On Bounds for Harmonic Topological Index

Marjan Matejića ${ }^{\text {a }}$, Igor Milovanovića ${ }^{\text {a }}$, Emina Milovanovićc ${ }^{\text {a }}$
${ }^{a}$ Faculty of Electronics Engineering, University of Niš, A. Medvedeva 14, 18000 Niš, Serbia

Abstract

Let $G=(V, E), V=\{1,2, \ldots, n\}, E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, be a simple graph with n vertices and m edges. Denote by $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0$ and $d\left(e_{1}\right) \geq d\left(e_{2}\right) \geq \cdots \geq d\left(e_{m}\right)$, sequences of vertex and edge degrees, respectively. If i-th and j-th vertices of the graph G are adjacent, it is denoted as $i \sim j$. Graph invariant referred to as harmonic index is defined as $H(G)=\sum_{i \sim j} \frac{2}{d_{i}+d_{j}}$. Lower and upper bounds for invariant $H(G)$ are obtained.

1. Introduction

Let $G=(V, E), V=\{1,2, \ldots, n\}, E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, be a simple graph. Denote by $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0$, and $d\left(e_{1}\right) \geq d\left(e_{2}\right) \geq \cdots \geq d\left(e_{m}\right)$, sequences of vertex and edge degrees, respectively. In addition, we use the following notation: $\Delta=d_{1}, \delta=d_{n}, \Delta_{e_{1}}=d\left(e_{1}\right)+2, \Delta_{e_{2}}=d\left(e_{2}\right)+2, \delta_{e_{1}}=d\left(e_{m}\right)+2, \delta_{e_{2}}=d\left(e_{m-1}\right)+2$. If i-th and j-th vertices (e_{i} and e_{j} edges) of the graph G are adjacent, it is denoted as $i \sim j\left(e_{i} \sim e_{j}\right)$. As usual, $L(G)$ denotes a line graph of G.

Gutman and Trinajstić [9] introduced two vertex degree topological indices, named the first and the second Zagreb indices. These are defined as

$$
M_{1}=M_{1}(G)=\sum_{i=1}^{n} d_{i}^{2} \quad \text { and } \quad M_{2}=M_{2}(G)=\sum_{i \sim j} d_{i} d_{j} .
$$

The first Zagreb index can be also expressed as

$$
\begin{equation*}
M_{1}=M_{1}(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right) \tag{1}
\end{equation*}
$$

Details on the mathematical theory of Zagreb indices can be found in [1, 4-8].
In [18] Zhou and Trinajstić defined general sum-connectivity index H_{α}, as

$$
H_{\alpha}=H_{\alpha}(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha}
$$

[^0]where α is an arbitrary real number.
Here we are concerned with two special variants of H_{α}, the sum-connectivity index $X=H_{-1 / 2}$ [19], and harmonic topological index $H=2 H_{-1}$ [3], which are defined as
\[

$$
\begin{equation*}
X=X(G)=\sum_{i \sim j} \frac{1}{\sqrt{d_{i}+d_{j}}} \quad \text { and } \quad H=H(G)=\sum_{i \sim j} \frac{2}{d_{i}+d_{j}} . \tag{2}
\end{equation*}
$$

\]

2. Preliminaries

In what follows, we outline a few inequalities for topological index H as well as some analytical inequalities that will be needed in the subsequent considerations.

Rodrigues and Sigarreta [14] have determined the following upper bound for index H in terms of invariant M_{1} and graph parameters m, Δ and δ

$$
\begin{equation*}
H \leq \frac{m^{2}}{2 M_{1}}\left(\sqrt{\frac{\Delta}{\delta}}+\sqrt{\frac{\delta}{\Delta}}\right)^{2} \tag{3}
\end{equation*}
$$

with equality if G is regular.
Ilić [11] and Xu [17] independently proved the following inequality involving the harmonic and the first Zagreb indices

$$
\begin{equation*}
H \geq \frac{2 m^{2}}{M_{1}} \tag{4}
\end{equation*}
$$

with equality if and only if $d_{i}+d_{j}$ is constant for each pair of adjacent vertices i and j.
Having in mind (1) and (2) it can be easily observed that topological indices M_{1}, X and H can be computed according to

$$
\begin{equation*}
M_{1}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right), \quad X=\sum_{i=1}^{m} \frac{1}{\sqrt{d\left(e_{i}\right)+2}}, \quad \text { and } \quad H=\sum_{i=1}^{m} \frac{2}{d\left(e_{i}\right)+2} . \tag{5}
\end{equation*}
$$

