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Abstract. This paper presents new sufficient conditions, involving lim sup, for the oscillation of all
solutions of difference equations with non-monotone deviating arguments and nonnegative coefficients.
We establish these criteria by applying an iterative method. We consider difference equations of both the
retarded and the advanced type. We illustrate the results and the improvement over other known oscillation
criteria by examples, numerically solved in MATLAB.

1. Introduction

Consider the difference equation with several variable deviating arguments of either retarded

∆x(n) +
∑m

i=1
pi(n)x(τi(n)) = 0, n ∈N0, (E)

or advanced type

∇x(n) −
∑m

i=1
qi(n)x(σi(n)) = 0, n ∈N, (E′)

where N0, N are the sets of nonnegative integers and positive integers, respectively. Here, ∆ denotes the
forward difference operator ∆x(n) = x(n + 1) − x(n) and ∇ corresponds to the backward difference operator
∇x(n) = x(n) − x(n − 1).

Equations (E) and (E′) are studied under the following assumptions: everywhere (pi(n))n≥0,
(
qi(n)

)
n≥1,

1 ≤ i ≤ m, are sequences of nonnegative real numbers, (τi(n))n≥0, (σi(n))n≥1, 1 ≤ i ≤ m, are sequences of
integers such that

τi(n) ≤ n − 1, ∀n ∈N0 and lim
n→∞

τi(n) = ∞, 1 ≤ i ≤ m (1.1)

and

σi(n) ≥ n + 1, ∀n ∈N, 1 ≤ i ≤ m, (1.1′)
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respectively.
Set

v = − min
n≥0

1≤i≤m

τi(n).

Clearly, v is a finite positive integer if (1.1) holds.
By a solution of (E), we mean a sequence of real numbers (x(n))n≥−v which satisfies (E) for all n ≥ 0. It is

clear that, for each choice of real numbers c−v, c−v+1, ..., c−1, c0, there exists a unique solution (x(n))n≥−v of (E)
which satisfies the initial conditions x(−v) = c−v, x(−v + 1) = c−v+1, ..., x(−1) = c−1, x(0) = c0. When the initial
data is given, we can obtain a unique solution to (E) by using the method of steps.

By a solution of (E′), we mean a sequence of real numbers (x(n))n≥0 which satisfies (E′) for all n ≥ 1.
A solution (x(n))n≥−v (or (x(n))n≥0) of (E) (or (E′)) is called oscillatory, if the terms x(n) of the sequence are

neither eventually positive nor eventually negative. Otherwise, the solution is said to be nonoscillatory.
While deviating difference equations with one argument have been studied widely and extensively in

the literature by many researchers, the study for such equations, especially systems, with several arguments
is scarce and relatively rare, probably due to its extreme complexity in analysis and the lack of the estab-
lished theory. Recent studies in biological, physical and economical systems involving multiple feedback
mechanisms have spurred a great attention to equations (E) and (E′). Hence, in the last few decades, the
oscillatory behavior, stability and the existence of positive solutions of difference equations (E) and (E′) has
been the subject of investigations. See, for example, [1−17] and the references cited therein. Most of these
papers concerned with the special case where the arguments are nondecreasing, while a small number of
these papers are dealing with the general case where the arguments are not necessarily monotone. See, for
example, [2, 3, 4].

The consideration of non-monotone arguments other than the pure mathematical interest, it approxi-
mates the natural phenomena described by equation of the type (E) or (E′). That is because there are always
natural disturbances (e.g. noise in communication systems) that affect all the parameters of the equation
and therefore the fair (from a mathematical point of view) monotone arguments become non-monotone
almost always. In view of this, an interesting question arising in the case where the arguments τi(n) and
σi(n) are non-monotone, is whether we can state further oscillation criteria which essentially improve all
the known results in the literature. In the present paper a positive answer to the above question is given.

Throughout this paper, we are going to use the following notations:∑k−1

i=k
A(i) = 0 and

∏k−1

i=k
A(i) = 1

α := min
1≤i≤m

αi where αi = lim inf
n→∞

∑n−1

j=τi(n)
pi( j) (1.2)

β := min
1≤i≤m

βi where βi = lim inf
n→∞

∑σi(n)

j=n+1
qi( j) (1.3)

D(ω) :=


0, if ω > 1/e

1−ω−
√

1−2ω−ω2

2 , if ω ∈ [0, 1/e]
(1.4)

LD := lim inf
n→∞

∑m

i=1

∑n−1

j=τ(n)
pi( j) (1.5)

MD := lim sup
n→∞

∑m

i=1

∑n

j=τ(n)
pi( j) (1.6)

MA := lim sup
n→∞

∑m

i=1

∑σ(n)

j=n
qi( j) (1.7)

where τ(n) = max1≤i≤m τi(n), σ(n) = min1≤i≤m σi(n) and τi(n), σi(n) are nondecreasing.
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1.1. Retarded difference equations
Suppose that τi(n), 1 ≤ i ≤ m are nondecreasing.
In 2006, Berezansky and Braverman [1] and in 2014, Chatzarakis, Pinelas and Stavroulakis [7] proved

that, if

lim sup
n→∞

∑m

i=1
pi(n) > 0 and LD >

1
e

, (1.8)

or

MD > 1 (1.9)

respectively, then all solutions of (E) are oscillatory.
Assume that the arguments τi(n), 1 ≤ i ≤ m are not necessarily monotone.
Set

h(n) = max
1≤i≤m

hi(n) where hi(n) = max
0≤s≤n

τi(s), n ≥ 0 (1.10)

and

a1(n, k) :=
∏n−1

i=k

[
1 −

∑m

`=1
p`(i)

