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Abstract. Let R be a ring and b, c ∈ R. The concept of (b, c)-inverses was introduced by Drazin in 2012. In
this paper, the existence and the expression of the (b, c)-inverse in a ring with an involution are investigated.
A new representation of the (b, c)-inverse based on the group inverse is also presented.

1. Introduction

Throughout this paper, R denotes a ring with identity. The set of all idempotents in R is denoted by R•.
An involution of R is any map ∗ : R→ R satisfying (a∗)∗ = a, (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗ for any a, b ∈ R. An
element a ∈ R is self-adjoint if a∗ = a. An element q ∈ R is a projection if it is self-adjoint idempotent. Let
p ∈ R•, the range projection of p is a projection p⊥ ∈ R such that p⊥p = p and pp⊥ = p⊥ [14].

An element a of R is said to be (von Neumann) regular if there exists an element a− of R such that
aa−a = a. In this case, a− is called a {1}-inverse of a. A solution to xax = x is called an outer inverse of a. An
element a+ of R is a {1, 2}-inverse of a if aa+a = a and a+aa+ = a+ hold.

In [11] a special outer inverse, called (b, c)-inverse (see Definition 2.1), was introduced in the context of
semigroups. It is shown that the Moore-Penrose inverse ([20]), the Drazin inverse ([10]), the Chipman’s
weighted inverse ([3, pp. 114-176], or see [1, pp. 119-120]), the Bott-Duffin inverse ([2]), the inverse along
an element ([15]), the core inverse and dual core inverse ([21]) are all special cases of (b, c)-inverses.

The purpose of this article is to give necessary and sufficient conditions for the existence of the (b, c)-
inverses in a ring with an involution, and derive new expressions for them, and then state some new
properties for these inverses.

Let a ∈ R and p, q ∈ R•. An element b ∈ R is the (p, q)-outer generalized inverse of a if

bab = b, ba = p, 1 − ab = q. (1)

If the (p, q)-outer generalized inverse b exists, it is unique [8] and denoted a(2)
p,q. For more details about the

(p, q)-outer generalized inverse see [4, 5, 7, 9, 12, 13, 17, 19].
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If p, q ∈ R•, then arbitrary x ∈ R can be written as

x = pxq + px(1 − q) + (1 − p)xq + (1 − p)x(1 − q),

or in the matrix form

x =

[
x11 x12
x21 x22

]
p×q
,

where x11 = pxq, x12 = px(1 − q), x21 = (1 − p)xq, x22 = (1 − p)x(1 − q). If x = (xi j)p×q and y = (yi j)p×q, then
x + y = (xi j + yi j)p×q. Moreover, if r ∈ R• and z = (zi j)q×r, then one can use usual matrix rules in order to
multiply x and z. In a ring R with an involution, notice that

x∗ =

[
x∗11 x∗21
x∗12 x∗22

]
q∗×p∗

.

Recall that an element a ∈ R is group invertible if there exists an unique element a#
∈ R such that

aa#a = a, a#aa# = a#, aa# = a#a.

We use R# to denote the set of all the group invertible element of R. If a ∈ R#, then aπ = 1− aa# is the spectral
idempotent of a.

The following lemma was proved for Banach algebra elements in [16], it is correct in the ring case by
elementary computations.

Lemma 1.1. [18, Lemma 1.4]

(i) Let x =

[
a b
0 s

]
p×p
∈ R. If a ∈ (pRp)#, s ∈ ((1 − p)R(1 − p))# and aπbsπ = 0, then

x# =

[
a# (a#)2bsπ − a#bs# + aπb(s#)2

0 s#

]
p×p
.

(ii) Let x =

[
a 0
c s

]
p×p
∈ R. If a ∈ (pRp)#, s ∈ ((1 − p)R(1 − p))# and sπcaπ = 0, then

x# =

[
a# 0

sπc(a#)2
− s#ca# + (s#)2caπ s#

]
p×p
.

