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Abstract. The inverse degree of a graph G with no isolated vertices is defined as the sum of reciprocal
of vertex degrees of the graph G. In this paper, we obtain several lower and upper bounds on inverse
degree ID(G). Moreover, using computational results, we prove our upper bound is strong and has the
smallest deviation from the inverse degree ID(G). Next, we compare inverse degree ID(G) with topological
indices (Randić index R(G), geometric-arithmetic index GA(G)) for chemical trees and also we determine
the n−vertex chemical trees with the minimum, the second and the third minimum, as well as the second
and the third maximum of ID − R. In addition, we correct the second and third minimum Randić index
chemical trees in [16].

1. Introduction

Through this paper, we consider simple connected graphs. Let G = (V,E) be a graph with |V| = n vertices
and |E| = m edges. The degree of a vertex vi, 1 ≤ i ≤ n, of G is the number of edges incident with vi, and
is written d(vi) such that d(v1) ≥ d(v2) ≥ · · · ≥ d(vn). In particular, ∆, ∆2 and δ denote the maximum, second
maximum and the minimum vertex degree of G, respectively. A vertex of degree 0 is an isolated vertex and a
vertex of degree 1 is a pendant vertex or end-vertex.

Molecular descriptors play a significant role in mathematical chemistry, especially in the QSPR/QSAR
investigations. Among them, a special place is reserved for so-called topological indices [10]. Nowadays,
there exists a legion of topological indices with some applications in chemistry [20]. Topological indices
and graph invariants, based on the degrees, are used for characterizing molecular graphs. Also, topological
indices of molecular graphs are one of the oldest and most widely used descriptors in quantitative structure-
activity relationships (QSAR). A topological index is a numerical value associated with chemical constitution
purporting for correlation of chemical structure with various physical properties, chemical reactivity or
biological activity.

Topological indices based on end-vertex degrees of edges have been used over 40 years. Among them,
several indices are recognized to be useful tools in chemical researches. Probably, the best know such
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descriptor is the Randić connectivity index R [21], which is the most used molecular descriptor in QSPR
and QSAR, defined by

R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

.

In the same time, Gutman and Trinajstić [16] explored the study of total π-electron energy on the molecular
structure and introduced two vertex degree-based graph variants M1(G) and M2(G). The first and second
Zagreb indices are respectively defined by

M1(G) =
∑

v∈V(G)

d(v)2 and M2(G) =
∑

uv∈E(G)

d(u)d(v).

The Zagreb indices are used by various researchers in their QSPR and QSAR studies, attracting more
attention from chemists and mathematicians. For the recent survey see [2] and the references therein.

Motivated by the definition of Randić connectivity index based on the end-vertex degrees of edges in a
graph, a new class of topological descriptors, based on some properties of vertices of graph are presented.
Vukičević and Furtula [25] introduced the geometric-arithmetic index, which is defined by

GA(G) =
∑

uv∈E(G)

2
√

d(u)d(v)
d(u) + d(v)

.

Various results on the GA index was reported in the survey [7] and for the recent results we refer [19, 22, 24]
and the references cited there in.

The inverse degree appeared first through conjectures of the computer program Graffiti [14]. The inverse
degree of a graph G with no isolated vertices is defined by

ID(G) =
∑

v∈V(G)

1
d(v)

.

It has been studied by many authors in different aspects (see [3, 4, 12]). For recent results and discussions
on extremal trees and bounds refer [1, 8, 27].

The paper is organized as follows. In Section 2, we present several lower and upper bounds on inverse
degree ID(G) of graph G and which improves the existing bounds of ID(G). In Section 3, we analyze and
compare our bounds with existing bounds and we prove that our bounds have the smallest deviation from
ID(G). In Section 4, we compare between inverse degree ID(G) with the other topological indices of graphs.

2. Lower Bounds on Inverse degree

In this section, we give some new bounds on inverse degree ID(G) of graph G in terms of n,m, maximum
degree ∆, minimal non-pendant degree δ1, and minimum degree δ. For this we need the following definition.
A biregular graph is a graph whose vertices have exactly two degrees ∆ and δ. Let Γ be the class of graphs
such that d(vi) = δ, i = 2, 3, . . . ,n. The class Γ is the special case of the biregular graphs. Let Γ2 and Γ3 be the
class of graphs, such that d(v2) = · · · = d(vn−1) = δ, d(vn) = δ with d(v1) > d(vi) for i = 2, 3, . . . ,n and d(vi) = δ
with d(v1) ≥ d(v2) > d(vi) for i = 3, 4, . . . ,n, respectively.

As usual Pn, K1,n−1, Cn denotes the path, star, and cycle graphs on n vertices respectively. A vertex of a
graph is said to be pendant if its neighborhood contains exactly one vertex. An edge of a graph is said to
be pendant if one of its vertices is a pendant vertex.