]
(1.11)

ar+1(n, k) :=
∏n−1

i=k

[
1 −

∑m

`=1
p`(i)a−1

r (i, τ`(i))
]
, r ∈N (1.12)

Clearly, h(n), hi(n) are nondecreasing and τi(n) ≤ hi(n) ≤ h(n) ≤ n − 1 for all n ≥ 0.
In 2015, Braverman, Chatzarakis and Stavroulakis [2] proved that if there exists a subsequence θ(n),

n ∈N of positive integers such that∑m

i=1
pi(θ(n)) ≥ 1, ∀n ∈N, (1.13)

then all solutions of (E) are oscillatory.
Under the assumption that∑m

i=1
pi(n) < 1, ∀n ≥ 0, (1.14)

the same authors proved that, if for some r ∈N

lim sup
n→∞

∑n

j=h(n)

∑m

i=1
pi( j)a−1

r (h(n), τi( j)) > 1, (1.15)

or

lim sup
n→∞

∑n

j=h(n)

∑m

i=1
pi( j)a−1

r (h(n), τi( j)) > 1 −D (α) , (1.16)

then all solutions of (E) are oscillatory.
Recently, Chatzarakis, Horvat-Dmitrović and Pašić [4] proved that if for some ` ∈N

lim sup
n→∞

∑n

j=h(n)
P( j)

∏h(n)−1

i=τ( j)

1
1 − P`(i)

> 1, (1.17)

or

lim sup
n→∞

∑n

j=h(n)
P( j)

∏h(n)−1

i=τ( j)

1
1 − P`(i)

> 1 −D (α) , (1.18)

where

P`(n) = P(n)
[
1 +

∑n−1

i=τ(n)
P(i)

∏h(n)−1

j=τ(i)

1
1 − P`−1( j)

]
, (1.19)

with P(n) =
∑m

i=1 pi(n) = P0(n), then all solutions of (E) are oscillatory.
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1.2. Advanced difference equations

Suppose that σi(n), 1 ≤ i ≤ m are nondecreasing.
In 2014, Chatzarakis, Pinelas and Stavroulakis [7] proved that, if

MA > 1, (1.20)

then all solutions of (E′) are oscillatory.
Assume that the arguments σi(n), 1 ≤ i ≤ m are not necessarily monotone. Set

ρ(n) = min
1≤i≤m

ρi(n), where ρi(n) = min
s≥n

σi(s), n ≥ 0, (1.21)

b1(n, k) :=
∏k

i=n+1

[
1 −

∑m

`=1
q`(i)

]
, (1.22)

br+1(n, k) :=
∏k

i=n+1

[
1 −

∑m

`=1
q`(i)b−1

r (i, σ`(i))
]
, r ∈N. (1.23)

Clearly, ρ(n), ρi(n) are nondecreasing and σi(n) ≥ ρi(n) ≥ ρ(n) ≥ n + 1 for all n ≥ 1.
In 2015, Braverman, Chatzarakis and Stavroulakis [2] proved that if there exists a subsequence θ(n),

n ∈N of positive integers such that∑m

i=1
qi(θ(n)) ≥ 1, ∀n ∈N, (1.24)

then all solutions of (E′) are oscillatory.
Under the assumption that∑m

i=1
qi(n) < 1, ∀n ≥ 1, (1.25)

the same authors proved that, if for some r ∈N

lim sup
n→∞

∑ρ(n)

j=n

∑m

i=1
qi( j)b−1

r (ρ(n), σi( j)) > 1, (1.26)

or

lim sup
n→∞

∑ρ(n)

j=n

∑m

i=1
qi( j)b−1

r (ρ(n), σi( j)) > 1 −D
(
β
)

, (1.27)

then all solutions of (E′) are oscillatory.
Recently, Chatzarakis, Horvat-Dmitrović and Pašić [4] proved that if for some ` ∈N

lim sup
n→∞

∑ρ(n)

j=n
Q( j)

∏σ( j)

i=ρ(n)+1

1
1 −Q`(i)

> 1, (1.28)

or

lim sup
n→∞

∑ρ(n)

j=n
Q( j)

∏σ( j)

i=ρ(n)+1

1
1 −Q`(i)

> 1 −D
(
β
)

, (1.29)

where

Q`(n) = Q(n)
[
1 +

∑ρ(n)

i=n+1
Q(i)

∏σ(i)

j=ρ(n)+1

1
1 −Q`−1( j)

]
, (1.30)

with Q(n) =
∑m

i=1 qi(n) = Q0(n), then all solutions of (E′) are oscillatory.
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2. Main Results

2.1. Retarded difference equations

We study further (E) and derive new sufficient oscillation conditions, involving lim sup, which improve
all previous known results in the literature.

