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Abstract. In this paper, some inequalities for the trace and eigenvalues of a block Hadamard product
of positive semidefinite matrices are investigated. In particular, a Hölder type inequality and inequalities
related to norm and determinants of block matrices are obtained. Additionally, the relation between the
trace of block Hadamard product and the usual Kronecker product is established.

1. Introduction

Block Kronecker and block Hadamard products seem to be firstly defined and used by Horn, Mathias
and Nakamura in 1991([4]). Günther and Klotz presented a survey focusing on the study of a block
Hadamard and block Kronecker products of positive semidefinite matrices in 2012([2]). In that paper,
some properties of such products were discussed and an inequality (a lower bound) on the determinant
of the block Hadamard product was given. In 2014, Lin provided an Oppenheim type inequality for the
determinant of the block Hadamard product([5]), which confirms a conjecture in [2]. So far, there have not
been quite many results on the trace of such products in the literature. In this paper, we shall be mainly
interested in the inequalities for the trace of the block Hadamard product.

For the rest of the paper, we first introduce the definitions and terminology that are used throughout
the paper. In Section 3, we give some lemmas that play important roles in our results. In Section 4, we give
our main results on the upper and lower bounds for the trace of the block Hadamard product of positive
definite matrices.
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2. Preliminaries

Let Mm×n be the linear space of m × n matrices with complex entries and Mp,q(Mm,n) be the space of
p × q block matrices, and write Mn,n := Mn andMp :=Mp,p(Mn,n). The identity matrix inMp is denoted by
Ip = dia1(In, . . . , In) where In ∈Mn.

A matrixA ∈Mp is Hermitian ifA∗ = AwhereA∗ is the conjugate transpose ofA. A Hermitian matrix
A is said to be positive definite (positive semidefinite), denoted by A > 0 (A ≥ 0), if x∗Ax > 0 (x∗Ax ≥ 0)
for all nonzero x ∈ C.

The eigenvalues and singular values ofA ∈Mp are denoted byλ1(A), λ2(A), . . . , λpn(A) andσ1(A), σ2(A),
. . . , σpn(A), respectively. They are arranged in decreasing order: for a Hermitian matrix A ∈ Mp,
λ1(A) ≥ λ2(A) ≥ . . . ≥ λpn(A), and σ1(A) ≥ σ2(A) ≥ . . . ≥ σpn(A). Note that σi(A) = λi(A) for a posi-
tive semidefinite matrixA for i = 1, . . . , pn since σi(A) = λi(A∗A)1/2.

Let A = (Ai j) ∈ Mp,q and B = (Bi j) ∈ Ms,t. Then we call matrices A, B block commuting if every n × n
block ofA commutes with every n × n block of B.

Let A = (Ai j) ∈ Mp,q(Mm,l) and B = (Bi j) ∈ Mp,q(Ml,n). Then the block Hadamard product of A and
B is defined by A�B = (Ai jBi j). If A and B are both positive definite(positive semidefinite) and block
commuting matrices, thenA�B is positive definite (positive semidefinite) as in [2] Corollary 3.3.

Let A ∈ Mm,l and B = (Bi j) ∈ Ms,t(Ml,n). Then the block Kronecker product of A and B is defined by
A �B = (ABi j)

j=1,...,t
i=1,...,s where ABi j is the usual matrix product of A and Bi j. For A = (Ai j) ∈ Mp,q(Mm,l), the

block Kronecker product is given byA �B = (Ai j �B) j=1,...,q
i=1,...,p .

For real vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in decreasing order, it is said that x is majorized by y
(x ≺ y) if

n∑
i=k

xi ≥

n∑
i=k

yi for k = 2, . . . ,n and
n∑

i=1

xi =

n∑
i=1

yi.