Let $a=\left(a_{i}\right), i=1,2, \ldots, m$, be a sequence of positive real numbers with the property $0<r \leq a_{i} \leq R<+\infty$. Szökefalvi Nagy [16] (see also [15]) proved that

$$
\begin{equation*}
m \sum_{i=1}^{m} a_{i}^{2}-\left(\sum_{i=1}^{m} a_{i}\right)^{2} \geq \frac{m}{2}(R-r)^{2} . \tag{6}
\end{equation*}
$$

Let d and s be non-negative real numbers so that $d>s \geq 0$. Then, equality in (6) is attained for $R=a_{1}=d+s, d=a_{2}=\cdots=a_{m-1}$ and $r=d-s=a_{m}$.

Denote with $p=\left(p_{i}\right)$ and $a=\left(a_{i}\right)$ sequences of real numbers with the properties

$$
p_{i} \geq 0, \quad \sum_{i=1}^{m} p_{i}=1, \quad 0<r \leq a_{i} \leq R<+\infty, \quad i=1,2, \ldots, m
$$

In [10] Henrici proved that

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} \frac{p_{i}}{a_{i}} \leq \frac{1}{4}\left(\sqrt{\frac{R}{r}}+\sqrt{\frac{r}{R}}\right)^{2} \tag{7}
\end{equation*}
$$

Similarly, in [12] Lupas proved that

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i} \sum_{i=1}^{m} \frac{1}{a_{i}} \leq \frac{\left(\left\lfloor\frac{m}{2}\right\rfloor R+\left\lfloor\frac{m+1}{2}\right\rfloor r\right)\left(\left\lfloor\frac{m+1}{2}\right\rfloor R+\left\lfloor\frac{m}{2}\right\rfloor r\right)}{R r} \tag{8}
\end{equation*}
$$

We'll show that this inequality can also be represented in the following form

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i} \sum_{i=1}^{m} \frac{1}{a_{i}} \leq m^{2}\left(1+\alpha(m)\left(\sqrt{\frac{R}{r}}-\sqrt{\frac{r}{R}}\right)^{2}\right) \tag{9}
\end{equation*}
$$

where

$$
\alpha(m)=\frac{1}{4}\left(1-\frac{(-1)^{m+1}+1}{2 m^{2}}\right) .
$$

Suppose, first, that m is even. Then

$$
\begin{align*}
& \frac{\left(\left\lfloor\frac{m}{2}\right\rfloor R+\left\lfloor\frac{m+1}{2}\right\rfloor r\right)\left(\left\lfloor\frac{m+1}{2}\right\rfloor R+\left\lfloor\frac{m}{2}\right\rfloor r\right)}{R r}=\frac{\left(\frac{m}{2} R+\frac{m}{2} r\right)\left(\frac{m}{2} R+\frac{m}{2} r\right)}{R r}= \\
& =\frac{m^{2}}{4}\left(\sqrt{\frac{R}{r}}+\sqrt{\frac{r}{R}}\right)=m^{2}\left(1+\frac{1}{4}\left(\sqrt{\frac{R}{r}}-\sqrt{\frac{r}{R}}\right)^{2}\right) . \tag{10}
\end{align*}
$$

Now, suppose that m is odd. Then

$$
\begin{align*}
& \frac{\left(\left\lfloor\frac{m}{2}\right\rfloor R+\left\lfloor\frac{m+1}{2}\right\rfloor r\right)\left(\left\lfloor\frac{m+1}{2}\right\rfloor R+\left\lfloor\frac{m}{2}\right\rfloor r\right)}{R r}=\frac{\left(\frac{m-1}{2} R+\frac{m+1}{2} r\right)\left(\frac{m+1}{2} R+\frac{m-1}{2} r\right)}{R r}= \\
& =\frac{\left(m^{2}-1\right)(R-r)^{2}+4 m^{2} r R}{4 R r}=m^{2}\left(1+\frac{m^{2}-1}{4 m^{2}}\left(\sqrt{\frac{R}{r}}-\sqrt{\frac{r}{R}}\right)^{2}\right) . \tag{11}
\end{align*}
$$

According to (8), (10) and (11) we arrive at (9).

