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Abstract. We study boundedness of weighted differentiation composition operators Dk
ϕ,u between Zyg-

mund type spaces Zα and Bloch type spaces Bβ. We also give essential norm estimates of such operators
in different cases of k ∈ N and 0 < α, β < ∞. Applying our essential norm estimates, we get necessary and
sufficient conditions for the compactness of these operators.

1. Introduction and Preliminaries

LetD denote the open unit ball of the complex plane C. By a weight function ν we mean a continuous,
strictly positive and bounded function ν : D→ R+. The weight ν is called radial if ν(z) = ν(|z|) for all z ∈ D.
Let H(D) denote the space of all analytic functions onD. Then, for a weight ν, the weighted Banach space of
analytic functions H∞ν is the space of all analytic functions f ∈ H(D) for which

‖ f ‖ν = sup
z∈D

ν(z)| f (z)| < ∞.

In general, for a weight ν, the associated weight ν̃ is defined by

ν̃(z) = (sup{| f (z)| : f ∈ H∞ν , ‖ f ‖ν ≤ 1})−1, z ∈ D.

It is known that for standard weights να(z) = (1 − |z|2)α (0 < α < ∞), associated weights and weights are the
same, i.e. ν̃α = να.

For each 0 < α < ∞, the Bloch type space Bα is the space of all analytic functions f ∈ H(D) for which

sup
z∈D

(1 − |z|2)α| f ′(z)| < ∞.

The Bloch type space Bα is a Banach space with the norm

‖ f ‖Bα = | f (0)| + sup
z∈D

(1 − |z|2)α| f ′(z)|, f ∈ Bα.
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When α = 1, we get the classic Bloch space B = B1. The little Bloch type space Bα0 consists of those functions
f ∈ Bα for which

lim
|z|→1

(1 − |z|2)α| f ′(z)| = 0.

For each 0 < α < ∞, the Zygmund type spaceZα consists of those functions f ∈ H(D) satisfying

sup
z∈D

(1 − |z|2)α| f ′′(z)| < ∞.

The Zygmund type spaceZα is a Banach space equipped with the norm∥∥∥ f
∥∥∥
Zα = | f (0)| + | f ′(0)| + sup

z∈D
(1 − |z|2)α| f ′′(z)|, f ∈ Zα.

The little Zygmund type spaceZα
0 consists of those functions f ∈ Zα for which

lim
|z|→1

(1 − |z|2)α| f ′′(z)| = 0.

Recall that, for Banach spaces X and Y, a linear operator T : X → Y is bounded if it takes bounded sets
to bounded sets. The space of all bounded operators T : X → Y is denoted by B(X,Y). The norm of the
space B(X,Y), called operator norm, is denoted by ‖T‖X→Y for a bounded operator T : X → Y. An operator
T ∈ B(X,Y) is compact if it takes bounded sets to sets with compact closure. The space of all compact
operators T : X → Y is denoted by K (X,Y). The essential norm of an operator T ∈ B(X,Y), denoted by
‖T‖e,X→Y, is defined as the distance from T to K (X,Y). Clearly, an operator T ∈ B(X,Y) is compact if and
only if ‖T‖e,X→Y = 0. Therefore, essential norm estimates of operators in B(X,Y) lead to necessary and/or
sufficient conditions for the compactness of such operators. In this paper we investigate boundedness,
and then, essential norm estimates of certain type of operators, defined as follows, between Zygmund type
spaces and Bloch type spaces. As a consequence of our essential norm estimates, we obtain necessary and
sufficient conditions for the compactness of such operators.

Let u, ϕ ∈ H(D) where ϕ is a selfmap ofD. The weighted composition operator uCϕ on H(D) is defined by

(uCϕ)( f )(z) = u(z) f (ϕ(z)), z ∈ D.

Weighted composition operators, which are generalizations of multiplication operators and composition oper-
ators, appear in the study of dynamical systems. Moreover, it is known that isometries on many analytic
function spaces are of the canonical forms of weighted composition operators. Boundedness, compact-
ness and essential norm estimates of weighted composition operators have been studied by many authors
between different spaces of analytic functions. Weighted composition operator uCϕ from Zygmund type
spaces to Bloch type spaces has been studied in [2]. See also [6, 15, 16], for more results on weighted
composition operators between certain spaces of analytic functions.

Let ϕ be an analytic selfmap of D, u ∈ H(D) and k ∈ N. The weighted differentiation composition operator
Dk
ϕ,u on H(D) is defined by (

Dk
ϕ,u f

)
(z) = u(z) f (k)(ϕ(z)), z ∈ D.

Weighted differentiation composition operators [19] are also known as generalized weighted composition
operators [24]. Boundedness and compactness of these operators between different spaces of analytic
functions have been studied by many authors. The operator Dk

ϕ,u from Bloch type spaces to weighted-type
spaces has been studied in [7]. For the results on the operator Dk

ϕ,u from Hardy spaces to Zygmund type
spaces, see [10]. Also, the operator Dk

ϕ,u between Bloch type spaces has been investigated in [26], and the
operator Dk

ϕ,u from logarithmic Bloch spaces to Zygmund type spaces has been studied in [14]. For more
results on the operator Dk

ϕ,u see also [8, 18, 21, 25] and references therein.
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Note that by considering special cases of ϕ, u and k in Dk
ϕ,u, we can get certain well-known operators.