A linear map Φ from Mn to Mn is called doubly stochastic if it is positive (A ≥ 0 → Φ(A) ≥ 0), unital
(Φ(I) = I) and trace preserving (tr (Φ(A)) = trA). Then, for A ∈ Mpn and Φ : Mpn → Mpn, it is clear that
Φ(A) = A�I is doubly stochastic. Thus, by Lemma 2.14 in [8], we have

λ(A�I) ≺ λ(A). (1)

3. Lemmas

In this section, we give lemmas that are fundamental in our main results.

Lemma 3.1. [3] For any two matrices A and B,

σ(AB) ≺lo1 σ(A)σ(B).

Lemma 3.2. [6] Let αi > 0 (i = 1, . . . ,n) and
∑n

i=1 αi ≥ 1. Let ai j > 0 for j = 1, . . . ,m. Then

m∑
j=1

aα1
1 j a

α2
2 j · · · a

αn
nj ≤

( m∑
j=1

a1 j

)α1( m∑
j=1

a2 j

)α2
· · ·

( m∑
j=1

anj

)αn
.

Lemma 3.3. [7] Let Ai, Bi ∈ Mn(C) for i = 1, . . . ,m be positive semidefinite matrices and p, q be positive real
numbers such that 1/p + 1/q = 1. Then

tr
( m∑

i=1

AiBi

)
≤

(
tr
( m∑

i=1

Ap
i

))1/p(
tr
( m∑

i=1

Bq
i

))1/q
.

For anyA, B ∈ Mp,A�B = (A�B)[α] where α is a block index set such that α = {1, p + 2, 2p + 3, · · · , p2
}

, there exists a unital positive linear map Φ from Mp2 to Mp such that Φ(A � B) = A�B for all A, B ∈ Mp
as in [8] Lemma 1.9.
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Lemma 3.4. For anyA, B > 0, we have

(logA + logB)�I ≤ log(A�B) A, B > 0. (2)

Proof. First note that Φ(A � I) = A�I = I�A = Φ(I �A) and (A � I)k = (Ak � I) by Proposition 2.3 of
[2] so for any analytic function f we have f (A � I) = f (A) � I by power series representation of f . Then,
since Φ is linear, we get

(logA + logB)�I = Φ
(
(logA + logB) � I

)
(3)

= Φ
(

logA � I + logB � I
)

(4)

= Φ
(

logA � I
)

+ Φ
(

logB � I
)

(5)

= Φ
(

logA � I
)

+ Φ
(
I � logB

)
(6)

= Φ
(

logA � I + I � logB
)

(7)

= Φ
(

log(A � I) + log(I �B)
)

(8)

= Φ
(

log((A � I)(I �B))
)

(9)

= Φ
(

log(A �B
)

(10)

≤ log
(
Φ(A �B

)
(11)

= log(A�B) (12)

where (10) and (11) follow from the facts, respectively, that (A�I)(I�B) = A�B (see [2]) and Φ(logA) ≤
log(Φ(A)) for a unital positive linear map Φ andA > 0 (see [8]).

4. Main Results

In this section, we first introduce an inequality on the product of eigenvalues of the block Hadamard
product of positive definite matrices that generalize Oppenheim’s inequality. Then we give some upper and
lower bounds on the trace of block Hadamard product of positive definite (positive semidefinite) matrices.

Theorem 4.1. LetA, B ∈ Mp be block commuting and positive definite matrices. Then

pn∏
j=k

λ j(A�B) ≥
pn∏
j=k

λ j(AB), k = 1, 2, . . . , pn. (13)
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Proof. By (2) and (1), respectively, for all k = 1, 2, . . . , pn we have

log
( pn∏

j=k

λ j(A�B)
)

=

pn∑
j=k

λ j

(
log(A�B)

)
≥

pn∑
j=k

λ j

(
(logA + logB)�I

)
≥

pn∑
j=k

λ j

(
logA + logB

)
≥

pn∑
j=k

λ j

(
logA1/2

BA
1/2

)
= log

( pn∏
j=k

λ j(AB)
)

where the last inequality follows from logA + logB ≺ log(A1/2
BA

1/2) (see [8] pg. 22).