Lemma 2.1. (see [11]) Let ai and bi be two sequence of real numbers with ai , 0 (i = 1, 2, . . . ,n) and such that
mai ≤ bi ≤Mai. Then

n∑
i=1

b2
i + mM

n∑
i=1

a2
i ≤ (M + m)

n∑
i=1

aibi.

Equality holds if and only if either bi = mai or bi = Mai for every i = 1, 2, . . . ,n.
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Lemma 2.2. (see [8]) Let G be a graph of order n > 2 having m edges and no isolated vertices. Then

ID(G) ≥
∆ + δ
∆δ

+

√
4(n − 2)3∆δ

(∆ + δ)2 [2m(∆ + δ) − n∆δ − ∆2 − δ2]
. (1)

Moreover, the equality holds if and only if G is regular.

Lemma 2.3. (see [8]) Let G be a graph of order n > 2 having m edges and no isolated vertices. Then

∆ + δ
∆δ

+
(n − 2)2

2m − ∆ − δ
≤ ID(G) ≤

∆ + δ
∆δ

+
(n − 2)

[
(n − 3)

(
∆2 + δ2

)
+ 2∆δ

]
2∆δ(2m − ∆ − δ)

. (2)

Moreover, the left equality holds in (2) if and only if G ∈ Γ2 and the right equality holds in (2) for regular graphs.

Now, we give some new improvements in the bounds for the inverse degree of graphs.

Theorem 2.4. Let G be a simple graph with n vertices, p pendent vertices, m edges, maximum degree ∆ and minimal
non-pendent vertex degree δ1. Then

p
(
δ2

1 + 1
)

∆2 +
2(m − p)δ2

1

∆4 ≤ ID(G) ≤
p
(
∆2 + 1

)
δ2

1

+
2(m − p)∆2

δ4
1

, (3)

both the left and right equality holds in (3) if and only if G is regular graph or biregular graph with δ = 1.

Proof. For all uv ∈ E(G), the edge version of the inverse degree of a graph G is

ID(G) =
∑

uv∈E(G)

d(u)2 + d(v)2

d(u)2d(v)2 .

Note that, if there are p pendent edges in the graph G. Then we have

ID(G) =
∑

uv∈E(G),d(v)=1

d(u)2 + 1

d(u)2 +
∑

uv∈E(G),d(v)>1

d(u)2 + d(v)2

d(u)2d(v)2 ≤ p

(
∆2 + 1

)
δ2

1

+
∑

uv∈E(G),d(v)>1,d(u)≤∆

d(u)2 + d(v)2

d(u)2d(v)2 ,

≤

p
(
∆2 + 1

)
δ2

1

+
2(m − p)∆2

δ4
1

, as δ1 ≤ d(u), d(v) ≤ ∆.

Now suppose that the equality holds in (3). Then all inequalities in the above argument must be equalities.
Therefore, we have d(u) = ∆ and d(v) = 1 for each pendent edge uv ∈ E(G), and d(u) = ∆ for each non-
pendent vertex u ∈ V(G). Suppose that m = p, then G is the star K1,n−1. Suppose that m > p. at first, for
p = 0, i.e., there is no pendent vertex in G, then we have d(u) = ∆ for every u ∈ V(G). Thus, G is a regular
graph. If p > 0, in this case we have d(u) = ∆ for each non-pendent vertex u ∈ V(G). Hence, G is a biregular
graph with δ = 1.

Conversely, one can easily examine that the equality holds in (3) for the K1,n−1 or a regular graph or a
biregular graph with δ = 1. The left inequality also attained by the above arguments. This completes the
proof.

The pineapple graph Kq
p is obtained by appending q pendant edges to a vertex of a complete graph Kp,

where q ≥ 1 and p ≥ 3.

Remark 2.5. It is interesting to see that for K3
p with p < 9 the upper bound in (2) is better than the upper bound in

(3) and for p ≥ 9, (3) is better than (2). It is easy to see that the lower bound in (1) and (2) is stronger than the lower
bound (3) other than its equality cases.
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Next, we are indeed to improve the lower bound in (2), for which we need the following lemma.

Lemma 2.6. (see [5]) Let G be a graph with n vertices and m edges . Then

M1(G) ≥ ∆2 + δ2 +
(2m − ∆ − δ)2

n − 2
,

equality holds if and only if G ∈ Γ2.

Theorem 2.7. Let G be a simple graph of order n(≥ 3) with no isolated vertices. Then

ID(G) ≥
∆ + δ
∆δ

+
(n − 2) (2m − ∆ − δ)

M1 (G) − ∆2 − δ2 , (4)

equality holds if and only if G ∈ Γ2.

Proof. Let ai, bi, ci and di, i = 1, 2, . . . , r, are the sequence of real numbers and xi, yi be the non-negative
weights. Let α, β ∈ R then, we start our proof with Root Mean Square - Geometric Mean inequality that
α2 + β2

≥ 2αβ and equality holds for α = β. So we get

a2
i b2

j + c2
i d2

j ≥ 2aib jcid j.