For example, for an analytic selfmap ϕ of D, by letting u = ϕ′ and k = 1, D1
ϕ,ϕ′ is the well-known operator

composition followed by differentiation DCϕ, given by(
DCϕ f

)
(z) = ϕ′(z)

(
f ′(ϕ(z))

)
=

(
D1
ϕ,ϕ′ f

)
(z).

Also, if ϕ is an analytic selfmap of D, then by letting u = 1 and k = 1, D1
ϕ,1 is the well-known operator

composition proceeded by differentiation CϕD, given by(
CϕD f

)
(z) = f ′(ϕ(z)) =

(
D1
ϕ,1 f

)
(z).

Recently, there has been growing interest in the study of these particular cases. See, for example, [5, 9, 20]
and references therein. We also note that weighted forms of operators DCϕ and CϕD [11] are also of the
form Dk

ϕ,u. More precisely, (
ψDCϕ f

)
(z) = ψ(z)ϕ′(z)

(
f ′(ϕ(z))

)
=

(
D1
ϕ,ψϕ′ f

)
(z),

and (
ψCϕD f

)
(z) = ψ(z) f ′(ϕ(z)) =

(
D1
ϕ,ψ f

)
(z).

Therefore, it is worth mentioning that all results in this paper about weighted differentiation composition
operators Dk

ϕ,u are also valid for the above mentioned operators as particular cases.
In Section 2, we investigate boundedness of weighted differentiation composition operators Dk

ϕ,u : Zα
→

B
β in different cases of k ∈ N and 0 < α, β < ∞. In Section 3, using results of Section 2, we give essential

norm estimates of weighted differentiation composition operators Dk
ϕ,u : Zα

→ B
β in different cases of

k ∈N and 0 < α, β < ∞. As a consequence of essential norm estimates given in Section 3, we get necessary
and sufficient conditions for the compactness of such operators.

We mention that in this paper, for real scalars A and B, the notation A � B means A ≤ cB for some
positive constant c. Also, the notation A � B means A � B and B � A.

2. Boundedness

In this section we characterize boundedness of weighted differentiation composition operators Dk
ϕ,u :

Z
α
→ B

β in different cases of k ∈N and 0 < α, β < ∞. First, we study boundedness of D1
ϕ,u : Zα

→ B
β.

We recall the following estimates of | f (z)| and | f ′(z)| for functions f inZα (see, [1, Lemma 1.1]).

Lemma 2.1. For every f ∈ Zα we have

(i) | f ′(z)| ≤ 2
1−α‖ f ‖Zα and | f (z)| ≤ 2

1−α‖ f ‖Zα for 0 < α < 1,

(ii) | f ′(z)| ≤ 2‖ f ‖Z log 2
1−|z| and | f (z)| ≤ ‖ f ‖Z for α = 1,

(iii) | f ′(z)| ≤ 2
α−1

‖ f ‖Zα
(1−|z|)α−1 , for 1 < α < ∞,

(iv) | f (z)| ≤ 2
(α−1)(2−α)‖ f ‖Zα , for 1 < α < 2,

(v) | f (z)| ≤ 2‖ f ‖Z2 log 2
1−|z| , for α = 2,

(vi) | f (z)| ≤ 2
(α−1)(α−2)

‖ f ‖Zα
(1−|z|)α−2 , for 2 < α < ∞.

Before stating next theorems we note that if D1
ϕ,u : Zα

→ B
β is a bounded operator, then u = D1

ϕ,u(1) ∈ Bβ

and also, since uϕ = D1
ϕ,u( z2

2 ) ∈ Bβ, one can see that uϕ′ ∈ H∞νβ . This fact will be severally used in the proof
of theorems in this section.
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Theorem 2.2. Let 0 < α < 1 and 0 < β < ∞. Then, D1
ϕ,u : Zα

→ B
β is bounded if and only if u ∈ Bβ and

sup
z∈D

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|u(z)ϕ′(z)| < ∞. (1)

Proof. For f ∈ Zα using Lemma 2.1(i) we have

|(D1
ϕ,u f )′(z)| ≤|u′(z) f ′(ϕ(z))| + |u(z)ϕ′(z) f ′′(ϕ(z))|

≤
2|u′(z)|
1 − α

‖ f ‖Zα +
|u(z)ϕ′(z)|

(1 − |ϕ(z)|2)α
‖ f ‖Zα .

So, if u ∈ Bβ and (1) holds, then D1
ϕ,u : Zα

→ B
β is bounded. Conversely, let D1

ϕ,u : Zα
→ B

β be a bounded
operator. For each nonzero a ∈ D consider the test function 1a(z) = fa(z) − ha(z) for all z ∈ D, where

fa(z) =
1

a2

(
(1 − |a|2)2

(1 − az)α
−

1 − |a|2

(1 − az)α−1

)
,

ha(z) =
1
a

∫ z

0

1 − |a|2

(1 − aw)α
dw.

It is known that for ϕ(a) , 0, 1ϕ(a) ∈ Z
α, 1′ϕ(a)(ϕ(a)) = 0, 1′′ϕ(a)(ϕ(a)) = α

(1−|ϕ(a)|2)α and sup 1
2<|ϕ(a)|<1 ‖1ϕ(a)‖Zα < ∞.