2. The Representations of (b, c)-inverses in Rings with Involution

In this section, we first recall the definition of the (b, c)-inverse and give some lemmas, and then
investigate the representations of this inverse.

To discuss these matters more formally, we recall the definition of (b, c)-inverse in [11].

Definition 2.1. [11, Definition 1.3] Let R be any ring and let a, b, c ∈ R. An element y ∈ R satisfying

y ∈ (bRy) ∩ (yRc), yab = b and cay = c (2)

is called a (b, c)-inverse of a.

The element a of R has at most one (b, c)-inverse in R, and if the (b, c)-inverse y of a exists, it always
satisfies yay = y. We denote by a(b,c) the (b, c)-inverse of a.

The (b, c)-inverse can reduces to classical inverse, Drazin inverse, Moore-Penrose inverse, the Bott-Duffin
inverse, the inverse along an element, core inverse and dual core inverse denoted by a(1,1), a(a j,a j), a(a∗,a∗), a(e,e),
a(d,d), a(a,a∗), a(a∗,a) respectively.

The following result is easy to check by the definition of the (b, c)-inverse.
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Lemma 2.2. Let R be any ring and let a, b, c ∈ R. If a has a (b, c)-inverse, then b and c are both regular.

Proof. If a has a (b, c)-inverse, using Definition 2.1, there is y ∈ R such that (2) holds. This means there exist
s, t ∈ R such that bsy = y = ytc, yab = b, cay = c. Therefore, b = yab = bsyab = bsb, c = cay = caytc = ctc, that
is, b and c are both regular.

Lemma 2.3. [14, Theorem 2.1] Let R be a ring with an involution and p ∈ R•. Then the following are equivalent:

(i) p + p∗ − 1 is invertible in R;
(ii) p⊥ and (p∗)⊥ exist.

The range projections are unique, given by the formula

p⊥ = p(p + p∗ − 1)−1, (p∗)⊥ = (p + p∗ − 1)−1p.

If a ring R with an involution has the GN-property (1 + xx∗ ∈ R−1 for all x ∈ R), then every idempotent
has a unique range projection.

Lemma 2.4. [6, Lemma 2.2] Let p ∈ R• such that p⊥ exists. If fp = 1 + p − p⊥, then fp ∈ R−1 and f−1
p = f ∗1−p∗ .

Base on the above facts, we have the following theorem.

Theorem 2.5. If b, c ∈ R are regular such that (bb−)⊥ and (c−c)⊥ exist. Let p = bb−, q = c−c, fp = 1 + p − p⊥ and
fq = 1 + q − q⊥. For a ∈ R, then

(i) a(b, c) exists if and only if

a = f−1
q

[
a1 a2
a3 a4

]
(1−q⊥)×p⊥

fp (3)

and (a3)(2)
p⊥,1−q⊥ exists.

In this case,

a(b, c) = f−1
p

[
0 (a3)(2)

p⊥,1−q⊥

0 0

]
p⊥×(1−q⊥)

fq. (4)

(ii) a(b, 1−c−c) exists if and only if a is represented as in (3) and (a1)(2)
p⊥,q⊥ exists.

In this case,

a(b, 1−c−c) = f−1
p

[
(a1)(2)

p⊥,q⊥ 0
0 0

]
p⊥×(1−q⊥)

fq.

(iii) a(1−bb−, c) exists if and only if a is represented as in (3) and (a4)(2)
1−p⊥,1−q⊥ exists.

In this case,

a(1−bb−, c) = f−1
p

[
0 0
0 (a4)(2)

1−p⊥,1−q⊥

]
p⊥×(1−q⊥)

fq.

(iv) a(1−bb−, 1−c−c) exists if and only if a is represented as in (3) and (a2)(2)
1−p⊥,q⊥ exists.