Multiplying the non-negative weights xi, y j and summing over i, j we have

r∑
i=1

r∑
j=1

[
xiy ja2

i b2
j + xiy jc2

i d2
j

]
≥ 2

r∑
i=1

r∑
j=1

[
xiy jaib jcid j

]
,

which implies

r∑
i=1

xia2
i

r∑
i=1

yib2
i +

r∑
i=1

xic2
i

r∑
i=1

yid2
i ≥ 2

 r∑
j=1

xiaici

r∑
i=1

yibidi

 .
If we set r = n − 2, ai = di = d(vi+1), bi = ci = 1, i = 1, 2, . . . , r, xi =

1
d(vi+1)

, yi = 1 in the above, we get

(n − 2)
n−1∑
i=2

d (vi) +

n−1∑
i=2

1
d (vi)

n−1∑
i=2

d(vi)
2
≥ 2(n − 2)

n−1∑
i=2

d (vi).

Since
n−1∑
i=2

1
d(vi)

= ID(G) − 1
∆ −

1
δ , we have

(
M1 (G) − ∆2

− δ2
) (

ID(G) −
1
∆
−

1
δ

)
≥ (n − 2) (2m − ∆ − δ) .

Suppose that the equality holds in (4) along with the equality of Lemma 2.6, we get

(2m − ∆ − δ)
(
ID(G) −

1
∆
−

1
δ

)
= (n − 2)2

Case (i) For n = 2(
ID(G) −

1
∆
−

1
δ

)
= (n − 2) and (2m − ∆ − δ) = (n − 2)
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holds if G is a P2.
Case (ii) For n > 2, the only chance is(

ID(G) −
1
∆
−

1
δ

)
=

(n − 2)
d (vi)

and (2m − ∆ − δ) = (n − 2)d (vi) ,

which is possible if d(v2) = d(v3) = · · · = d(vn−1). Hence, G ∈ Γ2.
Conversely, if G ∈ Γ2, then 2m − ∆ − δ = (n − 2)δ and M1(G) = ∆2 + δ2 + (n − 2)δ2, so we get

(n − 2) (2m − ∆ − δ)
M1 (G) − ∆2 − δ2 = (n − 2)

1
δ

1
∆

+
1
δ

+
(n − 2) (2m − ∆ − δ)

M1 (G) − ∆2 − δ2 = ID(G),

as required.

Corollary 2.8. With the assumptions in Theorem 2.7, one has the inequality

ID(G) ≥
∆ + ∆2

∆∆2
+

(2m − ∆ − ∆2) (n − 2)

M1 (G) − ∆2 − ∆2
2 , (5)

equality holds if and only if G ∈ Γ3.

Remark 2.9. The lower bounds (2) and (5) are incomparable. Namely, there exist a molecular graph 1,1,2,2-
Tetramethylcyclopropane (5) is better than (2) and for 1,1,2,3-Tetramethylcyclopropane, (2) is better than (5). It is
easy to see that, the lower bound in Theorem 2.7 is stronger than Lemma 2.2. But, still the lower bound in Lemma 2.3
is stronger than lower bound in Theorem 2.7.

Theorem 2.10. Let G be a simple graph of order n > 2 with no isolated vertices. Then

n +
M1(G) − (2m − n)(∆ + δ) − 2m

∆δ
≤ ID(G) ≤

n(∆ + δ) − 2m
∆δ

. (6)

Moreover, both the left and right equality holds in (6) if and only if G is regular or biregular.

Proof. Let wi, i = 1, 2, . . . ,n, be a sequence of non negative real numbers. Then the weighted version of the
Diaz-Metcalf inequality can be expressed as

n∑
i=1

wib2
i + mM

n∑
i=1

wia2
i ≤ (M + m)

n∑
i=1

wiaibi. (7)

Setting wi =
1

d(vi)
, ai = d(vi), bi = 1, M =

1
δ

and m =
1
∆

for i = 1, 2, . . . ,n; by (7) we have

n∑
i=1

1
d(vi)

+
1

∆δ

n∑
i=1

d(vi) ≤
(1
δ

+
1
∆

) n∑
i=1

1,

which leads to
n∑

i=1

1
d(vi)

≤

(
∆ + δ
∆δ

) n∑
i=1

1 −
1

∆δ

n∑
i=1

d(vi).

Thus,

ID(G) ≤ n
(
∆ + δ
∆δ

)
−

2m
∆δ
.
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Now, by fixing wi = 1 −
1

d(vi)
, ai = 1, bi = d(vi), M = ∆ and m = δ, i = 1, 2, . . . ,n in (7), we have

n∑
i=1

d(vi)2
−

n∑
i=1

d(vi) + ∆δ

 n∑
i=1

1 −
n∑

i=1

1
d(vi)

 ≤ (∆ + δ)

 n∑
i=1

d(vi) −
n∑

i=1

1

 .
From the above, we get

∆δ
n∑

i=1

1
d(vi)

≥ ∆δ
n∑

i=1

1 +

n∑
i=1

d(vi)2
−

n∑
i=1

d(vi) +

n∑
i=1

1 − (∆ + δ)

 n∑
i=1

d(vi) −
n∑

i=1

1

 ,
which implies

ID(G) =

n∑
i=1

1
d(vi)

≥ n +
M1(G) − (2m − n)(∆ + δ) − 2m

∆δ
,

as claimed.