Theorem 2.1. Assume that (1.1) and (1.14) hold, and h(n) is defined by (1.10). If for some w ∈N

lim sup
n→∞

∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − Pw(i)
> 1, (2.1)

where

Pw(n) = P(n)
[
1 +

∑n−1

`=τ(n)
P(`) exp

(∑n−1

j=τ(`)
P( j)

∏ j−1

i=τ( j)

1

1 − Pw−1(i)

)]
, (2.2)

with P(n) =
∑m

i=1 pi(n) = P0(n), then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution (x(n))n≥−v of (E).
Since (−x(n))n≥−v is also a solution of (E), we can confine our discussion only to the case where x(n) > 0 for
all large n. Let n1 ≥ −v be an integer such that x(n) > 0 for all n ≥ n1. Then, there exists n2 ≥ n1 such that
x (τi(n)) > 0, for all n ≥ n2. In view of this, Eq.(E) becomes

∆x(n) = −
∑m

i=1
pi(n)x (τi(n)) ≤ 0, for all n ≥ n2,

which means that (x(n)) is an eventually nonincreasing sequence of positive numbers. In view of this and
taking into account the fact that τi(n) < n, (E) implies

∆x(n) +
(∑m

i=1
pi(n)

)
x (n) ≤ 0,

or

∆x(n) + P(n)x (n) ≤ 0, n ≥ n2. (2.3)

Applying the discrete Grönwall inequality, we obtain

x(k) ≥ x(n)
∏n−1

i=k

1

1 − P(i)
, for all n ≥ k ≥ n2. (2.4)

Dividing (E) by x(n) and summing up from k to n − 1, we take∑n−1

j=k

∆x( j)
x( j)

= −
∑n−1

j=k

∑m

i=1
pi( j)

x(τi( j))
x( j)

or ∑n−1

j=k

∆x( j)
x( j)

≤ −

∑n−1

j=k

(∑m

i=1
pi( j)

) x(τ( j))
x( j)

i.e., ∑n−1

j=k

∆x( j)
x( j)

≤ −

∑n−1

j=k
P( j)

x(τ( j))
x( j)

. (2.5)
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Also, since ex
≥ x + 1, x > 0 we have∑n−1

j=k

∆x( j)
x( j)

=
∑n−1

j=k

(
x( j + 1)

x( j)
− 1

)
=

∑n−1

j=k

[
exp

(
ln

x( j + 1)
x( j)

)
− 1

]
≥

∑n−1

j=k

[
ln

x( j + 1)
x( j)

+ 1 − 1
]

=
∑n−1

j=k
ln

x( j + 1)
x( j)

= ln
x(n)
x(k)

,

or ∑n−1

j=k

∆x( j)
x( j)

≥ ln
x(n)
x(k)

. (2.6)

Combining (2.5) and (2.6), we obtain

−

∑n−1

j=k
P( j)

x(τ( j))
x( j)

≥ ln
x(n)
x(k)

,

or

ln
x(k)
x(n)

≥

∑n−1

j=k
P( j)

x(τ( j))
x( j)

. (2.7)

Since τ( j) < j, (2.4) implies

x(τ( j)) ≥ x( j)
∏ j−1

i=τ( j)

1

1 − P(i)
. (2.8)

In view of (2.8), (2.7) gives

ln
x(k)
x(n)

≥

∑n−1

j=k
P( j)

∏ j−1

i=τ( j)

1

1 − P(i)
,

or

x(k) ≥ x(n) exp
(∑n−1

j=k
P( j)

∏ j−1

i=τ( j)

1

1 − P(i)

)
. (2.9)

Summing up (E) from τ(n) to n − 1, we have

x(n) − x(τ(n)) +
∑n−1

`=τ(n)

∑m

i=1
pi (`) x(τi(`)) = 0,

or

x(n) − x(τ(n)) +
∑n−1

`=τ(n)

(∑m

i=1
pi (`)

)
x(τ(`)) ≤ 0,

i.e.,

x(n) − x(τ(n)) +
∑n−1

`=τ(n)
P(`)x(τ(`)) ≤ 0. (2.10)

Since τ(`) ≤ h(`) ≤ h(n) < n, (2.9) guarantees that

x(τ(`)) ≥ x(n) exp
(∑n−1

j=τ(`)
P( j)

∏ j−1

i=τ( j)

1

1 − P(i)

)
. (2.11)
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Combining (2.10) and (2.11) we have

x(n) − x(τ(n)) + x(n)
∑n−1

`=τ(n)
P(`) exp

(∑n−1

j=τ(`)
P( j)

∏ j−1

i=τ( j)

1

1 − P(i)

)
≤ 0.

Multiplying the last inequality by P(n), we take

P(n)x(n) − P(n)x(τ(n)) + P(n)x(n)
∑n−1

`=τ(n)
P(`) exp

(∑n−1

j=τ(`)
P( j)

∏ j−1

i=τ( j)

1

1 − P(i)

)
≤ 0. (2.12)

Furthermore,

∆x(n) = −
∑m

i=1
pi(n)x (τi(n)) ≤ −x (τ(n))

∑m

i=1
pi(n),

i.e.,

∆x(n) ≤ −P(n)x (τ(n)) .

In view of this, (2.12) gives

∆x(n) + P(n)x(n) + P(n)x(n)
∑n−1

`=τ(n)
P(`) exp

(∑n−1

j=τ(`)
P( j)

∏ j−1

i=τ( j)

1

1 − P(i)

)
≤ 0,

or

∆x(n) + P(n)
[
1 +

∑n−1

`=τ(n)
P(`) exp

(∑n−1

j=τ(`)
P( j)

∏ j−1

i=τ( j)

1

1 − P(i)

)]
x(n) ≤ 0.