In this case,

a(1−bb−, 1−c−c) = f−1
p

[
0 0

(a2)(2)
1−p⊥,q⊥ 0

]
p⊥×(1−q⊥)

fq.
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Proof. We only give the proof of item (i), the rest are left to the reader by using similar techniques.
(i). Necessity. Suppose that a(b,c) exists, by Definition 2.1, there exists y ∈ R such that (2) holds. This

means y = bsy = ytc, yab = b, cay = c for some s, t ∈ R. As b and c are regular and p = bb−, q = c−c, then
py = bb−bsy = bsy = y, yabb− = bb−, c−cay = c−c, yq = yc−c = ytcc−c = ytc = y, that is,

y = py, yap = p, qay = q, y(1 − q) = 0. (5)

As p = bb−, q = c−c are idempotents, we have the following representations of p and q:

p =

[
p⊥ p1
0 0

]
p⊥×p⊥

, q =

[
0 0
q1 q⊥

]
(1−q⊥)×(1−q⊥)

. (6)

Assume that

a =

[
a1 a2 + a1p1

a3 − q1a1 a4 + a3p1 − q1a2 − q1a1p1

]
(1−q⊥)×p⊥

,

where a1 ∈ (1 − q⊥)Rp⊥, a2 ∈ (1 − q⊥)R(1 − p⊥), a3 ∈ q⊥Rp⊥, a4 ∈ q⊥R(1 − p⊥). And suppose

a(b,c) = y =

[
b1 b2
b3 b4

]
p⊥×(1−q⊥)

.

From (5), y = py gives b3 = b4 = 0. Since y(1 − q) = 0, we obtain b1 = b2q1. The equality yap = p implies
b2a3p⊥ = p⊥, b2a3p1 = p1, that is b2a3 = p⊥. Similarly, qay = q can reduce to a3b2 = q⊥. Note that yay = y
implies b2a3b2 = b2. By (1), we get at once b2 = (a3)(2)

p⊥,(1−q⊥), and

a(b,c) =

[
(a3)(2)

p⊥,(1−q⊥)q1 (a3)(2)
p⊥,(1−q⊥)

0 0

]
p⊥×(1−q⊥)

.

Furthermore,

f−1
q

[
a1 a2
a3 a4

]
(1−q⊥)×p⊥

fp =

[
1 − q⊥ 0
−q1 q⊥

]
(1−q⊥)×(1−q⊥)

[
a1 a2
a3 a4

]
(1−q⊥)×p⊥

[
p⊥ p1
0 1 − p⊥

]
p⊥×p⊥

=

[
a1 a2 + a1p1

a3 − q1a1 a4 + a3p1 − q1a2 − q1a1p1

]
(1−q⊥)×p⊥

= a,

and

f−1
p

[
0 (a3)(2)

p⊥,1−q⊥

0 0

]
p⊥×(1−q⊥)

fq =

[
p⊥ −p1
0 1 − p⊥

]
p⊥×p⊥

[
0 (a3)(2)

p⊥,1−q⊥

0 0

]
p⊥×(1−q⊥)

[
1 − q⊥ 0

q1 q⊥

]
(1−q⊥)×(1−q⊥)

=

[
(a3)(2)

p⊥,(1−q⊥)q1 (a3)(2)
p⊥,(1−q⊥)

0 0

]
p⊥×(1−q⊥)

= a(b,c).

Sufficiency. If a has the form (3), let y = f−1
p

[
0 (a3)(2)

p⊥,1−q⊥

0 0

]
p⊥×(1−q⊥)

fq, then

y =

[
p⊥ −p1
0 1 − p⊥

]
p⊥×p⊥

[
0 (a3)(2)

p⊥,1−q⊥

0 0

]
p⊥×(1−q⊥)

[
1 − q⊥ 0

q1 q⊥

]
(1−q⊥)×(1−q⊥)

=

[
(a3)(2)

p⊥,(1−q⊥)q1 (a3)(2)
p⊥,(1−q⊥)

0 0

]
p⊥×(1−q⊥)