Remark 2.11. It is clear that the upper bound in (6) is stronger than the upper bound in (2). But still the lower
bounds in (6) and (2) are incomparable. For example, there exists a molecular graph 1,1,2-Trimethylcyclobutane for
which (6) is better than (2) and for the molecular graph 1,2,3-Trimethylcyclobutane for which (2) is better than (6).

Theorem 2.12. Let G be a simple graph of order n > 2 with m edges and no isolated vertices, with a vertices of
maximum degree ∆ and b vertices of degree δ. Then

ID(G) ≤
(

a
∆

+
b
δ

)
+

(n − b)∆ + (n − a)δ − 2m
(∆ − 1)(δ + 1)

, (8)

equality holds if and only if the vertex degrees are equal to δ, δ + 1, ∆ − 1 or ∆.

Proof. Let a,A ∈ R and xi, yi be two sequences of real numbers with the property ayi ≤ xi ≤ Ayi for
i = 1, 2, . . . ,n and wi be any sequence of positive real numbers, we have wi

(
Ayi − xi

) (
xi − ayi

)
≥ 0. Since wi

is a positive sequence, by choosing wi = 1
d(vi)

, xi = d(vi), yi = 1, A = ∆ and a = δ, we have

1
d(vi)

(∆ − d(vi)) (d(vi) − δ) ≥ 0

and adding over the vertices by restricting δ < d(vi) < ∆, it holds∑
δ<d(vi)<∆

1
d(vi)

(∆ − d(vi)) (d(vi) − δ) ≥
∑

δ<d(vi)<∆

1
d(vi)

(∆ − δ − 1) ≥ 0,

which gives∑
δ<d(vi)<∆

(
(∆ + δ) −

∆δ
d(vi)

− d(vi)
)
≥ (∆ − δ − 1)

∑
δ<d(vi)<∆

1
d(vi)

.

Expanding the above inequality gives the required result with equality if and only if d(vi) = δ + 1 or
d(vi) = ∆ − 1, which completes the proof.

Corollary 2.13. Let T be a tree of order n > 2 with no isolated vertices out of which a vertices of maximum degree ∆
and b vertices of degree δ. Then

ID(T) ≤
(

a
∆

+
b
δ

)
+

(n − b)∆ + (n − a)δ − 2(n − 1)
(∆ − 1)(δ + 1)

, (9)

equality holds if and only if the vertex degrees are equal to δ, δ + 1, ∆ − 1 or ∆.
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Lemma 2.14. Let T be a tree on n vertices, then

n + 2
2
≤ ID(T) ≤ (n − 1) +

1
n − 1

, (10)

where the lower and upper bounds are attained if and only if T = Pn and T = K1,n−1 respectively.

It is easy to see that the upper bound in (9) is always better than (10).

3. Computational Results

In this section, we compare the upper bounds for inverse degree. In Table 2 and Table 3, we present the
computational results for connected graphs on n = 3 to n = 9 vertices and connected trees on n = 10 to 20
vertices respectively. In the group one of the Table 1 and Table 2, the first column represents the degree of
the vertex n,the second column contains number of connected graphs (trees) on n vertices and the third one
has the average value of the inverse degree ID(G). Next two groups of three columns represent the average

value of the upper bound, the standard deviation
√∑

G (X(G)−ID(G))2

count and the number of graphs for which the
equality holds.

Parameters Lemma 2.3 Theorem 2.10 Theorem 2.12
n Count Avg. Avg. Stdev. Eq. Avg. Stdev. Eq. Avg. Stdev. Eq.
3 2 2.0000 2.0000 0.0000 2 2.0000 0.0000 2 2.0000 0.0000 2
4 6 2.2778 2.4444 0.3043 4 2.3333 0.1361 5 2.2778 0.0000 6
5 21 2.4643 2.8820 0.6790 2 2.6230 0.2709 11 2.4643 0.0000 21
6 112 2.6170 3.2714 0.9857 5 2.9013 0.4364 36 2.6222 0.0243 106
7 853 2.6970 3.6115 1.2679 4 3.1245 0.6078 91 2.7155 0.0510 683
8 11117 2.7050 3.8075 1.4984 17 3.2374 0.7482 471 2.7453 0.0855 6658
9 261080 2.6583 3.8651 1.6527 22 3.2484 0.8366 2296 2.7236 0.1215 105659

