left(\mathfrak{I}^{\tau, \mu} f(z)\right)^{\prime}\right]\right)>\gamma \quad(z \in \mathbb{U} ; \tau-\mu+\gamma<1) \tag{12}
\end{equation*}
$$

where $\mathfrak{I}^{\tau, \mu}$ is the fractional derivative operator in the complex domain in Definition 3.

2.1. A Theorem on Coefficient Bounds

Theorem 1. Let the function $f(z)$ be given by (4). Then $f(z)$ belongs to the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$ if and only if

$$
\begin{equation*}
\sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{\Gamma(v+\mu) \Gamma(\tau+1)} a_{v} \leqq 1-\gamma \quad\left(a_{v} \geqq 0 ; 0 \leqq \gamma<1\right) \tag{13}
\end{equation*}
$$

The result (13) is sharp and the extremal function $f(z)$ is given by by

$$
\begin{equation*}
f(z)=z-\frac{(1-\gamma)(\mu+1)_{k}}{(1+\delta k)(\tau+1)_{k}} z^{k+1} \quad(k \in \mathbb{N}) \tag{14}
\end{equation*}
$$

where $(\lambda)_{k}(\lambda \in \mathbb{C})$ denotes the Pochhammer symbol defined by

$$
(\lambda)_{k}:=\frac{\Gamma(\lambda+k)}{\Gamma(\lambda)}= \begin{cases}1 & (k=0) \\ \lambda(\lambda+1) \cdots(\lambda+k-1) & (k \in \mathbb{N})\end{cases}
$$

Proof. Supposing first that $f(z) \in \mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$, we find from Definition 3 in conjunction with with Lemmas 1 and 2 that

$$
\begin{equation*}
\mathfrak{R}\left(1-\sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{\Gamma(v+\mu) \Gamma(\tau+1)} a_{v} z^{v-1}\right)>\gamma \tag{15}
\end{equation*}
$$

If we choose z to be real and let $z \rightarrow-1$, we have

$$
1-\sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{\Gamma(v+\mu) \Gamma(\tau+1)} a_{v} \geqq \gamma \quad(0<\tau \leqq 1 ; 0<\mu \leqq 1)
$$

which readily yields the inequality (13) of Theorem 1.
Conversely, by assuming that the inequality (13) is true, we let $|z|=1$. We then obtain

$$
\begin{align*}
& \left|\frac{\Gamma(\mu+1) \Gamma(\tau)}{\Gamma(\tau+1) \Gamma(\mu)} z^{-1}\left[(1-\delta) \mathfrak{I}^{\tau-\mu} f(z)+\delta z\left(\mathfrak{T}^{\tau-\mu} f(z)\right)^{\prime}\right]-1\right| \\
& \quad=\left|-\sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{\Gamma(v+\mu) \Gamma(\tau+1)} a_{v} z^{v-1}\right| \\
& \quad \leqq \sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{\Gamma(v+\mu) \Gamma(\tau+1)} a_{v}|z|^{v-1} \\
& \quad \leqq 1-\gamma \tag{16}
\end{align*}
$$

which shows that the function $f(z)$ is in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$.
Finally, it is easily verified that the result is sharp for the function $f(z)$ given by (14).
Corollary 1. Let the function $f(z)$ given by (4) be in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$. Then

$$
\begin{equation*}
a_{k+1} \leqq \frac{(1-\gamma)(\mu+1)_{k}}{(1+\delta k)(\tau+1)_{k}} \tag{17}
\end{equation*}
$$

$$
(k=\mathbb{N} \backslash\{1\}=\{2,3,4, \cdots\} ; 0<\mu \leqq 1 ; 0<\tau \leqq 1 ; 0 \leqq \gamma<1 ; 0 \leqq \delta<1)
$$

Corollary 2. The function $f(z) \in \mathcal{P}(k)$ is in the class $\mathcal{P}_{1,1}(k, \delta, \gamma)$ if and only if

$$
\begin{equation*}
\sum_{v=k+1}^{\infty}(1+\delta v-\delta) a_{v} \leqq 1-\gamma \quad(0 \leqq \gamma<1 ; 0 \leqq \delta \leqq 1) \tag{18}
\end{equation*}
$$

Corollary 2 was given by Altintaş et al. [1]. In particular, it was given earlier for $k=1$ by Bhoosnurmath and Swamy [2] for $k=1$ and by Silverman [11] for $k=\delta=1$.