.
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So we have

bb−y = py =

[
p⊥ p1
0 0

]
p⊥×p⊥

[
(a3)(2)

p⊥,(1−q⊥)q1 (a3)(2)
p⊥,(1−q⊥)

0 0

]
p⊥×(1−q⊥)

=

[
(a3)(2)

p⊥,(1−q⊥)q1 (a3)(2)
p⊥,(1−q⊥)

0 0

]
p⊥×(1−q⊥)

= y,

yc−c = yq =

[
(a3)(2)

p⊥,(1−q⊥)q1 (a3)(2)
p⊥,(1−q⊥)

0 0

]
p⊥×(1−q⊥)

[
0 0
q1 q⊥

]
(1−q⊥)×(1−q⊥)

=

[
(a3)(2)

p⊥,(1−q⊥)q1 (a3)(2)
p⊥,(1−q⊥)

0 0

]
p⊥×(1−q⊥)

= y,

yabb− = yap = f−1
p

[
0 (a3)(2)

p⊥,1−q⊥

0 0

]
p⊥×(1−q⊥)

[
a1 a2
a3 a4

]
(1−q⊥)×p⊥

fp

[
p⊥ p1
0 0

]
p⊥×p⊥

=

[
p⊥ p1
0 0

]
p⊥×p⊥

= p = bb−,

c−cay = qay

=

[
0 0
q1 q⊥

]
(1−q⊥)×(1−q⊥)

f−1
q

[
a1 a2
a3 a4

]
(1−q⊥)×p⊥

[
0 (a3)(2)

p⊥,1−q⊥

0 0

]
p⊥×(1−q⊥)

fq

=

[
0 0
q1 q⊥

]
(1−q⊥)×(1−q⊥)

= q = c−c.

Therefore, we have y ∈ bRy ∩ yRc, and yab = b, cay = c, that is, a(b,c) exists.

Theorem 2.6. If b, c ∈ R are regular such that (bb−)⊥ and (c−c)⊥ exist. Let p = bb−, q = c−c, fp = 1 + p − p⊥ and
fq = 1 + q − q⊥. For d ∈ R, then

(i) d(1−c−c, 1−bb−) exists if and only if

d = f−1
p

[
d1 d2
d3 d4

]
p⊥×(1−q⊥)

fq (7)

and (d3)(2)
1−q⊥,p⊥ exists.

In this case,

d(1−c−c, 1−bb−) = f−1
q

[
0 (d3)(2)

1−q⊥,p⊥

0 0

]
(1−q⊥)×p⊥

fp. (8)

(ii) d(1−c−c, bb−) exists if and only if d is represented as in (7) and (d1)(2)
1−q⊥,1−p⊥ exists.

In this case,

d(1−c−c, bb−) = f−1
q

[
(d1)(2)

1−q⊥,1−p⊥ 0
0 0

]
(1−q⊥)×p⊥

fp.

(iii) d(c−c, 1−bb−) exists if and only if d is represented as in (7) and (d4)(2)
q⊥,p⊥ exists.

In this case,

d(c−c, 1−bb−) = f−1
q

[
0 0
0 (d4)(2)

q⊥,p⊥

]
(1−q⊥)×p⊥

fp.
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(iv) d(c−c, bb−) exists if and only if d is represented as in (7) and (d2)(2)
q⊥,1−p⊥ exists.

In this case,

d(c−c, bb−) = f−1
q

[
0 0

(d2)(2)
q⊥,1−p⊥ 0

]
(1−q⊥)×p⊥

fp.

Proof. We only give the proof of item (i), the rest are left to the reader by using similar techniques.
(i). Necessity. Assume that d(1−c−c, 1−bb−) exists, according to Definition 2.1, there is y ∈ R such that

y ∈ (1 − c−c)Ry ∩ yR(1 − bb−), yd(1 − c−c) = 1 − c−c, (1 − bb−)dy = 1 − bb−. So there exist s, t ∈ R such that

y = (1 − c−c)sy = yt(1 − bb−), yd(1 − c−c) = 1 − c−c, (1 − bb−)dy = 1 − bb−.