3. Main Results

In the following theorem we prove the inequality that determines an upper bound for index H in terms of topological index M_{1} and graph parameters $m, \Delta_{e_{1}}$ and $\delta_{e_{1}}$.

Theorem 3.1. Let G be a simple graph of order n with $m \geq 2$ edges. Then

$$
\begin{equation*}
H \leq \frac{2 m^{2}}{M_{1}}\left(1+\alpha(m)\left(\sqrt{\frac{\Delta_{e_{1}}}{\delta_{e_{1}}}}-\sqrt{\frac{\delta_{e_{1}}}{\Delta_{e_{1}}}}\right)^{2}\right) \tag{12}
\end{equation*}
$$

with equality if $L(G)$ is regular, or $\Delta_{e_{1}}=d\left(e_{1}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e_{1}}$, for $k=\left\lfloor\frac{m}{2}\right\rfloor$ or $k=\left\lfloor\frac{m+1}{2}\right\rfloor$.

Proof. For $a_{i}=d\left(e_{i}\right)+2, i=1,2, \ldots, m, R=\Delta_{e_{1}}=d\left(e_{1}\right)+2$ and $r=\delta_{e_{1}}=d\left(e_{m}\right)+2$, the inequality (9) transforms into

$$
\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right) \sum_{i=1}^{m} \frac{1}{d\left(e_{i}\right)+2} \leq m^{2}\left(1+\alpha(m)\left(\sqrt{\frac{\Delta_{e_{1}}}{\delta_{e_{1}}}}-\sqrt{\frac{\delta_{e_{1}}}{\Delta_{e_{1}}}}\right)^{2}\right)
$$

Having in mind (5) the above inequality becomes

$$
M_{1} \cdot \frac{1}{2} H \leq m^{2}\left(1+\alpha(m)\left(\sqrt{\frac{\Delta_{e_{1}}}{\delta_{e_{1}}}}-\sqrt{\frac{\delta_{e_{1}}}{\Delta_{e_{1}}}}\right)^{2}\right),
$$

wherefrom inequality (12) is obtained.
Equality in (8) is attained if $R=a_{1}=\cdots=a_{m}=r$, or if $R=a_{1}=\cdots=a_{k} \geq a_{k+1}=\cdots=a_{m}=r$ for $k=\left\lfloor\frac{m}{2}\right\rfloor$ or $k=\left\lfloor\frac{m+1}{2}\right\rfloor$. This implies that equality in (12) holds if $L(G)$ is regular, or $\Delta_{e_{1}}=d\left(e_{1}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq$ $d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e_{1}}$ for $k=\left\lfloor\frac{m}{2}\right\rfloor$ or $k=\left\lfloor\frac{m+1}{2}\right\rfloor$.

Remark 3.2. Since

$$
H \leq \frac{2 m^{2}}{M_{1}}\left(1+\alpha(m)\left(\sqrt{\frac{\Delta_{e_{1}}}{\delta_{e_{1}}}}-\sqrt{\frac{\delta_{e_{1}}}{\Delta_{e_{1}}}}\right)^{2}\right) \leq \frac{m^{2}}{2 M_{1}}\left(\sqrt{\frac{\Delta_{e_{1}}}{\delta_{e_{1}}}}+\sqrt{\frac{\delta_{e_{1}}}{\Delta_{e_{1}}}}\right)^{2} \leq \frac{m^{2}}{2 M_{1}}\left(\sqrt{\frac{\Delta}{\delta}}+\sqrt{\frac{\delta}{\Delta}}\right)^{2}
$$

the inequality (12) is stronger than (3).
Corollary 3.3. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
H \leq \frac{n}{2}\left(1+\alpha(m)\left(\sqrt{\frac{\Delta_{e_{1}}}{\delta_{e_{1}}}}-\sqrt{\frac{\delta_{e_{1}}}{\Delta_{e_{1}}}}\right)^{2}\right)
$$