2.2. Distortion Theorems

Theorem 2. Let the function $f(z)$ belong to the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$. Then

$$
\begin{align*}
& \frac{\beta}{\alpha}|z|\left(1-|z|^{k} \frac{(1-\gamma)(\beta+1)_{k}(\mu+1)_{k}}{(1+\delta k)(\alpha+1)_{k}(\tau+1)_{k}}\right) \\
& \quad \leqq\left|\mathfrak{T}^{\beta, \alpha} f(z)\right| \\
& \quad \leqq \frac{\beta}{\alpha}|z|\left(1+|z|^{k} \frac{(1-\gamma)(\beta+1)_{k}(\mu+1)_{k}}{(1+\delta k)(\alpha+1)_{k}(\tau+1)_{k}}\right) \tag{19}\\
& \quad\left(z \in \mathbb{U} ; 0<\mu \leqq 1 ; 0<\beta \leqq 1 ; k \in \mathbb{N}_{0} .\right.
\end{align*}
$$

Proof. By hypothesis, the function $f(z)$ belongs to the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$. Thus, clearly, we find from the inequality (13) in Theorem 1 that

$$
\begin{equation*}
\frac{(1+\delta k)(\tau+1)_{k}}{(\mu+1)_{k}} \sum_{v=k+1}^{\infty} a_{v} \leqq \sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta)) \Gamma(v+\tau) \Gamma(\mu+1)}{\Gamma(v+\mu) \Gamma(\tau+1)} a_{v} \tag{20}
\end{equation*}
$$

which leads us to

$$
\begin{align*}
& \sum_{v=k+1}^{\infty} a_{v} \leqq \frac{(1-\gamma)(\mu+1)_{k}}{(1+\delta k)(\tau+1)_{k}} \tag{21}\\
&(0<\mu \leqq 1 ; 0<\tau \leqq 1 ; 0 \leqq \delta<1 ; 0 \leqq \gamma<1 ; k \in \mathbb{N})
\end{align*}
$$

Next, by the definition (10) and from (21), we have

$$
\begin{aligned}
\mathfrak{T}^{\beta, \alpha} f(z) & =\frac{\Gamma(\alpha)}{\Gamma(\beta)} z^{1-\alpha} D_{z}^{\beta-\alpha} z^{\beta-1} f(z) \\
& =\frac{\beta}{\alpha}\left(z-\sum_{v=k+1}^{\infty} \frac{\Gamma(v+\beta) \Gamma(\alpha+1)}{\Gamma(v+\alpha) \Gamma(\beta+1)} a_{v} z^{v}\right) \\
& =\frac{\beta}{\alpha}\left(z-\sum_{v=k+1}^{\infty} \omega(v) a_{v} z^{v}\right)
\end{aligned}
$$

where

$$
\omega(v)=\frac{(\beta+1)_{v-1}}{(\alpha+1)_{v-1}} \quad(v=k+1, k+2, k+3, \cdots) .
$$

Since the function $\omega(v)$ can be seen to be non-increasing, we get

$$
\begin{equation*}
0<\omega(v) \leqq \omega(k+1)=\frac{(\beta+1)_{k}}{(\alpha+1)_{k}} \tag{22}
\end{equation*}
$$