Since p = bb−, q = c−c, we know (1−q)y = (1−c−c)(1−c−c)sy = (1−c−c)sy = y, yp = ybb− = yt(1−bb−)bb− = 0.
So we have

y = (1 − q)y, yp = 0, yd(1 − q) = 1 − q, (1 − p)dy = 1 − p.

Let p and q be represented as in (6). Denote by

d =

[
d1 + d2q1 − p1d3 − p1d4q1 d2 − p1d4

d3 + d4q1 d4

]
p⊥×(1−q⊥)

,

where d1 ∈ p⊥R(1 − q⊥), d2 ∈ p⊥Rq⊥, d3 ∈ (1 − p⊥)R(1 − q⊥), d4 ∈ (1 − p⊥)Rq⊥. And suppose

d(1−c−c,1−bb−) = y =

[
b1 b2
b3 b4

]
(1−q⊥)×p⊥

.

From yp = 0, we have b1 = 0. As y = (1−q)y, we get b3 = −q1b1 = 0, b4 = −q1b2. The condition yd(1−q) = 1−q
implies b2d3 = 1 − q⊥, q1b2d3 = q1. The equality (1 − p)dy = 1 − p gives p1d3b2 = p1, d3b2 = 1 − p⊥. Notice that
ydy = y, which implies b2d3b2 = b2. By (1), we can deduce that b2 = (d3)(2)

1−q⊥, p⊥ . So we have

d(1−c−c,1−bb−) =

0 (d3)(2)
1−q⊥, p⊥

0 −q1(d3)(2)
1−q⊥, p⊥


(1−q⊥)×p⊥

.

Therefore,

f−1
p

[
d1 d2
d3 d4

]
p⊥×(1−q⊥)

fq =

[
d1 + d2q1 − p1d3 − p1d4q1 d2 − p1d4

d3 + d4q1 d4

]
p⊥×(1−q⊥)

= d.

And

f−1
q

[
0 (d3)(2)

1−q⊥,p⊥

0 0

]
(1−q⊥)×p⊥

fp =

0 (d3)(2)
1−q⊥, p⊥

0 −q1(d3)(2)
1−q⊥, p⊥


(1−q⊥)×p⊥

= d(1−c−c,1−bb−).

Sufficiency. If d has the form (7), let y = f−1
q

[
0 (d3)(2)

1−q⊥,p⊥

0 0

]
(1−q⊥)×p⊥

fp, we have

y =

[
1 − q⊥ 0
−q1 q⊥

]
(1−q⊥)×(1−q⊥)

[
0 (d3)(2)

1−q⊥,p⊥

0 0

]
(1−q⊥)×p⊥

[
p⊥ p1
0 1 − p⊥

]
p⊥×p⊥

=

0 (d3)(2)
1−q⊥, p⊥

0 −q1(d3)(2)
1−q⊥, p⊥


(1−q⊥)×p⊥

.
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So we have

(1 − c−c)y =

[
1 − q⊥ 0
−q1 0

]
(1−q⊥)×(1−q⊥)

0 (d3)(2)
1−q⊥, p⊥

0 −q1(d3)(2)
1−q⊥, p⊥


(1−q⊥)×p⊥

=

0 (d3)(2)
1−q⊥, p⊥

0 −q1(d3)(2)
1−q⊥, p⊥


(1−q⊥)×p⊥

= y,

y(1 − bb−) =

0 (d3)(2)
1−q⊥, p⊥

0 −q1(d3)(2)
1−q⊥, p⊥


(1−q⊥)×p⊥

[
0 −p1
0 1 − p⊥

]
p⊥×p⊥

=

0 (d3)(2)
1−q⊥, p⊥

0 −q1(d3)(2)
1−q⊥, p⊥


(1−q⊥)×p⊥

= y,

yd(1 − c−c) = f−1
q

[
0 (d3)(2)