Equality is attained if G is regular.
Proof. The above inequality is obtained from (12) and

$$
M_{1} \geq \frac{4 m^{2}}{n}
$$

which was proved in [2].
Corollary 3.4. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
H \leq \frac{2 m}{\delta_{e_{1}}}\left(1+\alpha(m)\left(\sqrt{\frac{\Delta_{e_{1}}}{\delta_{e_{1}}}}-\sqrt{\frac{\delta_{e_{1}}}{\Delta_{e_{1}}}}\right)^{2}\right) .
$$

Equality is attained if $L(G)$ is regular.
By a similar procedure as in case of Theorem 3.1, the following can be proved:
Theorem 3.5. Let G be a simple connected graph with n vertices and m edges. If $m \geq 3$, then

$$
H \leq \frac{2}{\Delta_{e_{1}}}+\frac{2(m-1)^{2}}{M_{1}-\Delta_{e_{1}}}\left(1+\alpha(m-1)\left(\sqrt{\frac{\Delta_{e_{2}}}{\delta_{e_{1}}}}-\sqrt{\frac{\delta_{e_{1}}}{\Delta_{e_{2}}}}\right)^{2}\right)
$$

with equality if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e_{1}}$, or $\Delta_{e_{2}}=d\left(e_{1}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=$ $d\left(e_{m}\right)+2=\delta_{e_{1}}$ for $k=\left\lfloor\frac{m-1}{2}\right\rfloor$ or $k=\left\lfloor\frac{m}{2}\right\rfloor$.

If $m \geq 3$, then

$$
H \leq \frac{2}{\delta_{e_{1}}}+\frac{2(m-1)^{2}}{M_{1}-\delta_{e_{1}}}\left(1+\alpha(m-1)\left(\sqrt{\frac{\Delta_{e_{1}}}{\delta_{e_{2}}}}-\sqrt{\frac{\delta_{e_{2}}}{\Delta_{e_{1}}}}\right)^{2}\right)
$$

with equality if $\Delta_{e_{1}}=d\left(e_{1}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$, or $\Delta_{e_{1}}=d\left(e_{1}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=$ $d\left(e_{m-1}\right)+2=\delta_{e_{2}}$ for $k=\left\lfloor\frac{m-1}{2}\right\rfloor$ or $k=\left\lfloor\frac{m}{2}\right\rfloor$.

If $m \geq 4$, then

$$
H \leq \frac{2\left(\Delta_{e_{1}}+\delta_{e_{1}}\right)}{\Delta_{e_{1}} \delta_{e_{1}}}+\frac{2(m-2)^{2}}{M_{1}-\delta_{e_{1}}-\Delta_{e_{1}}}\left(1+\alpha(m-2)\left(\sqrt{\frac{\Delta_{e_{2}}}{\delta_{e_{2}}}}-\sqrt{\frac{\delta_{e_{2}}}{\Delta_{e_{2}}}}\right)^{2}\right)
$$

with equality if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$, or $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq d\left(e_{k+1}\right)+2=\cdots=$ $d\left(e_{m-1}\right)+2=\delta_{e_{2}}$, for $k=\left\lfloor\frac{m-2}{2}\right\rfloor$ or $k=\left\lfloor\frac{m-1}{2}\right\rfloor$.
Theorem 3.6. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
H \leq \frac{X^{2}}{2 m} \frac{\left(\sqrt{\Delta_{e_{1}}}+\sqrt{\delta_{e_{1}}}\right)^{2}}{\sqrt{\Delta_{e_{1}} \delta_{e_{1}}}} \tag{13}
\end{equation*}
$$