Thus, from the inequalities (22) and (21), we find that

$$
\begin{aligned}
\left|\mathfrak{I}^{\beta, \alpha} f(z)\right| & \geqq \frac{\beta}{\alpha}\left(|z|-\left|\omega(k+1) \sum_{v=k+1}^{\infty} a_{v} z^{v}\right|\right) \\
& \geqq \frac{\beta}{\alpha}\left(|z|-|z|^{v} \omega(k+1) \sum_{v=k+1}^{\infty} a_{v}\right) \\
& \geqq \frac{\beta}{\alpha}|z|\left(1-|z|^{k} \frac{(\beta+1)_{k}(1-\gamma)(\mu+1)_{k}}{(\alpha+1)_{k}(1+\delta k)(\tau+1)_{k}}\right)
\end{aligned}
$$

which proves the first part of the inequality (19). In a similar manner, we can prove the second part of the inequality (19).

Theorem 3. Let the function $f(z)$ be in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$. Then

$$
\begin{equation*}
|z|-|z|^{k+1} \frac{(1-\gamma)(\mu+1)_{k}}{(1+\delta k)(\tau+1)_{k}} \leqq|f(z)| \leqq|z|+|z|^{k+1} \frac{(1-\gamma)(\mu+1)_{k}}{(1+\delta k)(\tau+1)_{k}} . \tag{23}
\end{equation*}
$$

Proof. By using the same method as in Theorem 2, we have

$$
\begin{align*}
|f(z)| & \leqq|z|+\sum_{v=k+1} a_{v}|z|^{v} \\
& \leqq|z|+|z|^{k+1} \sum_{v=k+1} a_{v} \\
& \leqq|z|+|z|^{k+1} \frac{(1-\gamma) \Gamma(k+1+\mu) \Gamma(\tau+1)}{(1+\delta k) \Gamma(k+1+\tau) \Gamma(\mu+1)} \\
& =|z|+|z|^{k+1} \frac{(1-\gamma)(\mu+1)_{k}}{(1+\delta k)(\tau+1)_{k}} \tag{24}
\end{align*}
$$

and

$$
\begin{align*}
|f(z)| & \geqq|z|-|z|^{k+1} \sum_{v=k=1} a_{v} \\
& \geqq|z|-|z|^{k+1} \frac{(1-\gamma)(\mu+1)_{k}}{(1+\delta k)(\tau+1)_{k}} . \tag{25}
\end{align*}
$$

Consequently, from (24) and (25), we immediately get the inequality (23) of Theorem 3.
Upon setting $\tau=\mu=1$ in Theorem 3, we obtain the following corollary.
Corollary 3. If $f(z) \in \mathcal{P}_{0}(k, \delta, \gamma)=: \mathcal{P}(k, \delta, \gamma)$, then

$$
|z|-|z|^{k+1}\left(\frac{1-\gamma}{1+\delta k}\right) \leqq|f(z)| \leqq|z|+|z|^{k+1}\left(\frac{1-\gamma}{1+\delta k}\right)
$$

$$
(z \in \mathbb{U} ; 0 \leqq \gamma<1 ; 0 \leqq \delta<1 ; k \in \mathbb{N})
$$

Moreover, if $\tau=\mu=1$ and $k=1$ in Theorem 3, then we have the following known result (see [2]).
Corollary 4. If $f(z) \in \mathcal{P}_{0}(1, \delta, \gamma)=: \mathcal{P}(\delta, \gamma)$, then

$$
|z|-|z|^{2}\left(\frac{1-\gamma}{1+\delta}\right) \leqq|f(z)| \leqq|z|+|z|^{2}\left(\frac{1-\gamma}{1+\delta}\right) \quad(z \in \mathbb{U})
$$

3. Radii of Starlikeness and Convexity

Theorem 4. If the function $f(z) \in \mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$, then $f(z) \in \mathcal{P}_{\tau, \mu}^{*}(k, \delta, \gamma)$ in the disk $|z|<r_{1}$, where

$$
r_{1}:=\inf _{v \geqq k+1}\left\{\frac{(1-\alpha)(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{(v-\alpha)(1-\gamma) \Gamma(v+\mu) \Gamma(\tau+1)}\right\}^{1 /(v-1)}
$$