Therefore

∆x(n) + P1(n)x(n) ≤ 0, (2.13)

where

P1(n) = P(n)
[
1 +

∑n−1

`=τ(n)
P(`) exp

(∑n−1

j=τ(`)
P( j)

∏ j−1

i=τ( j)

1

1 − P(i)

)]
.

Repeating the above argument, where (2.13) is used instead of (2.3), leads to a new estimate

∆x(n) + P2(n)x(n) ≤ 0,

where

P2(n) = P(n)
[
1 +

∑n−1

`=τ(n)
P(`) exp

(∑n−1

j=τ(`)
P( j)

∏ j−1

i=τ( j)

1

1 − P1(i)

)]
.

Continuing by induction, we get

∆x(n) + Pw(n)x(n) ≤ 0, (w ∈N) (2.13’)

where

Pw(n) = P(n)
[
1 +

∑n−1

`=τ(n)
P(`) exp

(∑n−1

j=τ(`)
P( j)

∏ j−1

i=τ( j)

1

1 − Pw−1(i)

)]
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and

x(τ(`)) ≥ x(h(n))
∏h(n)−1

i=τ(`)

1

1 − Pw(i)
. (2.14)

Summing up (E) from h(n) to n, we have

x(n + 1) − x(h(n)) +
∑n

`=h(n)

∑m

i=1
pi (`) x(τi(`)) = 0,

or

x(n + 1) − x(h(n)) +
∑n

`=h(n)

(∑m

i=1
pi (`)

)
x(τ(`)) ≤ 0,

i.e.,

x(n + 1) − x(h(n)) +
∑n

`=h(n)
P(`)x (τ(`)) ≤ 0.

Taking into account the fact that (2.14) holds, the last inequality gives

x(n + 1) − x(h(n)) + x(h(n))
∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − Pw(i)
≤ 0. (2.15)

The strict inequality is valid if we omit x(n + 1) > 0 in the left-hand side:

−x(h(n)) + x(h(n))
∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − Pw(i)
< 0.

This implies

x(h(n))
[∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − Pw(i)
− 1

]
< 0,

i.e.,

lim sup
t→∞

∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − Pw(i)
≤ 1,

which contradicts (2.1).
The proof of the theorem is complete.

To establish the next theorem we need the following lemma.

Lemma 2.2. [2, Lemma 2.2] Assume that (1.1) holds, x(n) is an eventually positive solution of (E), and α is defined
by (1.2). If 0 < α ≤ 1/e, then

lim inf
n→∞

x(n + 1)
x(h(n))

≥ D (α) . (2.16)

Theorem 2.3. Assume that (1.1) and (1.14) hold, h(n) is defined by (1.10) and α by (1.2) with 0 < α ≤ 1/e. If for
some w ∈N

lim sup
n→∞

∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − Pw(i)
> 1 −D (α) , (2.17)

where Pw(n) is defined by (2.2), then all solutions of (E) are oscillatory.
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Proof. Assume, for the sake of contradiction, that (x(n))n≥−v is a nonoscillatory solution of (E). Since
(−x(n))n≥−v is also a solution of (E), we can confine our discussion only to the case where x(n) > 0 for
all large n. Then, as in the proof of Theorem 2.1, for sufficiently large n, (2.15) is satisfied, i.e.,

x(n + 1) − x(h(n)) + x(h(n))
∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − Pw(i)
≤ 0.

That is,∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − Pw(i)
≤ 1 −

x(n + 1)
x(h(n))

,

which gives

lim sup
n→∞

∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − Pw(i)
≤ 1 − lim inf

n→∞

x(n + 1)
x(h(n))

.

Since 0 < α ≤ 1/e, by Lemma 2.2 inequality (2.16) holds. So the last inequality leads to

lim sup
n→∞

∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − Pw(i)
≤ 1 −D (α) ,

which contradicts condition (2.17).
The proof of the theorem is complete.

Remark 2.4. It is clear that the left-hand sides of both conditions (2.1) and (2.17) are identical, also the right-hand
side of condition (2.17) reduces to (2.1) in case that α = 0. So it seems that Theorem 2.3 is the same as Theorem 2.1
when α = 0. However, one may notice that condition 0 < α ≤ 1/e is required in Theorem 2.3 but not in Theorem 2.1.

Theorem 2.5. Assume that (1.1) and (1.14) hold, h(n) is defined by (1.10) and α by (1.2) with 0 < α ≤ 1/e. If for
some w ∈N

lim sup
n→∞

∑n

`=h(n)
P(`)

∏n

i=τ(`)

1

1 − Pw(i)
>

1
D (α)

, (2.18)

where Pw(n) is defined by (2.2), then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that (x(n))n≥−v is an eventually solution of (E). Then, as in the
proof of Theorem 2.1, by the use of the discrete Grönwall inequality from (2.14) we take, for a sufficiently
large n

x(τ(`)) ≥ x(n + 1)
∏n

i=τ(`)

1

1 − Pw(i)
. (2.19)

Summing up (E) from h(n) to n, we have

x(n + 1) − x(h(n)) +
∑n

`=h(n)

∑m

i=1
pi (`) x(τi(`)) = 0,

or

x(n + 1) − x(h(n)) +
∑n

`=h(n)

(∑m

i=1
pi (`)

)
x(τ(`)) ≤ 0,

i.e.,

x(n + 1) − x(h(n)) +
∑n

`=h(n)
P(`)x (τ(`)) ≤ 0.
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In view of (2.19), the last inequality gives

x(n + 1) − x(h(n)) +
∑n

`=h(n)
P(`)x(n + 1)

∏n

i=τ(`)

1

1 − Pw(i)
≤ 0,

or

x(n + 1) − x(h(n)) + x(h(n))
∑n

`=h(n)
P(`)

x(n + 1)
x(h(n))

∏n

i=τ(`)

1

1 − Pw(i)
≤ 0.