Hence,

‖D1
ϕ,u1ϕ(a)‖Bβ ≥(1 − |a|2)β|u(a)ϕ′(a)1′′ϕ(a)(ϕ(a))| − (1 − |a|2)β|u′(a)1′ϕ(a)(ϕ(a))|

=
α(1 − |a|2)β

(1 − |ϕ(a)|2)α
|u(a)ϕ′(a)|,

and therefore

sup
1/2<|ϕ(a)|<1

α(1 − |a|2)β

(1 − |ϕ(a)|2)α
|u(a)ϕ′(a)| ≤ sup

1/2<|ϕ(a)|<1
‖D1

ϕ,u1ϕ(a)‖Bβ < ∞.

On the other hand, since uϕ′ ∈ H∞νβ , we have

sup
|ϕ(a)|≤1/2

α(1 − |a|2)β

(1 − |ϕ(a)|2)α
|u(a)ϕ′(a)| < ∞,

which completes the proof.

Theorem 2.3. If 0 < β < ∞, then D1
ϕ,u : Z→ Bβ is bounded if and only if

(i) supz∈D(1 − |z|2)β|u′(z)| log 2
1−|ϕ(z)|2 < ∞,

(ii) supz∈D
(1−|z|2)β

1−|ϕ(z)|2 |u(z)ϕ′(z)| < ∞.

Proof. If conditions (i) and (ii) hold, then Lemma 2.1(ii) implies that for every f ∈ Zα

|(D1
ϕ,u f )′(z)| =|u′(z) f ′(ϕ(z)) + u(z)ϕ′(z) f ′′(ϕ(z))|

≤|u′(z) f ′(ϕ(z))| + |u(z)ϕ′(z) f ′′(ϕ(z))|

�|u′(z)|‖ f ‖Z log
2

1 − |ϕ(z)|2
+
|u(z)ϕ′(z)|
1 − |ϕ(z)|2

‖ f ‖Z.
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So, D1
ϕ,u : Z → Bβ is a bounded operator. Conversely, let D1

ϕ,u : Z → Bβ be a bounded operator. A similar
argument as in the proof of Theorem 2.2 shows that (ii) holds. In order to prove (i), for each a ∈ D satisfying
ϕ(a) , 0, consider the test function

kϕ(a)(z) =
h(ϕ(a)z)

ϕ(a)

(
log

2
1 − |ϕ(a)|2

)−1

,

where
h(z) = (z − 1)

(
(1 + log

2
1 − z

)2 + 1
)
,

for all z ∈ D. It is known that kϕ(a) ∈ Z, k′ϕ(a)(ϕ(a)) = log 2
1−|ϕ(a)|2 , k′′ϕ(a)(ϕ(a)) = 2

1−|ϕ(a)|2 and sup1/2<|ϕ(a)|<1 ‖kϕ(a)‖Z <

∞. We also have

‖D1
ϕ,ukϕ(a)‖Bβ ≥(1 − |a|2)β|u′(a)k′ϕ(a)(ϕ(a))| − (1 − |a|2)β|u(a)ϕ′(a)k′′ϕ(a)(ϕ(a))|

=(1 − |a|2)β|u′(a)| log
2

1 − |ϕ(a)|2
−

2(1 − |a|2)β

1 − |ϕ(a)|2
|u(a)ϕ′(a)|.

Therefore, boundedness of the operator D1
ϕ,u : Z→ Bβ and (ii) imply that

sup
1/2<|ϕ(a)|<1

(1 − |a|2)β|u′(a)| log
2

1 − |ϕ(a)|2

≤ sup
1/2<|ϕ(a)|<1

‖D1
ϕ,ukϕ(a)‖Bβ + sup

1/2<|ϕ(a)|<1

2(1 − |a|2)β

1 − |ϕ(a)|2
|u(a)ϕ′(a)|

<∞.

Also, since u ∈ Bβ, we have

sup
|ϕ(a)|≤1/2

(1 − |a|2)β|u′(a)| log
2

1 − |ϕ(a)|2
< ∞,

which completes the proof.

Theorem 2.4. Let 1 < α < ∞ and 0 < β < ∞. Then, D1
ϕ,u : Zα

→ B
β is bounded if and only if

(i) supz∈D
(1−|z|2)β

(1−|ϕ(z)|2)α−1 |u′(z)| < ∞,

(ii) supz∈D
(1−|z|2)β

(1−|ϕ(z)|2)α |u(z)ϕ′(z)| < ∞.

Proof. Let D1
ϕ,u : Zα

→ B
β be a bounded operator. Then, one can prove (ii) as in the proof of Theorem 2.2.

Also, (i) can be proved similar to Theorem 2.3(i) and using the test function fϕ(a) defined in Theorem 2.2.
Note that f ′ϕ(a)(ϕ(a)) = 1

ϕ(a)
(1 − |ϕ(a)|2)1−α, f ′′ϕ(a)(ϕ(a)) = 2α

(1−|ϕ(a)|2)α and also sup 1
2<|ϕ(a)|<1 ‖ fϕ(a)‖Zα < ∞.

Finally, a similar argument as in the proof of Theorem 2.3 shows that if (i) and (ii) hold, then D1
ϕ,u : Zα

→

B
β is a bounded operator.

As mentioned in the proof of [23, Proposition 8], for each k ≥ 2, 0 < α < ∞ and f ∈ Bα we have

| f (k)(z)| ≤
‖ f ‖Bα

(1 − |z|2)α+k−1
, z ∈ D. (2)

Applying (2), for each k ≥ 2, 0 < α < ∞ and f ∈ Zα we get

| f (k+1)(z)| ≤
‖ f ‖Zα

(1 − |z|2)α+k−1
, z ∈ D. (3)
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In the next theorem, we give necessary and sufficient conditions for the boundedness of Dk
ϕ,u : Zα

→ B
β

for each k ≥ 2. Note that using the estimate of | f (k)(z)|, given in (3), leads to the proof of next theorem in all
cases of 0 < α, β < ∞.