Proof. We must show that the condition in (3) holds true. Indeed, since

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leqq \frac{z-\sum_{v=k+1}^{\infty} v a_{v}|z|^{v}}{z-\sum_{v=2}^{\infty} a_{v}|z|^{v}} \leqq 1-\alpha \quad(z \in \mathbb{U}) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{v=k+1}^{\infty}(v-\alpha) a_{v}|z|^{v-1} \leqq 1-\alpha \quad(z \in \mathbb{U}) \tag{27}
\end{equation*}
$$

we find that

$$
\frac{(v-\alpha)|z|^{v-1}}{1-\alpha} \leqq \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{(1-\gamma) \Gamma(v+\mu) \Gamma(\tau+1)} \quad(v \geqq k+1)
$$

that is, that

$$
|z| \leqq\left\{\frac{(1-\alpha)(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{(v-\alpha)(1-\gamma) \Gamma(v+\mu) \Gamma(\tau+1)}\right\}^{1 /(v-1)}
$$

which proves Theorem 4.
Corollary 5. If the function $f(z) \in \mathcal{P}_{1,1}(k, \delta, \gamma)$, then $f(z)$ is starlike of order α in the disk $|z|<r_{2}$, where

$$
r_{2}:=\inf _{v \geqq k}\left\{\frac{(1-\alpha)(1+\delta v-\delta)}{(v-\alpha)(1-\gamma)}\right\}^{1 /(v-1)}
$$

In its special case when $k=1$, Corollary 5 was proven by Altintaş et al. [1]. Moreover, Corollary 5 was given earlier by Bhoosnurmath and Swamy [2] for $k=1$ and $\alpha=0$, and by Silverman [11] when $k=1$ and $\delta=\gamma=0$.

Theorem 5. If the function $f(z) \in \mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$, then $f(z) \in \mathcal{K}_{\tau, \mu}(k, \delta, \gamma)$ in the disk $|z|<r_{3}$, where

$$
r_{3}:=\inf _{v \geqq k+1}\left\{\frac{(1-\alpha)(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{v(v-\alpha)(1-\gamma) \Gamma(v+\mu) \Gamma(\tau+1)}\right\}^{1 /(v-1)} .
$$

Proof. For the function $f(z)$ given by (4), we must show that

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqq 1-\alpha \quad(z \in \mathbb{U})
$$

First of all, we find from (4) that

$$
\begin{aligned}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| & =\left|\frac{-\sum_{v=k+1}^{\infty} v(v-1) a_{v} z^{v-1}}{1-\sum_{v=k+1}^{\infty} v a_{v} z^{v-1}}\right| \\
& \leqq \frac{\sum_{v=k+1}^{\infty} v(v-1) a_{v}|z|^{v-1}}{1-\sum_{v=k+1}^{\infty} v a_{v}|z|^{v-1}} \\
& \leqq 1-\alpha \quad(z \in \mathbb{U})
\end{aligned}
$$

if

$$
\begin{equation*}
\sum_{v=k+1}^{\infty} v(v-1) a_{v}|z|^{v-1} \leqq(1-\alpha)\left(1-\sum_{v=k+1}^{\infty} v a_{v}|z|^{v-1}\right) \quad(z \in \mathbb{U}) \tag{28}
\end{equation*}
$$

that is, if

$$
\begin{equation*}
\sum_{v=k+1}^{\infty} v(v-\alpha) a_{v}|z|^{v-1} \leqq 1-\alpha \quad(z \in \mathbb{U}) \tag{29}
\end{equation*}
$$