with equality if $L(G)$ is regular.
Proof. For $p_{i}=\frac{\frac{1}{\sqrt{d\left(e_{i}\right)+2}}}{\sum_{i=1}^{m} \frac{1}{\sqrt{d\left(e_{i}\right)+2}}}, a_{i}=\sqrt{d\left(e_{i}\right)+2}, i=1,2, \ldots, m, R=\sqrt{\Delta_{e_{1}}}=\sqrt{d\left(e_{1}\right)+2}$ and $r=\sqrt{\delta_{e_{1}}}=$ $\sqrt{d\left(e_{m}\right)+2}$, the inequality (7) becomes

$$
\frac{m}{\sum_{i=1}^{m} \frac{1}{\sqrt{d\left(e_{i}\right)+2}}} \cdot \frac{\sum_{i=1}^{m} \frac{1}{d\left(e_{i}\right)+2}}{\sum_{i=1}^{m} \frac{1}{\sqrt{d\left(e_{i}\right)+2}}} \leq \frac{1}{4}\left(\sqrt{\frac{\sqrt{\Delta_{e_{1}}}}{\sqrt{\delta_{e_{1}}}}}+\sqrt{\frac{\sqrt{\delta_{e_{1}}}}{\sqrt{\Delta_{e_{1}}}}}\right)^{2} .
$$

According to (5) the above inequality transforms into

$$
\frac{m}{X} \cdot \frac{\frac{1}{2} H}{X} \leq \frac{1}{4} \frac{\left(\sqrt{\Delta_{e_{1}}}+\sqrt{\delta_{e_{1}}}\right)^{2}}{\sqrt{\Delta_{e_{1}} \delta_{e_{1}}}}
$$

wherefrom inequality (13) is obtained.
Similarly, the following theorem can be proved.
Theorem 3.7. Let G be a simple connected graph with n vertices and m edges. If $m \geq 3$, then

$$
H \leq \frac{2}{\Delta_{e_{1}}}+\frac{\left(X-\frac{1}{\sqrt{\Delta_{e_{1}}}}\right)^{2}}{2(m-1)} \cdot \frac{\left(\sqrt{\Delta_{e_{2}}}+\sqrt{\delta_{e_{1}}}\right)^{2}}{\sqrt{\Delta_{e_{2}} \delta_{e_{1}}}}
$$

with equality if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e_{1}}$.
If $m \geq 3$ then

$$
H \leq \frac{2}{\delta_{e_{1}}}+\frac{\left(X-\frac{1}{\sqrt{\delta_{e_{1}}}}\right)^{2}}{2(m-1)} \cdot \frac{\left(\sqrt{\Delta_{e_{1}}}+\sqrt{\delta_{e_{2}}}\right)^{2}}{\sqrt{\Delta_{e_{1}} \delta_{e_{2}}}}
$$

with equality if $\Delta_{e_{1}}=d\left(e_{1}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$.
If $m \geq 4$, then

$$
H \leq \frac{2\left(\Delta_{e_{1}}+\delta_{e_{1}}\right)}{\Delta_{e_{1}} \delta_{e_{1}}}+\frac{\left(X-\frac{1}{\sqrt{\Delta_{e_{1}}}}-\frac{1}{\sqrt{\delta_{e_{1}}}}\right)^{2}}{2(m-2)} \cdot \frac{\left(\sqrt{\Delta_{e_{2}}}+\sqrt{\delta_{e_{2}}}\right)^{2}}{\sqrt{\Delta_{e_{2}} \delta_{e_{2}}}}
$$

with equality if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$.

In the next theorem we establish a lower bound for the index H in terms of X and graph parameters m, $\Delta_{e_{1}}$ and $\delta_{e_{1}}$.

Theorem 3.8. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
H \geq \frac{2 X^{2}}{m}+\frac{\left(\sqrt{\Delta_{e_{1}}}-\sqrt{\delta_{e_{1}}}\right)^{2}}{\Delta_{e_{1}} \delta_{e_{1}}} \tag{14}
\end{equation*}
$$

Equality is attained if $L(G)$ is regular, or $\frac{1}{\sqrt{d\left(e_{2}\right)+2}}=\frac{1}{\sqrt{d\left(e_{3}\right)+2}}=\cdots=\frac{1}{\sqrt{d\left(e_{m-1}\right)+2}}=d, \frac{1}{\sqrt{d\left(e_{1}\right)+2}}=d-S$ and $\frac{1}{\sqrt{d\left(e_{m}\right)+2}}=d+S$, where d and S are real numbers so that $d>S \geq 0$.