Theorem 2.5. Let 0 < α, β < ∞ and k ≥ 2. Then, Dk
ϕ,u : Zα

→ B
β is bounded if and only if

(i) supz∈D
(1−|z|2)β

(1−|ϕ(z)|2)α+k−2 |u′(z)| < ∞,

(ii) supz∈D
(1−|z|2)β

(1−|ϕ(z)|2)α+k−1 |u(z)ϕ′(z)| < ∞.

Proof. Suppose that the operator Dk
ϕ,u : Zα

→ B
β is bounded. For every nonzero a ∈ D define the test

function ta ∈ Z
α by

ta(z) =
1

ak+1

(
(α − 1)(1 − |a|2)2

(1 − az)α
−

(α + k − 1)(1 − |a|2)
(1 − az)α−1

)
.

Then, we have sup 1
2<|a|<1 ‖ta‖Zα < ∞, t(k)

a (a) = 0 and

t(k+1)
a (a) =

(α − 1)α(α + 1) · · · (α + k − 1)
(1 − |a|2)α+k−1

.

Therefore,

‖Dk
ϕ,utϕ(a)‖Bβ ≥(1 − |a|2)β|u(a)ϕ′(a)t(k+1)

ϕ(a) (ϕ(a))| − (1 − |a|2)β|u′(a)t(k)
ϕ(a)(ϕ(a))|

=
|α − 1|α(α + 1) · · · (α + k − 1)(1 − |a|2)β

(1 − |ϕ(a)|2)α+k−1
|u(a)ϕ′(a)|,

and hence

sup
1/2<|ϕ(a)|<1

(1 − |a|2)β

(1 − |ϕ(a)|2)α+k−1
|u(a)ϕ′(a)| ≤ sup

1/2<|ϕ(a)|<1
‖Dk

ϕ,utϕ(a)‖Bβ < ∞.

On the other hand, since uϕ′ ∈ H∞νβ , we have

sup
|ϕ(a)|≤1/2

(1 − |a|2)β

(1 − |ϕ(a)|2)α+k−1
|u(a)ϕ′(a)| < ∞,

which completes the proof of (ii). One can also prove (i) by a similar argument as in the proof of (ii) and
using the test function sa ∈ Z

α, for nonzero a ∈ D, given by

sa(z) =
1

ak

(
(α − 1)(1 − |a|2)2

(1 − az)α
−

(α + k)(1 − |a|2)
(1 − az)α−1

)
.

Note that sup 1
2<|a|<1 ‖sa‖Zα < ∞, s(k+1)

a (a) = 0 and

s(k)
a (a) =

−(α − 1)α(α + 1) · · · (α + k − 2)
(1 − |a|2)α+k−2

.

Now suppose that (i) and (ii) hold. Then, for every f ∈ Zα, using (3), we have

|(Dk
ϕ,u f )′(z)| ≤|u′(z) f (k)(ϕ(z))| + |u(z)ϕ′(z) f (k+1)(ϕ(z))|

≤
|u′(z)|

(1 − |ϕ(z)|2)α+k−2
‖ f ‖Zα +

|u(z)ϕ′(z)|
(1 − |ϕ(z)|2)α+k−1

‖ f ‖Zα .

Multiplying both sides by (1− |z|2)β and taking supremum over z ∈ D, implies boundedness of Dk
ϕ,u : Zα

→

B
β.
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3. Essential Norms

In this section we give estimates for the essential norm of weighted differentiation composition operators
Dk
ϕ,u : Zα

→ B
β in different cases of k ∈N and 0 < α, β < ∞.

For each 0 < α < ∞, let Dα : Zα
→ B

α and Sα : Bα → H∞να denote derivative operators. Then, Dα and
Sα are linear isometries on Z̃α = { f ∈ Zα : f (0) = f ′(0) = 0} and B̃α = { f ∈ Bα : f (0) = 0}, respectively.
Moreover,

SβDk
ϕ,uD−1

α S−1
α = Dk

ϕ,u′D
−1
α S−1

α + Dk
ϕ,uϕ′S

−1
α ,

which implies that

‖Dk
ϕ,u‖e,Z̃α→Bβ

� ‖Dk
ϕ,u′‖e,Z̃α→H∞νβ

+ ‖Dk
ϕ,uϕ′‖e,B̃α→H∞νβ

. (4)

For any bounded operator T : Bα → H∞νβ , the operator f 7→ T( f (0)1) is a compact operator. Similarly, for
any bounded operator T : Zα

→ B
β or T : Zα

→ H∞νβ , the operator f 7→ T( f (0)1 + f ′(0)z) is compact.
Applying these operators, one can see that ‖Dk

ϕ,u‖e,B̃α→H∞νβ
= ‖Dk

ϕ,u‖e,Bα→H∞νβ
, ‖Dk

ϕ,u‖e,Z̃α→Bβ
= ‖Dk

ϕ,u‖e,Zα→Bβ

and ‖Dk
ϕ,u‖e,Z̃α→H∞νβ

= ‖Dk
ϕ,u‖e,Zα→H∞νβ

(see [17] for a similar approach). Therefore, (4) implies that

‖Dk
ϕ,u‖e,Zα→Bβ � ‖D

k
ϕ,u′‖e,Zα→H∞νβ

+ ‖Dk
ϕ,uϕ′‖e,Bα→H∞νβ

. (5)

Before stating main results, we prove the following lemma which is an analogue of [22, Lemma 4.2].