Table 1: Upper Bound Comparison on ID(G) for small graphs

Parameters Lemma 2.3 Theorem 2.10 Theorem 2.12
n Count Avg. Avg. Stdev. Eq. Avg. Stdev. Eq. Avg. Stdev. Eq.
10 106 7.2067 11.7949 5.8694 0 7.9146 0.7736 5 7.2146 0.0218 91
11 235 7.8667 13.2310 6.6845 0 8.7339 0.9306 3 7.8790 0.0296 189
12 551 8.5274 14.5902 7.4093 0 9.5370 1.0763 5 8.5450 0.0383 413
13 1301 9.1855 16.0099 8.1819 0 10.3525 1.2348 2 9.2091 0.0476 913
14 3159 9.8457 17.4180 8.9423 0 11.1646 1.3894 10 9.8759 0.0574 2075
15 7741 10.5052 18.8657 9.7421 0 11.9841 1.5508 2 10.5426 0.0678 4774
16 19320 11.1654 20.3115 10.5453 0 12.8022 1.7109 9 11.2105 0.0786 11214
17 48629 11.8256 21.7838 11.3773 0 13.6250 1.8748 6 11.8791 0.0898 26619
18 123867 12.4862 23.2626 12.2202 0 14.4479 2.0388 16 12.5485 0.1015 64057
19 317955 13.1470 24.7585 13.0825 0 15.2735 2.2049 2 13.2186 0.1135 155575
20 823065 13.8080 26.2636 13.9568 0 16.0999 2.3717 27 13.8893 0.1259 381521

Table 2: Upper Bound Comparison on ID(G) for small trees

4. Inverse Degree of Chemical Graphs

A chemical graph is a labeled graph whose vertices correspond to the atoms of the compound and edges
correspond to chemical bonds with the maximum degree at most four. Let G be a chemical graph of order
n ≥ 3 and m edges with n − 1 ≤ m ≤ 2n. For integers i and j with 1 ≤ i ≤ j ≤ 4, an i j-edge means an edge
that connects vertices of degree i and j, denote by mi j the number of i j-edges of G. Then

ID(G) =
5
4

m12 +
10
9

m13 +
17
16

m14 +
1
2

m22 +
13
36

m23 +
5
16

m24 +
2
9

m33 +
25
144

m34 +
1
8

m44
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From the results obtained in [15], we have

m14 =
4n − 2m

3
−

4
3

m12 −
10
9

m13 −
2
3

m22 −
4
9

m23 −
1
3

m24 −
2
9

m33 −
1
9

m34

m44 =
5m − 4n

3
+

1
3

m12 +
1
9

m13 −
1
3

m22 −
5
9

m23 −
2
3

m24 −
7
9

m33 −
8
9

m34.

Thus,

ID(G) =
(15

12
n −

1
2

m
)
−

1
8

m12 −
1
18

m13 −
1
4

m22 −
13
72

m23 −
1
8

m24 −
1
9

m33 −
1
8

m34 (11)

with negative coefficients for m12,m13,m22,m23,m24,m33,m34. Also in [15] deduced

m12 = 2n − 3m −
2
3

m13 −
1
2

m14 +
1
3

m23 +
1
2

m24 +
2
3

m33 +
5
6

m34 + m44

m22 = 3m − 2n −
1
3

m13 −
1
2

m14 −
4
3

m23 −
3
2

m24 −
5
3

m33 −
11
6

m34 − 2m44,

and then we have

ID(G) =
(3

2
n −m

)
+

1
9

m13 +
5
8

m14 +
9

16
m23 +

3
16

m24 +
2
9

m33 +
43

144
m34 +

1
4

m44 (12)

with positive coefficients for m13,m14,m23,m24,m33,m34,m44. From (11) and (12), we have:

Theorem 4.1. Let G be a chemical graph with n ≥ 3 vertices and m edges with n − 1 ≤ m ≤ 2n. Then

3
2

n −m ≤ ID(G) ≤
15
12

n −
1
2

m

with left equality holds if and if G is either a path or a cycle, and with right equality holds if and only if G has only
vertices of degree one and four or 4-regular.

Taking into the account of chemical trees, we have the following corollary.

Corollary 4.2. Let T be a chemical tree with n ≥ 3 vertices, then

n + 2
2
≤ ID(T) ≤

3n + 2
4

, (13)

with left equality holds if and only if T is a path, and the right equality holds if and only if T has only vertices of degree
one and four.

The left inequality in (13) is also proved in [1] for the case of trees.

Remark 4.3. By direct comparison of the upper bounds in (13) and (10) for the chemical trees, we conclude that (13)
is always better than (10).

5. Comparison between inverse degree and other topological indices of graphs

In this section we compare inverse degree ID(G) with topological indices (R- index, GA-index) of graphs.
We start with an example.

