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Abstract. This paper deal with the following second-order three-point boundary value problem with
integral boundary condition on a half-line

u′′(x) + q(x) f (x,u(x),u′(x)) = 0, x ∈ (0,+∞),

u(0) = λ

∫ η

0
u(s)ds, u′(+∞) = C,

where λ > 0, 0 < λη < 1 and f : [0,+∞) × R2
→ R satisfies a Nagumo’s condition which plays an

important role in the nonlinear term depend on the first-order derivative explicitly. By using Schauder’s
fixed point theorem, the upper and lower solution method and topological degree theory, first we give
sufficient conditions for the existence of at least one solution and next at least three solutions of the above
problem. Moreover, an example is included to demonstrate the efficiency of the main results.

1. Introduction

In this paper, we shall examine an existence theory for second-order ordinary differential equations
together with integral boundary conditions on a half-line

u′′(x) + q(x) f (x,u(x),u′(x)) = 0, x ∈ (0,+∞),

u(0) = λ

∫ η

0
u(s)ds, lim

x→+∞
u′(x) = u′(+∞) = C, (1)

where λ > 0, 0 < λη < 1, q : (0,+∞)→ (0,+∞), f : [0,+∞)×R2
→ R are continuous and C ≥ 0. By applying

the upper and lower solutions method, we give easily verifiable sufficient conditions for the existence of
solutions of BVP (1). These solutions may be unbounded in this paper.

Multi-point boundary value problems for second-order differential equations in a finite interval and
on an infinite interval included the large amount of priori work and many excellent results are obtained
by using Avery-Peterson fixed point theorem, shooting method, lower and upper solution method, Leray-
Schauder continuation theorem and so on, see for instance [1-13,15]. Meanwhile, BVPs with integral
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boundary conditions for ordinary differential equations have been extensively examined by many authors,
for example see [11-16]. But, there is a little work related to boundary value problems with integral
boundary conditions on an infinite interval.

In [12], Akcan and Hamal considered the boundary value problem (BVP):

u′′(x) + f (x,u(x),u′(x)) = 0, x ∈ (0, 1),

u(0) = u(1) = α

∫ η

0
u(s)ds,

where f : (0, 1)× [0,∞)×R→ [0,∞) is continuous and α, η ∈ (0, 1). In that study, the proof was based upon
Avery and Peterson fixed point theorem.

In [5], Lian and Geng examined Sturm-Liouville boundary value problem on a half-line:

u′′(t) + φ(t) f (t,u(t),u′(t)) = 0, t ∈ (0,+∞),
u(0) − au′(0) = B, u′(+∞) = C, (2)

whereφ : (0,+∞)→ (0,+∞), f : [0,+∞)×R2
→ R are continuous, a > 0,B,C ∈ R. By assuming the existence

of two pairs of unbounded upper and lower solutions, they showed that the problem (2) has at least three
solutions on a half-line.

Motivated and inspired by the above works, we present existence theory of solutions for the BVP (1).
The plan of our paper is as follows: In Section 2, we give some definitions and lemmas which we need
to prove the main results. This includes the construction of Green’s function for a second-order boundary
value problem with integral boundary conditions, properties of Green’s function, definitions of upper and
lower solutions of (1) and Nagumo’s condition. In Section 3, we present two main results. In our first
result, we use Schauder’s fixed point theorem to establish the existence of at least one solution of (1) which
lies between the assumed pair of upper and lower solutions. In our second result, we assume the existence
of two pairs of upper and lower solutions and employ the degree theory to prove the existence of at least
three solutions of (1). Finally, we demonstrate the importance of our results through one example.