Lemma 3.1. Let 0 < α < 1 and ( fn) be a bounded sequence inZα which converges to zero on compact subsets ofD.
Then, limn→∞ supz∈D | f

′
n(z)| = 0.

Proof. Suppose that ε > 0 and choose 0 < t < 1 such that (1 − t)1−α < ε. Then, for each z ∈ Dwith t < |z| < 1
we have

| f ′n(z) − f ′n(
t
|z|

z)| =|
∫ 1

t/|z|
z f ′′n (zt)dt| ≤ c

∫ 1

t/|z|

|z|
(1 − |tz|2)α

dt

≤c
∫ 1

t/|z|

1
(1 − t)α

dt ≤
c

1 − α
(1 − t)1−α <

c
1 − α

ε,

where c = supn∈N ‖ fn‖Zα . Therefore,

sup
t<|z|<1

| f ′n(z)| ≤
c

1 − α
ε + sup

|z|=t
| f ′n(z)|.

Since ( f ′n) also converges to zero uniformly on compact subsets ofD, we conclude

lim
n→∞

sup
z∈D
| f ′n(z)| ≤ lim

n→∞
sup

t<|z|<1
| f ′n(z)| + lim

n→∞
sup
|z|≤t
| f ′n(z)|

≤
c

1 − α
ε + lim

n→∞
sup
|z|=t
| f ′n(z)| + lim

n→∞
sup
|z|≤t
| f ′n(z)|

=
c

1 − α
ε,

which completes the proof.

Regarding (5), in order to give upper estimates for the essential norm of D1
ϕ,u : Zα

→ B
β, in the next theorem

we give essential norm of D1
ϕ,u : Zα

→ H∞ν .

Theorem 3.2. Let ν be a radial and non-increasing weight tending to zero at the boundary of D, 0 < α < ∞ and
D1
ϕ,u : Zα

→ H∞ν be a bounded operator.
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(i) If 0 < α < 1, then D1
ϕ,u is a compact operator.

(ii)

‖D1
ϕ,u‖e,Z→H∞ν � lim sup

|ϕ(z)|→1
ν(z)|u(z)| log

2
1 − |ϕ(z)|2

.

(iii) If 1 < α < ∞, then

‖D1
ϕ,u‖e,Zα→H∞ν � lim sup

|ϕ(z)|→1

ν(z)|u(z)|
(1 − |ϕ(z)|2)α−1 .

Proof. Let 0 < α < 1 and ( fn) be a bounded sequence in Zα. Then, ( fn) has a subsequence, say ( fn), which
converges uniformly on compact subsets ofD. Note that, for each n, k ∈N, we have

‖D1
ϕ,u( fn − fk)‖ν = sup

z∈D
ν(z)|u(z)( fn − fk)′(ϕ(z))|

≤‖u‖ν sup
z∈D
|( f ′n − f ′k )(ϕ(z))|.

Therefore, by applying Lemma 3.1, one can see that (D1
ϕ,u fn) is a Cauchy and hence convergent sequence in

H∞ν . This implies compactness of the operator D1
ϕ,u : Zα

→ H∞ν .
Now assume that 1 < α < ∞. Fix δ ∈ (0, 1) and let (rm) be an increasing sequence in (0, 1) converging to

1. Then, D1
rmϕ,u : Zα

→ H∞ν is a compact operator for each m ∈ N. Indeed, if ( fn) is a bounded sequence in
Z
α, then it has a subsequence, say ( fn), which converges uniformly on compact subsets ofD. On the other

hand, for each n, k ∈N, we have

‖D1
rmϕ,u( fn − fk)‖ν = sup

z∈D
ν(z)|u(z)( fn − fk)′(rmϕ(z))|

≤‖u‖ν sup
|z|≤rm

|( fn − fk)′(z)|.

This shows that (D1
rmϕ,u fn) is a Cauchy and hence convergent sequence in H∞ν implying that the operator

D1
rmϕ,u is compact. Therefore,

‖D1
ϕ,u‖e,Zα→H∞ν ≤‖D

1
ϕ,u −D1

rmϕ,u‖Zα→H∞ν

= sup
‖ f ‖Zα≤1

sup
z∈D

ν(z)|u(z)|| f ′(ϕ(z)) − f ′(rmϕ(z))|

≤ sup
‖ f ‖Zα≤1

sup
|ϕ(z)|<δ

ν(z)|u(z)|| f ′(ϕ(z)) − f ′(rmϕ(z))| + sup
‖ f ‖Zα≤1

sup
|ϕ(z)|≥δ

ν(z)|u(z)|| f ′(ϕ(z)) − f ′(rmϕ(z))|

=I + J.

About the term I we have

| f ′(ϕ(z)) − f ′(rmϕ(z))| ≤
∫ 1

rm

|ϕ(z)|| f ′′(tϕ(z))|dt

≤‖ f ‖Zα

∫ 1

rm

|ϕ(z)|
(1 − t2|ϕ(z)|2)α

dt

≤
|ϕ(z)|

(1 − |ϕ(z)|2)α
‖ f ‖Zα (1 − rm)

≤
δ

(1 − δ2)α
‖ f ‖Zα (1 − rm),



A. H. Sanatpour, M. Hassanlou / Filomat 31:9 (2017), 2877–2889 2885

which tends to zero as m→∞. Also, about the term J, we have

| f ′(ϕ(z)) − f ′(rmϕ(z))| ≤
∫ 1

rm

|ϕ(z)|| f ′′(tϕ(z))|dt

≤‖ f ‖Zα

∫ 1

rm

|ϕ(z)|
(1 − t2|ϕ(z)|2)α

dt

≤

∫ 1

rm

|ϕ(z)|
(1 − t|ϕ(z)|)α

dt

=
1

α − 1

(
1

(1 − |ϕ(z)|)α−1 −
1

(1 − rm|ϕ(z)|)α−1

)
≤

1
α − 1

1
(1 − |ϕ(z)|)α−1 .