Example 5.1. For a path Pn, R(Pn) =
n − 3

2
+
√

2 <
n + 2

2
= ID(Pn). For a complete graph Kn, R (Kn) =

n
2
>

n
(n − 1)

= ID (Kn) . For a cycle Cn, the inverse degree coincides with R.
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Table 3: Values of 1√
d(u)d(v)

,
2
√

d(u)d(v)
d(u)+d(v) and d(u)2+d(v)2

d(u)2d(v)2 for all possible degree pairs in chemical tree

(d(u), d(v)) (4, 1) (4, 2) (4, 3) (4, 4) (3, 1) (3, 2) (3, 3) (2, 1) (2, 2)
1√

d(u)d(v)
1
2

1
2
√

2
1

2
√

3
1
4

1
√

3
1
√

6
1
3

1
√

2
1
2

2
√

d(u)d(v)
d(u)+d(v)

4
5

√
8
9

√
48
49 1

√
3
4

√
24
25 1

√
8
9 1

d(u)2+d(v)2

d(u)2d(v)2
17
16

5
16

25
144

1
8

10
9

13
36

2
9

5
4

1
2

This concludes ID(G) and R(G) incomparable. At first we start with the chemical trees.

Theorem 5.2. Let T be a chemical tree of order n with no isolated vertices, then ID(T) > R(T).

Proof. If n = 2, then T is isomorphic to K1,1 and hence ID(T) > R(T). Since T is a chemical tree, we must have
1 ≤ d(u), d(v) ≤ 4. Thus we have the edges with possible degree pairs

(4, 1), (4, 2), (4, 3), (4, 4), (3, 1), (3, 2), (3, 3), (2, 1), (2, 2).

In Table 1, we calculate the values of
1√

d(u)d(v)
and

2
√

d(u)d(v)
d(u) + d(v)

for all above degree pairs. From Table 3,

one can see easily that

d(u)2 + d(v)2

d(u)2d(v)2 −
1√

d(u)d(v)
=


≥ 0.5337 f or (d(u), d(v)) = (4, 1), (3, 1), (2, 1),
= 0 f or (d(u), d(v)) = (2, 2),
≥ −0.125 f or (d(u), d(v)) = (4, 4), (4, 3), (4, 2), (3, 3), (3, 2).

(14)

Let a be the number of non-pendent edges in T. Then we have a + 1 non-pendent and n − 1 − a pendent
vertices in T. Thus,

ID(T) − R(T) =
∑
uv∈E

d(u)2 + d(v)2

d(u)2d(v)2 −
1√

d(u)d(v)


=

∑
uv∈E,d(v)=1

d(u)2 + d(v)2

d(u)2d(v)2 −
1√

d(u)d(v)

 +
∑

uv∈E,d(v),1

d(u)2 + d(v)2

d(u)2d(v)2 −
1√

d(u)d(v)


≥ (n − 1 − a)

(
10
9
−

1
√

3

)
− a

(1
8

)
> 0,

which concludes the Theorem.

In [18], among the n-vertex chemical trees, the minimum (maximum), the second and third minimum
(maximum) for the Randić index is calculated. Now we give the extremal trees for the trees. For the
non-pendent edge (2, 2), we have ID − R is zero, which leads to the following results.

Theorem 5.3. Let T be a tree of order n. Then

(a) for n ≥ 5, the ones with only degrees one and two are the unique trees with minimum ID − R, which is equal to

2
(

5
4 −

1
√

2

)
;

(b) for n ≥ 7, the ones with a single vertex of degree three adjacent to three vertices of degree two, and without vertices

of degree four are the unique trees with the second minimum ID − R, which is equal to 3
(

5
4 −

1
√

2

)
+ 3

(
13
36 −

1
√

6

)
;
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(c) for n ≥ 6, the ones with a single vertex of degree three adjacent to two vertices of degree two and one vertex of
degree one, and without vertices of degree four are the unique trees with the third minimum ID − R, which is

equal to 2
(

5
4 −

1
√

2

)
+ 2

(
13
36 −

1
√

6

)
+

(
10
9 −

1
√

3

)
;

In [18], the general formula for the second and third minimum R index is obtained for chemical trees
of order n ≡ 2(mod 3) ≥ 17 and n ≡ 1(mod 3) ≥ 13 respectively. In addition, Figs. 1 and 2 represents the
small n vertex chemical trees for 6 ≤ n ≤ 24.

Remark 5.4. The conclusion which relates to the second and third minimal chemical tree for n = 11 and n = 14 are
wrong. In [18], the second and third minimum R index tree of order 11 is depicted as T7

11 and T2
11. But the trees T2

11
and T3

11 posses the second and third minimum R for order 11. Next, the third minimum R index of order 14 is given
as T8

14. But actually it is eighth minimum, the correct tree is T3
14 given in Fig.1.

Theorem 5.5. Let T be a chemical tree of order n. Then

(i) If n ≡ 2(mod3), then among the n−vertex chemical trees,
(a) for n ≥ 5, the ones with only degrees one and four are the unique trees with the maximum ID − R.
(b) for n ≥ 17, the ones with a single vertex of degree two adjacent to two vertices of degree four and a single

vertex of degree three adjacent to three vertices of degree four, with second maximum ID − R.
(c) for n ≥ 17, the ones with a single vertex of degree two and degree three, such that they are adjacent to each

other and the remaining adjacent vertices are of degree four, has third maximum ID − R.
(ii) If n ≡ 1(mod3), then among the n−vertex chemical trees,

(a) for n ≥ 13, the ones with a single vertex of degree three adjacent to three vertices of degree four, and without
vertices of degree two, with maximum ID − R.