Since x(n + 1) > 0, the last inequality leads to

−x(h(n)) + x(h(n))
∑n

`=h(n)
P(`)

x(n + 1)
x(h(n))

∏n

i=τ(`)

1

1 − Pw(i)
< 0,

or

x(h(n))
[

x(n + 1)
x(h(n))

∑n

`=h(n)
P(`)

∏n

i=τ(`)

1

1 − Pw(i)
− 1

]
< 0.

Thus, for all sufficiently large n it holds∑n

`=h(n)
P(`)

∏n

i=τ(`)

1

1 − Pw(i)
<

x(h(n))
x(n + 1)

. (2.20)

Letting n→∞, we take

lim sup
n→∞

∑n

`=h(n)
P(`)

∏n

i=τ(`)

1

1 − Pw(i)
≤ lim sup

n→∞

x(h(n))
x(n + 1)

.

Since 0 < α ≤ 1/e, by Lemma 2.2 inequality (2.16) holds. So the last inequality leads to

lim sup
n→∞

∑n

`=h(n)
P(`)

∏n

i=τ(`)

1

1 − Pw(i)
≤

1
D (α)

,

which contradicts condition (2.18).
The proof of the theorem is complete.

Remark 2.6. If Pw(n) ≥ 1 then (2.13′) guarantees that all solutions of (E) are oscillatory. In fact, (2.13′) gives

∆x(n) + x(n) ≤ 0

which means that x(n + 1) ≤ 0. This contradics x(n) > 0 for all n ≥ n2. Thus, in Theorems 2.1, 2.3 and 2.5 we
consider only the case Pw(n) < 1. Another conclusion, that can be drawn from the above, is that if at some point
through the iterative process, we get a value of w, for which Pw(n) ≥ 1, then the process terminates, since in any case,
all solutions of (E) will be oscillatory. The value of w, that is the number of iterations, obviously, depends on the
coefficients pi(n) and the form of the non-monotone arguments τi(n).

2.2. Advanced difference equations

Similar oscillation theorems for the (dual) advanced difference equation (E′) can be derived easily. The
proof of these theorems are omitted, since they are quite similar to the proofs for a retarded equation.
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Theorem 2.7. Assume that (1.1′) and (1.25) hold, and ρ(n) is defined by (1.21). If for some w ∈N

lim sup
n→∞

∑ρ(n)

`=n
Q(`)

∏σ(`)

i=ρ(n)+1

1

1 −Qw(i)
> 1, (2.21)

where

Qw(n) = Q(n)

1 +
∑σ(n)

`=n+1
Q(`) exp

∑σ(`)

j=n+1
Q( j)

∏σ( j)

i= j+1

1

1 −Qw−1(i)

 , (2.22)

with Q(n) =
∑m

i=1 qi(n) = Q0(n), then all solutions of (E′) are oscillatory.

Theorem 2.8. Assume that (1.1′) and (1.25) hold, ρ(n) is defined by (1.21) and β by (1.3) with 0 < β ≤ 1/e. If for
some w ∈N

lim sup
n→∞

∑ρ(n)

`=n
Q(`)

∏σ(`)

i=ρ(n)+1

1

1 −Qw(i)
> 1 −D

(
β
)

, (2.23)

where Qw(n) is defined by (2.22), then all solutions of (E′) are oscillatory.

Remark 2.9. It is clear that the left-hand sides of both conditions (2.21) and (2.23) are identical, also the right hand
side of condition (2.23) reduces to (2.21) in case that β = 0. So it seems that Theorem 2.8 is the same as Theorem 2.7
when β = 0. However, one may notice that condition 0 < β ≤ 1/e is required in Theorem 2.8 but not in Theorem 2.7.

Theorem 2.10. Assume that (1.1′) and (1.25) hold, ρ(n) is defined by (1.21) and β by (1.3) with 0 < β ≤ 1/e. If for
some w ∈N

lim sup
n→∞

∑ρ(n)

`=n
Q(`)

∏σ(`)

i=n

1

1 −Qw(i)
>

1
D

(
β
) , (2.24)

where Qw(n) is defined by (2.22), then all solutions of (E′) are oscillatory.

Remark 2.11. Similar comments as those in Remark 2.6 can be made for Theorems 2.7, 2.8 and 2.10, concerning
equation (E’).

2.3. Difference inequalities

A slight modification in the proofs of Theorem 2.1, 2.3, 2.5, 2.7, 2.8 and 2.10 leads to the following results
about deviating difference inequalities.