Letting δ→ 1 we get

J ≤ lim sup
|ϕ(z)|→1

1
α − 1

ν(z)|u(z)|
(1 − |ϕ(z)|)α−1 ,

implying that

‖D1
ϕ,u‖e,Zα→H∞ν ≤ lim sup

|ϕ(z)|→1

1
α − 1

ν(z)|u(z)|
(1 − |ϕ(z)|2)α−1 .

Now we prove the lower estimate. Let (zn) be a sequence in D with 1/2 < |ϕ(zn)| < 1 and |ϕ(zn)| → 1.
Consider the sequence of test functions (1n) defined by

1n(z) =
(1 − |ϕ(zn)|2)2

αϕ(zn)(1 − ϕ(zn)z)α
.

Then (1n) is a bounded sequence in Zα
0 which converges to zero uniformly on compact subsets of D.

This implies weak convergence of (1n) to zero in Zα. Therefore, by letting c = supn∈N ‖1n‖Zα and using
1′n(ϕ(zn)) = 1

(1−|ϕ(zn)|2)α−1 , we have

c‖D1
ϕ,u‖e,Zα→H∞ν ≥ lim sup

n→∞
‖D1

ϕ,u1n‖H∞ν

≥ lim sup
n→∞

ν(zn)|u(zn)||1′n(ϕ(zn))|

= lim sup
n→∞

ν(zn)|u(zn)|
(1 − |ϕ(zn)|2)α−1 .

This completes the proof of (iii).
Finally, we prove (ii). The upper estimate in this case can be obtained as in the previous case. For the

lower estimate, let (zn) be a sequence inDwith 1/2 < |ϕ(zn)| < 1 and |ϕ(zn)| → 1. Consider sequence of test
functions kn = kϕ(zn) defined in Theorem 2.3. Then, (kn) is a bounded sequence inZ0 which converges to zero
uniformly on compact subsets ofD and k′n(ϕ(zn)) = log 2

1−|ϕ(zn)|2 . Hence, like (iii), by letting c = supn∈N ‖kn‖Z,
we get

c‖D1
ϕ,u‖e,Z→H∞ν ≥ lim sup

n→∞
‖D1

ϕ,ukn‖H∞ν

≥ lim sup
n→∞

ν(zn)|u(zn)||k′n(ϕ(zn))|

= lim sup
n→∞

ν(zn)|u(zn)| log
2

1 − |ϕ(zn)|2
,

which completes the proof.
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In the rest of this section, in order to simplify the notation in the statement of our results, we use the
following simplifications (see, for example, [12]):

A(u, ϕ, α, β) = lim sup
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|u(z)|,

B(u, ϕ, β) = lim sup
|ϕ(z)|→1

(1 − |z|2)β|u(z)| log
2

1 − |ϕ(z)|2
.

Theorem 3.3. Let 0 < α, β < ∞ and D1
ϕ,u : Zα

→ B
β be a bounded operator.

(i) If 0 < α < 1, then
‖D1

ϕ,u‖e,Zα→Bβ = 0.

(ii) If α = 1, then

‖D1
ϕ,u‖e,Z→Bβ � max

{
A(uϕ′, ϕ, 1, β),B(u′, ϕ, β)

}
.

Proof. Since the operator D1
ϕ,u : Zα

→ B
β is bounded, u ∈ Bβ and therefore by Lemma 2.1(i) the operator

D1
ϕ,u′ : Zα

→ H∞νβ is bounded. Theorem 3.2(i) implies that ‖D1
ϕ,u′‖e,Zα→H∞νβ

= 0. On the other hand, using

a similar argument as in the proof of Theorem 3.2(i) one can see that the operator D1
ϕ,uϕ′ : Bα → H∞νβ is

compact and hence ‖D1
ϕ,uϕ′‖e,Bα→H∞νβ

= 0. Therefore, by applying (5) we get ‖D1
ϕ,u‖e,Zα→Bβ = 0.

In order to prove (ii), let (zn) be a sequence in D with 1/2 < |ϕ(zn)| < 1 and |ϕ(zn)| → 1. Consider the
sequence 1n = 1ϕ(zn) defined in Theorem 2.2. Then, (1n) is a bounded sequence inZ0 which converges to zero
uniformly on compact subsets ofD, 1′n(ϕ(zn)) = 0 and 1′′n (ϕ(zn)) = 1

1−|ϕ(zn)|2 . So, by letting c1 = supn∈N ‖1n‖Z

we have

c1‖D1
ϕ,u‖e,Z→Bβ ≥ lim sup

n→∞
‖D1

ϕ,u1n‖Bβ

≥ lim sup
n→∞

(1 − |zn|
2)β|u(zn)ϕ′(zn)||1′′n (ϕ(zn))| − lim sup

n→∞
(1 − |zn|

2)β|u′(zn)||1′n(ϕ(zn))|

= lim sup
n→∞

|u(zn)ϕ′(zn)|
(1 − |zn|

2)β

1 − |ϕ(zn)|2
. (6)

Now, consider the sequence kn = kϕ(zn) defined in Theorem 2.3. Then, (kn) is a bounded sequence in Z0

which converges to zero uniformly on compact subsets ofD, k′n(ϕ(zn)) = log 2
1−|ϕ(zn)|2 and k′′n (ϕ(zn)) =

2ϕ(zn)
1−|ϕ(zn)|2 .