Proof. For $a_{i}=\frac{1}{\sqrt{d\left(e_{i}\right)+2}}, i=1,2, \ldots, m, R=\frac{1}{\sqrt{\delta_{e_{1}}}}$ and $r=\frac{1}{\sqrt{\Delta_{e_{1}}}}$, the inequality (6) becomes

$$
m \sum_{i=1}^{m} \frac{1}{d\left(e_{i}\right)+2}-\left(\sum_{i=1}^{m} \frac{1}{\sqrt{d\left(e_{i}\right)+2}}\right)^{2} \geq \frac{m}{2}\left(\frac{1}{\sqrt{\delta_{e_{1}}}}-\frac{1}{\sqrt{\Delta_{e_{1}}}}\right)^{2}
$$

According to (5) and the above we obtain

$$
\frac{m}{2} H-X^{2} \geq \frac{m}{2} \frac{\left(\sqrt{\Delta_{e_{1}}}-\sqrt{\delta_{e_{1}}}\right)^{2}}{\Delta_{e_{1}} \delta_{e_{1}}},
$$

wherefrom (14) is obtained.
Corollary 3.9. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
H \geq \frac{2 m^{2}}{M_{1}}+\frac{\left(\sqrt{\Delta_{e_{1}}}-\sqrt{\delta_{e_{1}}}\right)^{2}}{\Delta_{e_{1}} \delta_{e_{1}}} \tag{15}
\end{equation*}
$$

with equality if $L(G)$ is regular.
Proof. Let $p=\left(p_{i}\right), i=1,2, \ldots, m$, be a sequence of positive real numbers, and $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right)$, $i=1,2, \ldots, m$ non-negative real number sequences of similar monotonicity, then (see for example [13])

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} \sum_{i=1}^{m} p_{i} a_{i} b_{i} \geq \sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} p_{i} b_{i} . \tag{16}
\end{equation*}
$$

If $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right)$ are of opposite monotonicity, then the opposite inequality in (16) is valid. For $p_{i}=a_{i}=\sqrt{d\left(e_{i}\right)+2}, b_{i}=\frac{1}{\sqrt{d\left(e_{i}\right)+2}}, i=1,2, \ldots, m$, we obtain

$$
\begin{equation*}
\left(\sum_{i=1}^{m} \sqrt{d\left(e_{i}\right)+2}\right)^{2} \leq m M_{1} \tag{17}
\end{equation*}
$$

For $p_{i}=\sqrt{d\left(e_{i}\right)+2}, a_{i}=b_{i}=\frac{1}{\sqrt{d\left(e_{i}\right)+2}}, i=1,2, \ldots, m$, from (16) we obtain

$$
\begin{equation*}
\left(\sum_{i=1}^{m} \sqrt{d\left(e_{i}\right)+2}\right) \cdot X \geq m^{2} . \tag{18}
\end{equation*}
$$

Now, according to (17) and (18), we have that

$$
\frac{2 X^{2}}{m} \geq \frac{2 m^{2}}{M_{1}} .
$$

From the above and (14), the inequality (15) is obtained.
Remark 3.10. Since

$$
\left(\sqrt{\Delta_{e_{1}}}-\sqrt{\delta_{e_{1}}}\right)^{2} \geq 0
$$

the inequality (15) is stronger than (4).
By a similar procedure as in case of Theorem 3.8, the following can be proved:
Theorem 3.11. Let G be a simple connected graph with n vertices and m edges. If $m \geq 3$, then

$$
H \geq \frac{2}{\Delta_{e_{1}}}+\frac{2\left(X-\frac{1}{\sqrt{\Delta_{e_{1}}}}\right)^{2}}{m-1}+\frac{\left(\sqrt{\Delta_{e_{2}}}-\sqrt{\delta_{e_{1}}}\right)^{2}}{\Delta_{e_{2}} \delta_{e_{1}}},
$$

with equality if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e_{1}}$.
If $m \geq 3$, then