We remark here that, by Theorem 4.1 for k=1, we get Openheim’s inequality for the block Hadamard
product: det(A�B) ≥ det A det B.

The following result is a Hölder type inequality for the trace of block Hadamard product.

Theorem 4.2. Let A = (Ai j) , B = (Bi j) ∈ Mp be positive semidefinite block matrices and q1, q2 > 1 with
1/q1 + 1/q2 = 1. Then

(i) tr(A�B) ≤
( p∑

i=1

trAq1

ii

)1/q1( p∑
i=1

trBq2

ii

)1/q2

.

(ii) tr(A�B) ≤
p∑

i=1

(
trAq1

ii

)1/q1
(
trBq2

ii

)1/q2
.

Proof. i) By Lemma 3.3 and the linearity of the trace we have

tr(A�B) =

p∑
i=1

tr(AiiBii) = tr
( p∑

i=1

AiiBii

)

≤

tr

 p∑
i=1

Aq1

ii




1/q1
tr

 p∑
i=1

Bq2

ii




1/q2

=

 p∑
i=1

trAq1

ii


1/q1

 p∑
i=1

trBq2

ii


1/q2

.

ii) For m = 1 in Lemma 3.3, we obtain

tr(A�B) =

p∑
i=1

(trAiiBii)

≤

p∑
i=1

(
trAq1

ii

)1/q1
(
trBq2

ii

)1/q2
.
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The relation between the trace of block Hadamard product and the trace of Kronecker product is given
in the following form:

Corollary 4.3. LetA , B ∈ M2 be block commuting and positive semidefinite matrices. Then

tr(A�B) ≤
(
tr ((A�A) ⊗ (B�B))

)1/2
.

Proof. Let p = q1 = q2 = 2 in Theorem 4.2(i). Then we get

tr(A�B) ≤
( 2∑

i=1

trA2
ii

)1/2( 2∑
i=1

trB2
ii

)1/2

Moreover, we have

(
tr
( 2∑

i=1

A2
ii

))1/2(
tr
( 2∑

i=1

B2
ii

))1/2
=

(
tr
(
A2

11 + A2
22

))1/2(
tr
(
B2

11 + B2
22

))1/2

=
(
tr(A�A)

)1/2(
tr(B�B)

)1/2

=
(
tr(A�A)tr(B�B)

)1/2

=
(
tr ((A�A) ⊗ (B�B)])

)1/2
,

where the last equality follows from the fact that tr(N ⊗M) = trNtrM. Thus, we obtain the result.

This can also be generalized to the following:

tr(A�B) ≤
(
tr

(
(�p

j=1A) ⊗ (�p
j=1B)

) )1/2
forA, B ∈ Mp andA, B > 0,

where �p
j=1A denotes for the block Hadamard product ofA p times.

Now, an inequality that depends on the norm and trace of block matrices is given as below.

Theorem 4.4. LetA = (Ai j) , B = (Bi j) ∈ Mp be block commuting and positive semidefinite matrices. Then for any
natural number k ≥ 1, we have

tr
(
�k

i=1(A�B)
)
≤ min

{ p∑
i=1

‖Aii‖
ktrBk

ii,

p∑
i=1

‖Bii‖
ktrAk

ii

}
,

where ‖ · ‖ is a matrix norm. In particular,

tr(A�B) ≤ min
{ p∑

i=1

‖Aii‖trBii,

p∑
i=1

‖Bii‖trAii

}
.

Proof. First note that we have Ak
iiB

k
ii = (AiiBii)k since A and B are block commuting. By Lemma 3.1 and
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λ j(A) ≤ ‖A‖, we get

tr
(
�k

i=1(A�B)
)

= tr
( p∑

i=1

(AiiBii)k
)

=

p∑
i=1

n∑
j=1

λk
j(AiiBii)

≤

p∑
i=1

n∑
j=1

‖Aii‖
kλk

j(Bii)

=

p∑
i=1

‖Aii‖
k

n∑
j=1

λk
j(Bii)

=

p∑
i=1

‖Aii‖
ktrBk

ii.