Theorem 2.12. Assume that all conditions of Theorem 2.1 [2.7] or 2.3 [2.8] or 2.5 [2.10] hold. Then
(i) the retarded [advanced] difference inequality

∆x(n) +
∑m

i=1
pi(n)x(τi(n)) ≤ 0, n ∈N0

[
∇x(n) −

∑m

i=1
qi(n)x(σi(n)) ≥ 0, n ∈N

]
,

has no eventually positive solutions;
(ii) the retarded [advanced] difference inequality

∆x(n) +
∑m

i=1
pi(n)x(τi(n)) ≥ 0, n ∈N0

[
∇x(n) −

∑m

i=1
qi(n)x(σi(n)) ≤ 0, n ∈N

]
,

has no eventually negative solutions.
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3. Examples

In this section, examples illustrate cases when the results of the present paper imply oscillation while
previously known results fail.

Example 3.1. Consider the retarded difference equation

∆x(n) +
48
625

x (τ1(n)) +
24

625
x (τ2(n)) +

19
1250

x (τ3(n)) = 0, n ∈N0, (3.1)

with (see Fig. 1, (a))

τ1(n) =


n − 2, if n = 5µ
n − 1, if n = 5µ + 1
n − 5, if n = 5µ + 2
n − 2, if n = 5µ + 3
n − 4, if n = 5µ + 4

and
τ2(n) = τ1(n) − 1
τ3(n) = τ1(n) − 2

where µ ∈N0 andN0 is the set of non-negative integers.
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Figure 1: The graphs of τ1(n) and h1(n)

By (1.10), we see (Fig. 1, (b)) that

h1(n) =


n − 2, if n = 5µ
n − 1, if n = 5µ + 1
n − 2, if n = 5µ + 2
n − 2, if n = 5µ + 3
n − 3, if n = 5µ + 4

and
h2(n) = h1(n) − 1
h3(n) = h1(n) − 2

and consequently

h(n) = max
1≤i≤3

{hi(n)} = h1(n).

Also, it is obvious that

τ(n) = max
1≤i≤3

τi(n) = τ1(n).
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It is easy to see that
∑3

i=1 pi(n) = 48
625 + 24

625 + 19
1250 = 0.1304 < 1, i.e., (1.14) is satisfied.

We observe that the function Fw :N0 → R+ defined as

Fw(n) =
∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − Pw(i)

with P(n) =
∑3

i=1 pi(n) = 163
1250 , attains its maximum at n = 5µ + 4, µ ∈N0, for every w ∈N. Specifically,

F1(n) =
∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − P1(i)

=
∑n

`=h(n)
P(`)

∏h(n)−1

i=τ(`)

1

1 − P(i)
[
1 +

∑i−1
j=τ(i) P( j) exp

(∑i−1
k=τ( j) P(k)

∏k−1
u=τ(k)

1
1−P0(u)

)] .

Thus, by using an algorithm on MATLAB software (see Appendix), we obtain

F1(5µ + 4) ' 1.0094

and therefore

lim sup
n→∞

F1(n) ' 1.0094 > 1.

That is, condition (2.1) of Theorem 2.1 is satisfied for w = 1. Therefore all solutions of (3.1) are oscillatory.

Observe, however, that

LD = lim inf
µ→∞

∑3

i=1

∑5µ

j=5µ
pi( j)

=
48

625
+

24
625

+
19

1250
= 0.1304 <

1
e

,

MD = lim sup
µ→∞

∑3

i=1

∑5µ+4

j=5µ+1
pi( j)

= 4 ·
( 48

625
+

24
625

+
19

1250

)
= 0.5216 < 1.

Also, the function Φr :N0 → R+ defined as

Φr(n) =
∑n

j=h(n)

∑m

i=1
pi( j)a−1

r (h(n), τi( j))
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attains its maximum at n = 5µ + 4, µ ∈N0, for every r ∈N. Specifically,

Φ1(5µ + 4) =
∑5µ+4

j=5µ+1

∑3

i=1
pi( j)a−1

1 (5µ + 1, τi( j))

=
48

625
a−1

1 (5µ + 1, 5µ) +
24

625
a−1

1 (5µ + 1, 5µ − 1) +
19

1250
a−1

1 (5µ + 1, 5µ − 2)

+
48

625
a−1

1 (5µ + 1, 5µ − 3) +
24

625
a−1

1 (5µ + 1, 5µ − 4) +
19

1250
a−1

1 (5µ + 1, 5µ − 5)

+
48

625
a−1

1 (5µ + 1, 5µ + 1) +
24

625
a−1

1 (5µ + 1, 5µ) +
19

1250
a−1

1 (5µ + 1, 5µ − 1)

+
48

625
a−1

1 (5µ + 1, 5µ) +
24

625
a−1

1 (5µ + 1, 5µ − 1) +
19

1250
a−1

1 (5µ + 1, 5µ − 2)

=
48

625
1

1 − 0.1304
+

24
625

1

(1 − 0.1304)2 +
19

1250
1

(1 − 0.1304)3

+
48

625
·

1

(1 − 0.1304)4 +
24
625

1

(1 − 0.1304)5 +
19

1250
1

(1 − 0.1304)6

+
48

625
· 1 +

24
625

1
1 − 0.1304

+
19

1250
1

(1 − 0.1304)2

+
48

625
1

1 − 0.1304
+

24
625

1

(1 − 0.1304)2 +
19

1250
1

(1 − 0.1304)3

' 0.7122.

Therefore

lim sup
n→∞

Φ1(n) ' 0.7122 < 1.

Since

α = min
1≤i≤3

αi = min
{ 48

625
,

48
625

,
57

1250

}
=

57
1250

= 0.0456,

we have

lim sup
n→∞

Φ1(n) ' 0.7122 < 1 −
1 − α −

√

1 − 2α − α2

2
' 0.9989.