From the last inequality (29), together with Theorem 1, we thus find that

$$
\frac{v(v-\alpha)|z|^{v-1}}{(1-\alpha)} \leqq \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{(1-\gamma) \Gamma(v+\mu) \Gamma(\tau+1)} \quad(v \geqq k+1)
$$

that is, that

$$
|z| \leqq\left\{\frac{(1-\alpha)(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{v(v-\alpha)(1-\gamma) \Gamma(v+\mu) \Gamma(\tau+1)}\right\}^{1 /(v-1)}
$$

which evidently proves Theorem 5.
Corollary 6. If the function $f(z) \in \mathcal{P}_{0}(k, \delta, \gamma)$, then $f(z)$ is convex of order α in the disk $|z|<r_{4}$, where

$$
r_{4}:=\inf _{v \geqq k+1}\left\{\frac{(1-\alpha)(1+\delta v-\delta)}{v(v-\alpha)(1-\gamma)}\right\}^{1 /(v-1)}
$$

For $k=1$, Corollary 6 was proved by Altintaş et al. [1]. Further special cases of Corollary 6 were given earlier by Bhoosnurmath and Swamy [2] when $k=1$ and $\alpha=0$, and by Silverman [11] for $k=1$ and $\delta=\gamma=0$.

4. Further Results for the Function Class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$

In this section, we prove some results for the closure of functions and the convolution of functions in the class $\boldsymbol{P}_{\tau, \mu}(k, \delta, \gamma)$.

Theorem 6. Let each of the functions $f_{1}(z)$ and $f_{2}(z)$ given by

$$
f_{1}(z)=z-\sum_{v=k+1}^{\infty} a_{v, 1} z^{v} \quad\left(a_{v, 1} \geqq 0 ; k \in \mathbb{N}\right)
$$

and

$$
f_{2}(z)=z-\sum_{v=k+1}^{\infty} a_{v, 2} z^{v} \quad\left(a_{v, 2} \geqq 0 ; k \in \mathbb{N}\right)
$$

be in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$. Then the function $\Phi(z)$ given by

$$
\Phi(z)=z-\frac{1}{2} \sum_{v=k+1}^{\infty}\left(a_{v, 1}+a_{v, 2}\right) z^{v}
$$

is also in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$.

Proof. By the hypothesis that each of the functions $f_{1}(z)$ and $f_{2}(z)$ is in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$, we get

$$
\begin{equation*}
\sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{\Gamma(v+\mu) \Gamma(\tau+1)} a_{v, 1} \leqq 1-\gamma \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{\Gamma(v+\mu) \Gamma(\tau+1)} a_{v, 2} \leqq 1-\gamma \tag{31}
\end{equation*}
$$

so that, obviously,

$$
\begin{equation*}
\frac{1}{2} \sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{\Gamma(v+\mu) \Gamma(\tau+1)}\left(a_{v, 1}+a_{v, 2}\right) \leqq 1-\gamma \tag{32}
\end{equation*}
$$

which proves the assertion that $\Phi(z) \in \mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$.
Theorem 7. Let the functions $f_{j}(z)(j=1, \cdots, p)$ defined by

$$
f_{j}(z)=z-\sum_{v=k+1}^{\infty} a_{v, j} z^{v} \quad\left(a_{v, j} \geqq 0 ; k \in \mathbb{N}\right)
$$

be in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$. Then the function $\Theta(z)$ defined by

$$
\begin{equation*}
\Theta(z):=\sum_{j=1}^{p} q_{j} f_{j}(z) \quad\left(q_{j} \geqq 0\right) \tag{33}
\end{equation*}
$$

is also in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$, where

$$
\sum_{j=1}^{\infty} q_{j}=1 \quad\left(q_{j} \geqq 0\right)
$$

Proof. By the definition (33) of the function $\Theta(z)$, we have

$$
\begin{aligned}
\Theta(z) & =\sum_{j=1}^{p} q_{j}\left(z-\sum_{v=k+1}^{\infty} a_{v, j} z^{v}\right) \\
& =\sum_{j=1}^{p} q_{j} z-\sum_{v=k+1}^{\infty}\left(\sum_{j=1}^{p} q_{j} a_{v, j} z^{v}\right) \\
& =z-\sum_{v=k+1}^{\infty}\left(\sum_{j=1}^{p} q_{j} a_{v, j}\right) z^{v} .
\end{aligned}
$$