Similarly, we have tr
(
�k

i=1(A�B)
)
≤

p∑
i=1

‖Bii‖
ktrAk

ii.

Corollary 4.5. Let A = (Ai j) , B = (Bi j) ∈ Mp be block commuting and positive semidefinite matrices. Then we
have the followings:

(i) For q1 + q2 ≥ 1 and q1, q2 > 0,

tr
(
�k

i=1(A�B)
)

≤ min
{( p∑

i=1

‖Aii‖
q1k

)1/q1( p∑
i=1

(
trBk

ii

)q2
)1/q2

,
( p∑

i=1

‖Bii‖
q1k

)1/q1( p∑
i=1

(
trAk

ii

)q2
)1/q2

}
(ii) tr

[
�k

i=1A
]
≤ min

{
n

p∑
i=1

‖Aii‖
k,

n∑
i=1

trAk
ii

}
Proof. (i) follows from Theorem 4.4 and Theorem 2.8 of [7]. Letting B = I in Theorem 4.4, we get (ii).

Finally, we shall discuss a lower bound on the trace of block Hadamard product in terms of determinants
of block matrices.

Theorem 4.6. LetA, B ∈ Mp be positive definite block matrices. Then

tr
(
�k

i=1(A�B)
)
≥ n

p∑
i=1

(
det(AiiBii)

)k/n
.

In particular, tr(A�B) ≥ n
∑p

i=1

(
det(AiiBii)

)1/n
.

Proof. For each Aii we can find a unitary matrix Ui such that UiΛiiU∗i = Aii since A > 0 where Λii =

dia1(λ1(Λii), . . . , λn(Λii)). Define b(i)
j j as the diagonal elements of U∗i B

k
iiUi for j = 1, . . . ,n. Then by arithmetic-
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geometric mean inequality we get

tr
(
�k

i=1(A�B)
)

=

p∑
i=1

(tr(AiiBii)k)

=

p∑
i=1

tr(UiΛ
k
iiU
∗

i B
k
ii)

=

p∑
i=1

tr(Λk
ii(U

∗

i BiiUi)k)

=

p∑
i=1

λk
1(Λii)b

(i)
11 + · · · + λk

n(Λii)b
(i)
nn

≥ n
p∑

i=1

(
λk

1(Λii)b
(i)
11 · · ·λ

k
n(Λii)b

(i)
nn

)1/n

≥ n
p∑

i=1

(
det(Λk

ii)
)1/n(

det(U∗i BiiUi)k
)1/n

= n
p∑

i=1

(
detAiidetBii

)k/n

where the last inequality follows from the fact that detC ≤ c11c22 · · · cnn for any matrix C ∈Mn with diagonal
elements cii, i = 1, . . . ,n.

5. Example

LetA = B be positive definite matrix such that
4 1 · 1 0
2 3 · 0 1
· · · · ·

1 0 · 6 1
0 1 · 0 2

 =

(
A11 A12
A21 A22

)
.

Then 36.0804, 24.9328, 4.9058, 3.0810 are the eigenvalues of

A�A =


18 7 1 0
14 11 0 1
1 0 36 8
0 1 0 4

 .
For the result of Theorem 4.1, we have the following table:

k=1 k=2 k=3 k=4
4∏

i=k

λi(A�A) 13597.0262 376.8535 15.1148 3.0810

4∏
i=k

λi(AA) 7913.8618 183.3899 8.8305 1.1143

In Theorem 4.2, for q1 = q2 = 2, we have the equality in both cases. On the other hand, for q1 = 3, q2 = 3/2
we have 70.8071 and 70.6389, respectively, as an upper bound for tr(A�A) = 69.

For k = 1 and k = 2 in Theorem 4.4, we have the following inequalities 69 < 83 and 1953 < 2165, respectively.
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