Finally, the function G` :N0 → R+ defined as

G`(n) =
∑n

j=h(n)
P( j)

∏h(n)−1

i=τ( j)

1
1 − P`(i)

with P(n) =
∑3

i=1 pi(n) = 163
1250 , attains its maximum at n = 5µ + 4, µ ∈N0, for every ` ∈N. Specifically,

G1(n) =
∑n

j=h(n)
P( j)

∏h(n)−1

i=τ( j)

1
1 − P1(i)

=
∑n

j=h(n)
P( j)

∏h(n)−1

i=τ( j)

1

1 − P(i)
[
1 +

∑i−1
k=τ(i)P(k)

∏h(i)−1
m=τ(k)

1
1−P(m)

]
and therefore

G1(5µ + 4) =
∑5µ+4

j=5µ+1
P( j)

∏5µ

i=τ( j)

1

1 − P(i)
[
1 +

∑i−1
k=τ(i)P(k)

∏h(i)−1
m=τ(k)

1
1−P(m)

]
' 0.7966.
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Thus

lim sup
n→∞

G1(n) ' 0.7966 < 1,

lim sup
n→∞

G1(n) ' 0.7966 < 1 −
1 − α −

√

1 − 2α − α2

2
' 0.9989,

That is, none of conditions (1.8), (1.9), (1.15) (for r = 1), (1.16) (for r = 1), (1.17) (for ` = 1) and (1.18) (for ` = 1) is
satisfied.

Notation. It is worth noting that the improvement of condition (2.1) to the corresponding condition (1.9) is
significant, approximately 93.52%, if we compare the values on the left-hand side of these conditions. Also, the
improvement compared to conditions (1.15) and (1.17) is very satisfactory, around 41.73% and 26.71%, respectively.
Also, observe that the conditions (1.15)−(1.18) do not lead to oscillation for the first iteration. On the contrary,
condition (2.1) is satisfied from the first iteration. This means that our condition is better and much faster than
(1.15)−(1.18).

Example 3.2. Consider the advanced difference equation

∇x(n) −
29
250

x (σ1(n)) −
14
375

x (σ2(n)) −
7

375
x (σ2(n)) = 0, n ∈N, (3.2)

with (see Fig. 2, (a))

σ1(n) =


n + 3 if n = 5µ + 1
n + 1 if n = 5µ + 2
n + 5 if n = 5µ + 3
n + 2 if n = 5µ + 4
n + 1 if n = 5µ + 5

and
σ2(n) = σ1(n) + 1
σ3(n) = σ1(n) + 2

where µ ∈N0 andN0 is the set of non-negative integers.
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Figure 2: The graphs of σ1(n) and ρ1(n)
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By (1.21), we see (Fig. 2, (b)) that

ρ1(n) =


n + 2, if n = 5µ + 1
n + 1, if n = 5µ + 2
n + 3, if n = 5µ + 3
n + 2, if n = 5µ + 4
n + 1, if n = 5µ + 5

and
ρ2(n) = ρ1(n) + 1
ρ3(n) = ρ1(n) + 2

and consequently

ρ(n) = min
1≤i≤3

{
ρi(n)

}
= ρ1(n).

Also, it is obvious that

σ(n) = min
1≤i≤3

σi(n) = σ1(n).

It is easy to see that
∑3

i=1 qi(n) = 29
250 + 14

375 + 7
375 = 0.172 < 1, i.e., (1.25) is satisfied, and

β = min
1≤i≤3

βi = min
{ 29

250
,

28
375

,
21

375

}
=

21
375

= 0.056.

Thus

1
D

(
β
) ' 600.9796.

We observe that the function F :N0 → R+ defined as

Fw(n) =
∑ρ(n)

`=n
Q(`)

∏σ(`)

i=n

1

1 −Qw(i)

with Q(n) =
∑3

i=1 qi(n) = 43
250 , attains its maximum at n = 5µ + 3, µ ∈N0, for every w ∈N. Specifically,

F1(n) =
∑ρ(n)

`=n
Q(`)

∏σ(`)

i=n

1

1 −Q1(i)

=
∑ρ(n)

`=n
Q(`)

∏σ(`)

i=n

1

1 −Q(i)
[
1 +

∑σ(i)
j=i+1 Q( j) exp

(∑σ( j)
k=i+1 Q(k)

∏σ(k)
u=k+1

1
1−Q0(u)

)] .

Thus, by using an algorithm on MATLAB software, we obtain

F1(5µ + 3) ' 602.1269.

Thus

lim sup
n→∞

F1(n) ' 602.1269 >
1

D(β)
' 600.9796,

that is, condition (2.24) of Theorem 2.10 is satisfied for w = 1. Therefore, all solutions of (3.2) are oscillatory.
Observe, however, that

MA = lim sup
n→∞

∑3

i=1

∑5µ+6

j=5µ+3
qi( j)

= 4 ·
( 29

250
+

14
375

+
7

375

)
= 0.688 < 1.
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The function G :N0 → R+ defined as

Gr(n) =
∑ρ(n)

j=n

∑m

i=1
qi( j)b−1

r (ρ(n), σi( j))

attains its maximum at n = 5µ + 3, µ ∈N0, for every r ∈N. Specifically,

G1(5µ + 3) =
∑5µ+6

j=5µ+3

∑3

i=1
qi( j)b−1

1 (5µ + 6, σi( j))