Since $f_{j}(z) \in \mathcal{P}_{\tau, \mu}(k, \delta, \gamma)(j=1, \cdots, p)$, we also have

$$
\sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta)) \Gamma(v+\tau) \Gamma(\mu+1)}{\Gamma(v+\mu) \Gamma(\tau+1)} a_{v, j} \leqq 1-\gamma \quad(j=1, \cdots, p)
$$

The remainder of the proof of Theorem 7 (which is based essentially upon Theorem 1) is fairly straightforward and is, therefore, omitted here.

Theorem 8. Let the function $f(z)$ given by (4) and the function $\hbar(z)$ defined by

$$
\hbar(z)=z-\sum_{v=k+1}^{\infty} \lambda_{v} z^{v} \quad\left(\lambda_{v} \geqq 0 ; k \in \mathbb{N}\right)
$$

be in the same class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$. Then the function $\Delta(z)$ defined by

$$
\begin{aligned}
\Delta(z) & =(1-\eta) f(z)+\eta \hbar(z) \\
& =z-\sum_{v=k+1}^{\infty} \rho_{v} z^{v} .
\end{aligned}
$$

is also in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$.
Proof. In view of the hypotheses of Theorem Theorem8, we find by using Theorem 1 that

$$
\begin{aligned}
\sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu)}{\Gamma(v+\mu) \Gamma(\tau)} \rho_{v} & =(1-\eta) \sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu)}{\Gamma(v+\mu) \Gamma(\tau)} a_{v} z^{v-1} \\
& +\eta \sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu)}{\Gamma(v+\mu) \Gamma(\tau)} \lambda_{v} z^{v-1} \\
& \leqq(1-\eta)(1-\gamma)+\eta(1-\gamma) \\
& \leqq 1-\gamma .
\end{aligned}
$$

Hence $\Delta(z) \in \mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$.
Theorem 9. Let the function $f(z)$ given by (4) and the function $\psi(z)$ defined by (6) be in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$. Then the function $\Omega(z)$ given by the following modified Hadamard product:

$$
\Omega(z):=f * \psi(z)=z-\sum_{v=k+1}^{\infty} a_{v} \lambda_{v} z^{v}
$$

is in the class $\mathcal{P}_{\tau, \mu}(k, \delta, \xi)$, where

$$
\xi \leqq 1-\frac{(1-\gamma)^{2}(\mu+1)_{k}}{(1+\delta k)(\tau+1)_{k}}
$$

Proof. With a view to finding the largest ξ, by supposing that $\Omega(z) \in \mathcal{P}_{\tau, \mu}(k, \delta, \xi)$, we have

$$
\begin{equation*}
\sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{(1-\xi) \Gamma(v+\mu) \Gamma(\tau+1)} a_{v} \lambda_{v} \leqq 1 \tag{34}
\end{equation*}
$$

Since $f(z), \psi(z) \in \mathcal{P}_{\tau, \mu}(k, \delta, \gamma)$, we know that

$$
\sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{(1-\gamma) \Gamma(v+\mu) \Gamma(\tau+1)} a_{v} \leqq 1
$$

and

$$
\sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{(1-\gamma) \Gamma(v+\mu) \Gamma(\tau+1)} \lambda_{v} \leqq 1 .
$$