1−q⊥,p⊥

0 0

]
(1−q⊥)×p⊥

[
d1 d2
d3 d4

]
p⊥×(1−q⊥)

fq

[
1 − q⊥ 0
−q1 0

]
(1−q⊥)×(1−q⊥)

=

[
1 − q⊥ 0
−q1 0

]
(1−q⊥)×(1−q⊥)

= 1 − c−c,

(1 − bb−)dy =

[
0 −p1
0 1 − p⊥

]
p⊥×p⊥

f−1
p

[
d1 d2
d3 d4

]
p⊥×(1−q⊥)

[
0 (d3)(2)

1−q⊥,p⊥

0 0

]
(1−q⊥)×p⊥

fp

=

[
0 −p1
0 1 − p⊥

]
p⊥×p⊥

= 1 − bb−.

Therefore, we have y ∈ (1−c−c)Ry∩ yR(1−bb−), yd(1−c−c) = 1−c−c, (1−bb−)dy = 1−bb−, that is, d(1−c−c,1−bb−)

exists.

The next theorem gives some properties of the (b, c)-inverse.

Theorem 2.7. Let a, b, c ∈ R. Then

(i) a(b,c) exists if and only if (a∗)(c∗,b∗) exists. In addition, (a(b,c))∗ = (a∗)(c∗,b∗).
(ii) If a(b,c) exists, then (a(b,c))2 = a(b,c) if and only if a(b,c)b = b.

Proof. (i). By Definition 2.1, a(b,c) exists if and only if there exists y ∈ R such that

y ∈ bRy ∩ yRc, yab = b, cay = c,

which is equivalent to there is y ∈ R such that

y∗ ∈ c∗Ry∗ ∩ y∗Rb∗, y∗a∗c∗ = c∗, b∗a∗y∗ = b∗.

That is, (a∗)(c∗,b∗) exists, and (a(b,c))∗ = (a∗)(c∗,b∗).
(ii). If a(b,c) exists and (a(b,c))2 = a(b,c), it follows that

b = a(b,c)ab = (a(b,c))2ab = a(b,c)(a(b,c)ab) = a(b,c)b.

Conversely, if a(b,c) exists and a(b,c)b = b, from Definition 2.1, there is s ∈ R such that a(b,c) = bsa(b,c) =
a(b,c)bsa(b,c) = (a(b,c))2.

In the following result, we consider b = c = e ∈ R•.

Theorem 2.8. Let a ∈ R and e ∈ R• such that e⊥ exists. Let fe = 1 + e − e⊥. If a(e,e) exists, then
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(i) a(e,e)a = aa(e,e) if and only if

a = f−1
e

[
a1 0
0 a4

]
e⊥×e⊥

fe. (9)

(ii) a(e,e) is self-adjoint if and only if e and e⊥ae⊥ are self-adjoint.

Proof. The proof is left to the reader since it is same as the proof of [18, Theorem 2.5].
Now we will present a representation of the (b, c)-inverse based on group inverse.

Theorem 2.9. If b, c ∈ R are regular such that (bb−)⊥ and (c−c)⊥ exist. Let p = bb−, q = c−c, fp = 1 + p − p⊥ and
fq = 1 + q − q⊥. Suppose a, d ∈ R such that a(bb−, 1−c−c) and d(1−c−c, bb−) exist. Then

(i) pd(1 − q)a, pd(1 − q)ap ∈ R#,

a(bb−, 1−c−c) = [pd(1 − q)a]#pd(1 − q) = [pd(1 − q)ap]#pd(1 − q),

d(1−c−c, bb−) = (1 − q)a[pd(1 − q)ap]#.

(ii) apd(1 − q), (1 − q)apd(1 − q) ∈ R#,

a(bb−, 1−c−c) = pd(1 − q)[apd(1 − q)]# = pd[(1 − q)apd(1 − q)]#,

d(1−c−c, bb−) = [(1 − q)apd(1 − q)]#(1 − q)ap.