(b) for n ≥ 13, the ones with a single vertex of degree three adjacent to a vertex of degree one and two vertices
of degree four, and without vertices of degree two, with second maximum ID − R.

(c) for n ≥ 13, the ones with a single vertex of degree three adjacent to a vertex of degree four and two vertices
of degree one, with third maximum ID − R.

(iii) If n ≡ 0(mod3), then among the n−vertex chemical trees,
(a) for n ≥ 9, the ones with a single vertex of degree two adjacent to two vertices of degree four, and without

vertices of degree three, with maximum ID − R.
(b) for n ≥ 9, the ones with a single vertex of degree two adjacent to a vertex of degree four and degree one, and

without vertices of degree three, with second maximum ID − R.
(c) for n ≥ 18, the ones with two vertices of degree three adjacent to three vertices of degree four, and without

vertices of degree two, with third maximum ID − R.

In [8], the following results on the comparison between ID(G) with GA(G) presented.

Lemma 5.6. (see [8]) Let G be a graph with no isolated vertices, maximum degree ∆, and minimum degree δ. If the

average degree d ≥ 2

√
∆

δ3 , then GA(G) ≥ ID(G).

For any simple graph G of order n and m edges, the average degree d is defined by d =
2m
n
.

If G is a acyclic graph, then the minimum degree δ = 1, maximum degree 2 ≤ ∆ ≤ n − 1 and d = 2
(
1 −

1
n

)
.

Comparing Theorem 5.6 with the above results, we get 2
(
1 −

1
n

)
< 2
√

2. This concludes that the family of

trees are totally eliminated due to the assumption in the Theorem 5.6.

Example 5.7. For a path Pn(> 4), GA(Pn) = n − 3 +
4
√

2
3

>
n + 2

2
= ID(Pn). For a star K1,n−1, GA

(
K1,n−1

)
=

2(n − 1)
3
2

n
< (n − 1) +

1
(n − 1)

= ID
(
K1,n−1

)
.
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T2
11

T3
11

T4
11

T5
11

T7
11

T2
14

T3
14

T4
14

T5
14

T6
14

T7
14

T8
14

T6
11

T2,0,3

T1,2,3

T3,0,3

T3,1,3

T2,2,3

T3,2,3

Figure 1: Chemical trees on 11 vertices (left) and 14 vertices (middle) with second to seventh and second to eigth minimal (if the
minimal trees are not unique, one representative is shown) Randić index. Chemical trees (right) between 8 to 11 vertices with
ID(T) > GA(T).



S. Elumalai et al. / Filomat 32:1 (2018), 165–178 176

This concludes, inverse degree and GA index are incomparable for trees. Now we compare inverse degree
with GA index of trees.

Let G and H be graphs. We denote by σG(H) the number of distinct subgraphs of the graph G which are
isomorphic to H. Let α, β and γ be whole numbers. Tα,β and Tα,γ,β are the double and triple star trees on
α+β+2, α+γ+β+3 vertices respectively. Tα,β is obtained from P2, by attaching α pendent vertices to its one
of the vertex and β pendent vertices to its other vertex. Tα,γ,β is obtained from P3, by attaching α, β pendent
vertices to its end vertices and γ pendent vertices to its middle vertex. Obviously T0,0 ≡ P2,T1,0 ≡ P3 and
Tn−2,0 ≡ T0,n−2 ≡ K1,n−1.

Theorem 5.8. Let T be a Tα,β double star. Then ID(Tα,β) > GA(Tα,β).

Proof. For double star Tα,β, with α, β = 0, then it is simply an edge P2. Obviously ID(P2) > GA(P2). If α, β > 0,
we have the vertex degree pairs (α + 1, 1), (β + 1, 1) and (α + 1, β + 1). So

ID(Tα,β) − GA(Tα,β) = α −
2α
√
α + 1

α + 2
+ β −

2β
√
β + 1

β + 2
+

α + β + 2
(α + 1)

(
β + 1

) − 2
√

(α + 1)
(
β + 1

)
α + β + 2

> 0,

which completes the proof.

Next we need to find the class of trees which satisfies GA(T) > ID(T). For this, we need the following
results.

In [25], the extremal chemical trees for GA index is identified and followed by these results, in a short
period of time, the first, second and third minimal (maximal) extremal chemical trees [26] are obtained.
Considering the vertex version of the inverse degree and using Table 3 we have the following results.