$$
H \geq \frac{2}{\delta_{e_{1}}}+\frac{2\left(X-\frac{1}{\sqrt{\delta_{e_{1}}}}\right)^{2}}{m-1}+\frac{\left(\sqrt{\Delta_{e_{1}}}-\sqrt{\delta_{e_{2}}}\right)^{2}}{\Delta_{e_{1}} \delta_{e_{2}}}
$$

with equality if $\Delta_{e_{1}}=d\left(e_{1}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$.
If $m \geq 4$, then

$$
H \geq \frac{2\left(\Delta_{e_{1}}+\delta_{e_{1}}\right)}{\Delta_{e_{1}} \delta_{e_{1}}}+\frac{2\left(X-\frac{1}{\sqrt{\Delta_{e_{1}}}}-\frac{1}{\sqrt{\delta_{\varepsilon_{1}}}}\right)^{2}}{m-2}+\frac{\left(\sqrt{\Delta_{e_{2}}}-\sqrt{\delta_{e_{2}}}\right)^{2}}{\Delta_{e_{2}} \delta_{e_{2}}},
$$

with equality if $\Delta_{e_{2}}=d\left(e_{2}\right)+2=\cdots=d\left(e_{m-1}\right)+2=\delta_{e_{2}}$.

References

[1] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (3) (2004), 103-112.
[2] C. S. Edwards, The largest vertex degree sum for a triangle in a graph, Bull. London Math. Soc., 9 (1977), 203-208.
[3] S. Fajtlowicz, On conjectures of Graffiti -II, Congr. Numer., 60 (1987), 187-197.
[4] I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (4) (2013), 351-361.
[5] I. Gutman, On the origin of two degree-based topological indices, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.), 146 (2014), $39-52$.
[6] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.
[7] I. Gutman, B. Furtula, Ž. Kovijanić Vukićević, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem., 74 (2015), 5-16.
[8] I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Bounds in chemical graph theory - Basics, Mathematical Chemistry Monographs - MCM 19, Univ. Kragujevac, Kragujevac, 2017.
[9] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[10] P. Henrici, Two remarks on the Kantorovich inequality, Amer. Math. Monthly 68 (1961), 904-906.
[11] A. Ilić, Note on the harmonic index of a graph, Ars. Comb. 128 (2016), 295-299.
[12] A. Lupas, A remark on the Schweitzer and Kantorovich inequalities, Univ. Beograd Publ. Elektrotechn. Fak. Ser. Math. Fiz., 381-409 (1972), 13-15.
[13] D. S. Mitrinović, P. M. Vasić, Analytic inequalities, Springer Verlag, Berlin-Heildelberg-New York, 1970.
[14] J. M. Rodriguez, J. M. Sigarreta, The harmonoic index, In: Bounds in Chemical Graph Theory - Basics, (I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović, eds.), Mathematical Chemistry Monographs -MCM 19, Univ. Kragujevac, Kragujevac, 2017, pp. 229-281.
[15] R. Sharma, M. Gupta, G. Kopor, Some better bounds on the variance with applications, J. Math. Ineq., 4 (3) (2010), 355-367.
[16] J. Szökefalvi Nagy, Uber algebraische Gleichungen mit lauter reellen Wurzeln, Jahresbericht der Deutschen mathematiker - Vereingung, 27 (1918), 37-43.
[17] X. Xu, Relationships between harmonic index and other topological indices, Appl. Math. Sci., 6 (2012), 2013-2018.
[18] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010), 210-218.
[19] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252-1270.

[^0]: 2010 Mathematics Subject Classification. Primary 05C12; Secondary 05C50
 Keywords. Vertex degree; edge degree; harmonic topological index; first Zagreb index; sum-connectivity index.
 Received: 10 February 2017; Accepted: 12 April 2017
 Communicated by Dragan S. Djordjević
 Research supported by Serbian Ministry of Education and Science.
 Email addresses: marjan.matejic@elfak.ni.ac.rs (Marjan Matejić), igor@elfak.ni.ac.rs (Igor Milovanović), ema@elfak.ni.ac.rs (Emina Milovanović)