Let c2 = supn∈N ‖kn‖Z, then

c2‖D1
ϕ,u‖e,Z→Bβ ≥ lim sup

n→∞
‖D1

ϕ,ukn‖Bβ

≥ lim sup
n→∞

(1 − |zn|
2)β|u′(zn)||k′n(ϕ(zn))| − lim sup

n→∞
(1 − |zn|

2)β|u(zn)ϕ′(zn)||k′′n (ϕ(zn))|

= lim sup
n→∞

(1 − |zn|
2)β|u′(zn)| log

2
1 − |ϕ(zn)|2

− lim sup
n→∞

(1 − |zn|
2)β|u(zn)ϕ′(zn)|

2|ϕ(zn)|
1 − |ϕ(zn)|2

.

This along with (6) implies that

lim sup
n→∞

(1 − |zn|
2)β|u′(zn)| log

2
1 − |ϕ(zn)|2

≤ (c2 + 2c1)‖D1
ϕ,u‖e,Z→Bβ ,

and completes the proof of lower estimate.
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To prove the upper estimate, fix δ ∈ (0, 1) and let (rm) be an increasing sequence in (0, 1) converging to
1. Then, D1

rmϕ,u : B → H∞νβ is a compact operator, for each m ∈N, and therefore

‖D1
ϕ,u‖e,B→H∞νβ

≤‖D1
ϕ,u −D1

rmϕ,u‖B→H∞νβ

= sup
‖ f ‖B≤1

sup
z∈D

(1 − |z|2)β|u(z)|| f ′(ϕ(z)) − f ′(rmϕ(z))|

≤ sup
‖ f ‖B≤1

sup
|ϕ(z)|<δ

(1 − |z|2)β|u(z)|| f ′(ϕ(z)) − f ′(rmϕ(z))|

+ sup
‖ f ‖B≤1

sup
|ϕ(z)|≥δ

(1 − |z|2)β|u(z)|| f ′(ϕ(z)) − f ′(rmϕ(z))|

=I + J.

Using (2) and applying a similar argument as in the proof of Theorem 3.2(iii) implies that

‖D1
ϕ,u‖e,B→H∞νβ

≤ lim sup
|ϕ(z)|→1

|u(z)|
(1 − |z|2)β

1 − |ϕ(z)|2
.

Consequently, Theorem 3.2(ii) along with (5) imply the desired upper estimate.

Theorem 3.4. Let 1 < α < ∞, 0 < β < ∞ and D1
ϕ,u : Zα

→ B
β be a bounded operator. Then,

‖D1
ϕ,u‖e,Zα→Bβ � max

{
A(uϕ′, ϕ, α, β),A(u′, ϕ, α − 1, β)

}
.

Proof. First we prove the lower estimate. Let (zn) be a sequence inDwith 1/2 < |ϕ(zn)| < 1 and |ϕ(zn)| → 1.
Then, by considering the sequence (1n) defined in Theorem 2.2, as in the proof of (6), we get

c1‖D1
ϕ,u‖e,Zα→Bβ ≥ lim sup

n→∞

α(1 − |zn|
2)β

(1 − |ϕ(zn)|2)α
|u(zn)ϕ′(zn)|, (7)

where c1 = supn∈N ‖1n‖Zα .
Next consider the sequence fn = fϕ(zn) defined in Theorem 2.2. Then ( fn) is a bounded sequence in Zα

0
which converges to zero uniformly on compact subsets of D, f ′n(ϕ(zn)) = 1

ϕ(zn)(1−|ϕ(zn)|2)α−1
and f ′′n (ϕ(zn)) =

2α
(1−|ϕ(zn)|2)α . So, by letting c2 = supn∈N ‖ fn‖Zα , we have

c2‖D1
ϕ,u‖e,Zα→Bβ ≥ lim sup

n→∞
‖D1

ϕ,u fn‖Bβ

≥ lim sup
n→∞

(1 − |zn|
2)β|u′(zn)|| f ′n(ϕ(zn))| − lim sup

n→∞
(1 − |zn|

2)β|u(zn)ϕ′(zn)|| f ′′n (ϕ(zn))|

= lim sup
n→∞

(1 − |zn|
2)β

|ϕ(zn)|(1 − |ϕ(zn)|2)α−1 |u
′(zn)| − 2α lim sup

n→∞

(1 − |zn|
2)β

(1 − |ϕ(zn)|2)α
|u(zn)ϕ′(zn)|.

Consequently, applying (7), we have

lim sup
n→∞

|u′(zn)|
(1 − |zn|

2)β

(1 − |ϕ(zn)|2)α−1 ≤ lim sup
n→∞

|u′(zn)|
(1 − |zn|

2)β

|ϕ(zn)|(1 − |ϕ(zn)|2)α−1

≤(c2 + 2c1)‖D1
ϕ,u‖e,Zα→Bβ .