=
29

250
b−1

1 (5µ + 6, σ1(5µ + 3)) +
14

375
b−1

1 (5µ + 6, σ2(5µ + 3)) +
7

375
b−1

1 (5µ + 6, σ3(5µ + 3))

+
29

250
b−1

1 (5µ + 6, σ1(5µ + 4)) +
14

375
b−1

1 (5µ + 6, σ2(5µ + 4)) +
7

375
b−1

1 (5µ + 6, σ3(5µ + 4))

+
29

250
b−1

1 (5µ + 6, σ1(5µ + 5)) +
14

375
b−1

1 (5µ + 6, σ2(5µ + 5)) +
7

375
b−1

1 (5µ + 6, σ3(5µ + 5))

+
29

250
b−1

1 (5µ + 6, σ1(5µ + 6)) +
14

375
b−1

1 (5µ + 6, σ2(5µ + 6)) +
7

375
b−1

1 (5µ + 6, σ3(5µ + 6))

=
29

250
b−1

1 (5µ + 6, 5µ + 8) +
14

375
b−1

1 (5µ + 6, 5µ + 9) +
7

375
b−1

1 (5µ + 6, 5µ + 10)

+
29

250
b−1

1 (5µ + 6, 5µ + 6) +
14

375
b−1

1 (5µ + 6, 5µ + 7) +
7

375
b−1

1 (5µ + 6, 5µ + 8)

+
29

250
b−1

1 (5µ + 6, 5µ + 6) +
14

375
b−1

1 (5µ + 6, 5µ + 7) +
7

375
b−1

1 (5µ + 6, 5µ + 8)

+
29

250
b−1

1 (5µ + 6, 5µ + 9) +
14

375
b−1

1 (5µ + 6, 5µ + 10) +
7

375
b−1

1 (5µ + 6, 5µ + 11)

=
29

250

[
1

(1 − 0.172)2 + 1 + 1 +
1

(1 − 0.172)3

]
+

14
375

[
1

(1 − 0.172)3 + 2 ·
1

1 − 0.172
+

1

(1 − 0.172)4

]
+

7
375

[
1

(1 − 0.172)4 + 2 ·
1

(1 − 0.172)2 +
1

(1 − 0.172)5

]
' 0.9831.

Therefore

lim sup
n→∞

G1(n) ' 0.9831 < 1

and

0.9831 < 1 −
1 − β −

√
1 − 2β − β2

2
' 0.9983

That is, none of conditions (1.20), (1.26) (for r = 1) and (1.27) (for r = 1) is satisfied.
Notation. It is worth noting that the conditions (1.26) and (1.27) do not lead to oscillation for the first iteration.

On the contrary, condition (2.24) is satisfied from the first iteration. This means that our condition is better and much
faster than (1.26) and (1.27).

Remark 3.3. Similarly, one can construct examples to illustrate the other main results.
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Appendix. In this appendix, for completeness, we give the algorithm on Matlab software used in Example
1 for calculation of F1(5µ + 4). For Example 2, the algorithm is omitted since it is similar.

ALGORITHM for Example 1

1 clear; clc;
2 coeff = 0.1304;
3 alphas3 = 11;
4 betas3 = 14;
5 s3 = 0;
6 for is3 = alphas3 : 1 : betas3;
7 alphap2 = TFunction(is3);
8 betap2 = 10;
9 p2 = 1;

10 for ip2 = alphap2 : 1 : betap2;
11 alphas2 = TFunction(ip2);
12 betas2 = ip2-1;
13 s2 = 0;
14 for is2 = alphas2 : 1 : betas2;
15 alphas1 = TFunction(is2);
16 betas1 = ip2-1;
17 s1 = 0;
18 for is1 = alphas1 : 1 : betas1;
19 alphap1 = TFunction(is1);
20 betap1 = is1-1 ;
21 p1 = 1;
22 for ip1 = alphap1 : 1 : betap1;
23 if alphap1 > betap1;
24 p1 = 1;
25 else p1 = p1/(1-coeff);
26 end
27 end
28 if alphas1 > betas1;
29 s1 = 0;
30 else s1 = s1+coeff*p1;
31 end
32 end
33 if alphas2 > betas2;
34 s2 = 0;
35 else s2 = s2+coeff*exp(s1);
36 end
37 end
38 if alphap2 > betap2;
39 p2 = 0;
40 else p2 = p2/(1-coeff*(1+s2));
41 end
42 end
43 if alphas3 > betas3;
44 s3 = 0;
45 else s3 = s3+coeff*p2;
46 end
47 end
48 F1n = s3
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ALGORITHMS for functions τ(n) and h(n)

1 function a = TFunction(x)
2 r = mod(x,5);
3 if(r==0);
4 a = x-2;
5 end
6 if(r==1);
7 a = x-1;
8 end
9 if(r==2);

10 a = x-5;
11 end
12 if(r==3);
13 a = x-2;
14 end
15 if(r==4);
16 a = x-4;
17 end
18 end

1 function a = HFunction(x)
2 r = mod(x,5);
3 if(r==0);
4 a = x-2;
5 end
6 if(r==1);
7 a = x-1;
8 end
9 if(r==2);

10 a = x-2;
11 end
12 if(r==3);
13 a = x-2;
14 end
15 if(r==4);
16 a = x-3;
17 end
18 end
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