(iii) pd(1 − q)ap, (1 − q)apd(1 − q) ∈ R#,

a(bb−, 1−c−c) = pd(1 − q)[(1 − q)apd(1 − q)]#,

d(1−c−c, bb−) = (1 − q)ap[pd(1 − q)ap]#.

Proof. The proof is left to the reader since it is same as the proof of [18, Theorem 2.6].

Let R be a ring with an involution and has the GN-property (that is, for all x ∈ R, 1 + x∗x is invertible),
then we can omit the assumption p⊥ and q⊥ exist in the previous results.

Let A be a C∗-algebra with unit 1. An element x of A is positive (denoted by x ≥ 0) if x∗ = x and
σ(x) ⊆ [0,+∞), where σ(x) denotes the spectrum of x.

Theorem 2.10. Let a, d ∈ A. If b, c ∈ A are regular such that (bb−)⊥ and (c−c)⊥ exist. Take p = bb− and q = c−c.
Suppose a(bb−, 1−c−c) exists and a(bb−, 1−c−c)

≥ 0, then (a + dd∗)(bb−, 1−c−c) exists and

(a + dd∗)(bb−, 1−c−c) = a(bb−, 1−c−c)
− a(bb−, 1−c−c)d(1 + d∗a(bb−, 1−c−c)d)−1d∗a(bb−, 1−c−c).

Proof. The condition a(bb−, 1−c−c)
≥ 0 gives a(bb−, 1−c−c) = s∗s, for some s ∈ A. So we have d∗a(bb−, 1−c−c)d =

d∗s∗sd = (sd)∗sd, which implies that 1 + d∗a(bb−, 1−c−c)d is invertible. Denote by x = a + dd∗ and y = a(bb−, 1−c−c)
−

a(bb−, 1−c−c)d(1+d∗a(bb−, 1−c−c)d)−1d∗a(bb−, 1−c−c). Then, it is easy to get bb−y = y, y(1−c−c) = y since bb−a(bb−, 1−c−c) =
a(bb−, 1−c−c) and a(bb−, 1−c−c)(1 − c−c) = a(bb−, 1−c−c). Notice that a(bb−, 1−c−c)abb− = bb− and (1 − c−c)aa(bb−, 1−c−c) =
1 − c−c, so we have

yxbb− = a(bb−, 1−c−c)abb− + a(bb−, 1−c−c)dd∗bb− − a(bb−, 1−c−c)d(1 + d∗a(bb−, 1−c−c)d)−1

×(d∗a(bb−, 1−c−c)abb− + d∗a(bb−, 1−c−c)dd∗bb−)
= bb− + a(bb−, 1−c−c)dd∗bb− − a(bb−, 1−c−c)d(1 + d∗a(bb−, 1−c−c)d)−1

×(1 + d∗a(bb−, 1−c−c)d)d∗bb−

= bb−,
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and
(1 − c−c)xy = (1 − c−c)aa(bb−, 1−c−c) + (1 − c−c)dd∗a(bb−, 1−c−c)

− (1 − c−c)
×(aa(bb−, 1−c−c)d + dd∗a(bb−, 1−c−c)d)(1 + d∗a(bb−, 1−c−c)d)−1d∗a(bb−, 1−c−c)

= 1 − c−c + (1 − c−c)dd∗a(bb−, 1−c−c)
− (1 − c−c)d(1 + d∗a(bb−, 1−c−c)d)

×(1 + d∗a(bb−, 1−c−c)d)−1d∗a(bb−, 1−c−c)

= 1 − c−c.

Thus, we obtain y ∈ bb−Ay ∩ yA(1 − c−c) and yxbb− = bb−, (1 − c−c)xy = 1 − c−c, so we can conclude that
x(bb−, 1−c−c) exists and x(bb−, 1−c−c) = y.
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