In order to prove the upper estimate, fix δ ∈ (0, 1) and let (rm) be an increasing sequence in (0, 1) converging
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to 1. Then, D1
rmϕ,u : Bα → H∞νβ is a compact operator for each m ∈N, and therefore

‖D1
ϕ,u‖e,Bα→H∞νβ

≤‖D1
ϕ,u −D1

rmϕ,u‖Bα→H∞νβ

= sup
‖ f ‖Bα≤1

sup
z∈D

(1 − |z|2)β|u(z)|| f ′(ϕ(z)) − f ′(rmϕ(z))|

≤ sup
‖ f ‖Bα≤1

sup
|ϕ(z)|<δ

(1 − |z|2)β|u(z)|| f ′(ϕ(z)) − f ′(rmϕ(z))|

+ sup
‖ f ‖Bα≤1

sup
|ϕ(z)|≥δ

(1 − |z|2)β|u(z)|| f ′(ϕ(z)) − f ′(rmϕ(z))|

=I + J.

By a similar argument as in the proof of Theorem 3.2(iii) and using (2), one can see that

‖D1
ϕ,u‖e,Bα→H∞νβ

≤ lim sup
|ϕ(z)|→1

1
α
|u(z)|

(1 − |z|2)β

(1 − |ϕ(z)|)α
.

Consequently, applying Theorem 3.2(iii) and (5), we get the desired upper estimate.

Theorem 3.5. Let 0 < α, β < ∞, k ≥ 2 and Dk
ϕ,u : Zα

→ B
β be a bounded operator. Then,

‖Dk
ϕ,u‖e,Zα→Bβ � max

{
A(uϕ′, ϕ, α + k − 1, β),A(u′, ϕ, α + k − 2, β)

}
.

Proof. Using Theorem 3.2(iii) and (3), the proof of upper estimate is similar to the proof of upper estimate
in Theorem 3.4.

To prove the lower estimate let (zn) be a sequence inD with 1/2 < |ϕ(zn)| < 1 and |ϕ(zn)| → 1. Consider
the sequence tn = tϕ(zn) given in Theorem 2.5. Indeed, (tn) is a bounded sequence inZα

0 which converges to
zero uniformly on compact subsets ofD. If c1 = supn∈N ‖tn‖Zα , then

c1‖Dk
ϕ,u‖e,Zα→Bβ ≥ lim sup

n→∞
‖Dk

ϕ,utn‖Bβ

≥ lim sup
n→∞

(1 − |zn|
2)β|u(zn)ϕ′(zn)||t(k+1)

n (ϕ(zn))| − lim sup
n→∞

(1 − |zn|
2)β|u′(zn)||t(k)

n (ϕ(zn))|

� lim sup
n→∞

(1 − |zn|
2)β

(1 − |ϕ(zn)|2)α+k−1
|u(zn)ϕ′(zn)|. (8)

Now, consider the sequence sn = sϕ(zn) given in Theorem 2.5. Then, (sn) is a bounded sequence inZα
0 which

converges to zero uniformly on compact subsets ofD. Therefore, by letting c2 = supn∈N ‖sn‖Zα we have

c2‖Dk
ϕ,u‖e,Zα→Bβ ≥ lim sup

n→∞
‖Dk

ϕ,usn‖Bβ

≥ lim sup
n→∞

(1 − |zn|
2)β|u′(zn)||s(k)

n (ϕ(zn))| − lim sup
n→∞

(1 − |zn|
2)β|u(zn)ϕ′(zn)||s(k+1)

n (ϕ(zn))|

� lim sup
n→∞

(1 − |zn|
2)β

(1 − |ϕ(zn)|2)α+k−2
|u′(zn)|. (9)

Applying (8) and (9) we get the desired result for the lower estimate.

Remark 3.6. Montes-Rodrı́guez in [13, Theorem 2.1], and also Hyvärinen et al. in [3, Theorem 2.4], proved that if
ν and ω are radial and non-increasing weights tending to zero at the boundary ofD, then

(i) the weighted composition operator uCϕ maps H∞ν into H∞ω if and only if

sup
n≥0

‖uϕn
‖ω

‖zn‖ν
� sup

z∈D

ω(z)
ν̃(ϕ(z))

|u(z)| < ∞,

with norm comparable to the above supremum.
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(ii) ‖uCϕ‖e,H∞ν →H∞ω = lim supn→∞
‖uϕn

‖ω

‖zn‖ν
= lim sup

|ϕ(z)|→1
ω(z)
ν̃(ϕ(z)) |u(z)|.

By applying these facts and using [4, Lemma 2.1], our results in this paper containing terms of the type ω(z)
ν̃(ϕ(z)) |u(z)|

can be restated in terms of u and ϕn. See, for example, [1, 16] for these types of results.

Remark 3.7. Clearly, for Banach spaces X and Y, a bounded operator T : X → Y is compact if and only if
‖T‖e,X→Y = 0. Therefore, essential norm estimates of Dk

ϕ,u : Zα
→ B

β, given in Section 3, lead to necessary and
sufficient conditions for the compactness of such operators.

Acknowledgments. The authors are grateful to the anonymous referee whose valuable comments and
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[19] S. Stević, Weighted differentiation composition operators from the mixed-norm space to the n-th weighted-type space on the unit

disk, Abstr. Appl. Anal. (2010) Art. ID 246287.
[20] E. Wolf, Composition followed by differentiation between weighted Bergman spaces and weighted Banach spaces of holomorphic

functions, Bull. Soc. Roy. Sci. Liège 83 (2014) 49–55.
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