Thus, by using the Cauchy-Schwarz inequality, we obtain

$$
\sum_{v=k+1}^{\infty} \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{(1-\gamma) \Gamma(v+\mu) \Gamma(\tau+1)} \sqrt{\lambda_{v} a_{v}} \leqq 1
$$

which implies that

$$
\begin{aligned}
& \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{(1-\gamma) \Gamma(v+\mu) \Gamma(\tau+1)} \sqrt{\lambda_{v} a_{v}} \\
& \quad \leqq \frac{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}{(1-\xi) \Gamma(v+\mu) \Gamma(\tau+1)} a_{v} \lambda_{v} \leqq 1 \quad(v \geqq k+1)
\end{aligned}
$$

that is, that

$$
\sqrt{\lambda_{v} a_{v}} \leqq \frac{1-\xi}{1-\gamma} \quad(v \geqq k+1)
$$

We note also that

$$
\sqrt{\lambda_{v} a_{v}} \leqq \frac{(1-\gamma) \Gamma(v+\mu) \Gamma(\tau+1)}{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}
$$

We now need to show that

$$
\begin{equation*}
\frac{(1-\gamma) \Gamma(v+\mu) \Gamma(\tau+1)}{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)} \leqq \frac{1-\xi}{1-\gamma} \tag{35}
\end{equation*}
$$

or, equivalently, that

$$
\xi \leqq 1-\frac{(1-\gamma)^{2} \Gamma(v+\mu) \Gamma(\tau+1)}{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}
$$

Upon letting

$$
\Xi(v):=1-\frac{(1-\gamma)^{2} \Gamma(v+\mu) \Gamma(\tau+1)}{(1+\delta v-\delta) \Gamma(v+\tau) \Gamma(\mu+1)}
$$

we can easily see that the function $\Xi(v)$ is non-decreasing in v. We thus obtain

$$
\xi \leqq \Xi(k+1) \leqq 1-\frac{(1-\gamma)^{2}(\mu+1)_{k}}{(1+\delta k)(\tau+1)_{k}} \quad(k \in \mathbb{N})
$$

Finally, the result asserted by Theorem 9 is sharp with the extremal function given by

$$
\begin{equation*}
f(z)=\psi(z)=z-\frac{(1-\gamma)(\mu+1)_{k}}{(1+\delta k)(\tau+1)_{k}} z^{k+1} \quad(k \in \mathbb{N}) \tag{36}
\end{equation*}
$$

which evidently completes the proof of Theorem 9.

References

[1] O. Altintaş, H. Irmak and H. M. Srivastava, A subclass of analytic functions defined by using certain operators of fractional calculus, Comput. Math. Appl. 30 (1) (1995), 1-9.
[2] S. S. Bhoosnurmath and S. R. Swamy, Certain classes of analytic functions with negative coefficients, Indian J. Math. 27 (1985), 89-98.
[3] S. K. Chatterjea, On starlike functions, J. Pure Math. 1 (1) (1981), 23-26.
[4] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[5] R. W. Ibrahim and J. M. Jahangiri, Boundary fractional differential equation in a complex domain, Boundary Value Prob. 2014 (2014), Article ID 66, 1-11.
[6] R. W. Ibrahim, Z. Esa and A. Kıliçman, On geometrical and topological properties of Tremblay operator among various spaces, Preprint 2015.
[7] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
[8] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18 (1978), 53-59.
[9] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), $1057-1077$.
[10] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[11] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
[12] H. M. Srivastava, S. Owa and S. K. Chatterjea, A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova 77 (1987), 115-124.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 26A33
 Keywords. Analytic functions; Univalent functions; Fractional integral and fractional derivative operators; Srivastava-Owa operator of fractional derivative; Coefficient inequalities and coefficient estimates; Distortion theorems; Radii of convexity and starlikeness; Modified convolution.

 Received: 10 September 2015; Accepted: 06 March 2016
 Communicated by Dragan S. Djordjević
 Email addresses: esazainab@yahoo.com (Zainab Esa), harimsri@math.uvic.ca (H. M. Srivastava), akilic@upm.edu.my (Adem Kılıçman), rabhaibrahim@yahoo.com (Rabha W. Ibrahim)