Theorem 5.9. Let T be a tree of order n with p pendent vertices, then

(a) for n ≥ 5, the ones with only degrees one and two are the unique trees with minimum inverse degree, which is
equal to

(
n+2

2

)
;

(b) for n ≥ 5, the ones with a single vertex of degree three, and without vertices of degree four are the trees with second
minimum inverse degree, which is equal to

( n+p
2 −

1
6

)
;

(c) for n ≥ 6, the ones with two vertices of degree three, and without vertices of degree four are the trees with the third
minimum inverse degree, which is equal to

( n+p
2 −

1
3

)
;

Theorem 5.10. Let T be a chemical tree of order n, then

(i) If n ≡ 2(mod 3), then among the n−vertex chemical trees,

(a) for n ≥ 8, the ones with only degrees one and four are the unique trees with the maximum inverse degree.
(b) for n ≥ 8, the ones with a unique vertex of degree two and three has the second maximum inverse degree.
(c) for n ≥ 11, the ones with exactly three vertices of degree three and without vertices of degree two has third

maximum inverse degree.
(ii) If n ≡ 1 (mod 3), then among the n−vertex chemical trees,

(a) for n ≥ 7, the ones with a single vertex of degree three and the remaining vertices of degree four and one,
without vertices of degree two has the maximum inverse degree.

(b) for n ≥ 7, the ones with exactly two vertices of degree two, and without vertices of degree three has the
second maximum inverse degree.

(c) for n ≥ 10, the ones with a single vertex of degree two and exactly two vertices of degree three has third
maximum inverse degree.

(iii) If n ≡ 0 (mod 3), then among the n−vertex chemical trees,

(a) for n ≥ 6, the ones with a single vertex of degree two and the remaining vertices of degree four and one,
without vertices of degree three has maximum inverse degree.
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(b) for n ≥ 9, the ones with exactly two vertices of degree three, remaining vertices of degree four and one, and
without vertices of degree two has second maximum inverse degree.

(c) for n ≥ 9, the ones with a single vertex of degree three and exactly two vertices of degree two and the
remaining vertices of degree four and one has third maximum inverse degree.

Lemma 2.14, concludes that the star K1,n−1 is the maximal tree for the inverse degree of trees. From the
definition of inverse degree and Lemma 2.14, we have the following corollary

Corollary 5.11. Let T be a tree on n vertices. Then

(a) for n ≥ 5, the double star T1,n−3 has the second maximum inverse degree.
(b) for n ≥ 6, the double star T2,n−4 has the third maximum inverse degree.

Theorem 5.12. Let T be a chemical tree of order n(> 2) with no isolated vertices. Then GA(T)−ID(T) > R(T)−ID(T).

Proof. If T is a chemical tree, then ∆ = 4, δ = 1 and for any edge uv ∈ E(T), we have 1 <
2d(u)d(v)

d(u) + d(v)
=

2
√

d(u)d(v)
√

d(u)d(v)
d(u) + d(v)

≤ 4. Hence,
∑

uv∈E(T)

1√
d(u)d(v)

<
∑

uv∈E(T)

2
√

d(u)d(v)
d(u) + d(v)

. This completes the proof.

From Theorem 5.2, we have ID(T) − R(T) > 0 for chemical trees, and this concludes that inverse degree
and GA index are incomparable for chemical trees. So

2
√

d(u)d(v)
d(u) + d(v)

−
d(u)2 + d(v)2

d(u)2d(v)2 =

{
≥ −0.2451 f or (d(u), d(v)) = (4, 1), (3, 1), (2, 1),
≥ 0.5 f or (d(u), d(v)) = (4, 4), (4, 3), (4, 2), (3, 3), (3, 2), (2, 2) (15)

From Theorem 5.8, we have chemical trees isomorphic to Tα,β (1 ≤ α, β ≤ 4) with ID(T) > GA(T) for n = 2
to 8. In addition, form (15), we get the triple star chemical trees with the property ID(T) > GA(T) for the
order 8 to 11, depicted in Figure 1 (right).

Spontaneously, there comes a question, is there any tree T with GA(T) = ID(T)? In all our attempts to
find such a tree, there exits only two chemical trees T1 and T2 with GA(T) = ID(T) depicted in Fig.2, which
leads to the following conjecture.

T2T1

Figure 2: Chemical tress with GA(T) = ID(T).

Conjecture 5.13. If G (, T1 or T2) is a simple connected graph, then ID(G) , GA(G).

The inverse degree and GA are incomparable for the class of double and triple star chemical trees. If n > 11,
both the double and triple star chemical trees are estimated and using Table 1, we conclude the following
result.

Theorem 5.14. Let T be a chemical tree of order n(> 11) with no isolated vertices. Then GA(T) ≥ ID(T), with
equality if and only if T is isomorphic to T1 or T2.
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