2. Preliminaries

For the convenience of the reader, in this section we provide some necessary definitions and preparatory
results which will be needed to prove the the existence of solutions of (1). We begin with constructing Green’s
function for the linear boundary value problem

u′′(x) + v(x) = 0, x ∈ (0,+∞),

u(0) = λ

∫ η

0
u(s)ds, u′(+∞) = C. (3)

Lemma 2.1. Let v ∈ C[0,+∞) and
∫
∞

0
v(s)ds < +∞. Then the solution u ∈ C1[0,+∞) ∩ C2(0,+∞) of the problem

(3) can be expressed as

u(x) =
Cλη2

2(1 − λη)
+ Cx +

∫
∞

0
G(x, s)v(s)ds,

where

G(x, s) =
1

2(1 − λη)


2s − λs2, 0 ≤ s ≤ min{η, x} < +∞;
2λη(s − x) + 2x − λs2, 0 ≤ x ≤ s ≤ η < +∞;
λη2 + 2s − 2ληs, 0 ≤ η ≤ s ≤ x < +∞;
λη2 + 2x − 2ληx, 0 ≤ max{η, x} ≤ s < +∞.

(4)
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Proof. Since v ∈ C[0,+∞) and
∫
∞

0
v(s)ds < +∞, we can integrate (3) from x to +∞, and use u′(+∞) = C, to

get

u′(x) = C +

∫
∞

x
v(s)ds.

Integrating the above equation on [0,x] and applying Fubini’s theorem, we obtain

u(x) = u(0) + Cx +

∫ x

0
sv(s)ds +

∫
∞

x
xv(s)ds. (5)

Integrating (5) from 0 to η, we have∫ η

0
u(s)ds = u(0)η + C

η2

2
+

∫ η

0
(η − s)sv(s)ds +

∫ η

0

s2

2
v(s)ds +

∫
∞

η

η2

2
v(s)ds,

and from u(0) = λ

∫ η

0
u(s)ds, we have

u(0) =
Cλη2

2(1 − λη)
+

λ
1 − λη

∫ η

0
(η − s)sv(s)ds +

λ
1 − λη

∫ η

0

s2

2
v(s)ds +

λ
1 − λη

∫
∞

η

η2

2
v(s)ds.

Hence from (5), we have

u(x) =
Cλη2

2(1 − λη)
+ Cx

+



∫ x

0

2s − λs2

2(1 − λη)
v(s)ds +

∫ η

x

2λη(s − x) + 2x − λs2

2(1 − λη)
v(s)ds +

∫
∞

η

λη2 + 2x − 2ληx
2(1 − λη)

v(s)ds, x ≤ η;∫ η

0

2s − λs2

2(1 − λη)
v(s)ds +

∫ x

η

λη2 + 2s − 2ληs
2(1 − λη)

v(s)ds +

∫
∞

x

λη2 + 2x − 2ληx
2(1 − λη)

v(s)ds, η ≤ x;

which is the same as

u(x) =
Cλη2

2(1 − λη)
+ Cx +

∫
∞

0
G(x, s)v(s)ds, ∀x ∈ [0,+∞).

This completes the proof of the lemma.

Lemma 2.2. Let the Green function G(x, s) be as in (4). Then for all x, s ∈ [0,+∞), λ > 0 and 0 < λη < 1, G(x, s) is
continuous and G(x, s) ≥ 0.

Proof. The continuity of G(x, s) with respect to (x, s) ∈ [0,+∞) × [0,+∞) is clear. Let define

11(x, s) = 2s − λs2 for s ∈ [0,min{x, η}], 12(x, s) = 2λη(s − x) + 2x − λs2 for s ∈ [x, η],

13(x, s) = λη2 + 2s − 2ληs for s ∈ [η, x] and 14(x, s) = λη2 + 2x − 2ληx for s ∈ [max{x, η},+∞).

We solely need to prove that 11(x, s) ≥ 0 for 0 ≤ s ≤ min{x, η} < +∞, because the proofs of others are similar.
From the definition of 11(x, s), we have

11(x, s) = 2s − λs2 = s(2 − λs) ≥ s(2 − λη) > s ≥ 0,

for 0 ≤ s ≤ min{x, η} < +∞, which completes the proof.

Lemma 2.3. For any s ∈ [0,+∞),G(x, s) is nondecreasing with respect to x, that is for any s ∈ [0,+∞),
∂G(x, s)
∂x

≥ 0,

x ∈ [0 +∞). Moreover, G(0, s) ≤ G(x, s) ≤ G(s, s).
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Proof. From (4) it is easy to see that
∂G(x, s)
∂x

≥ 0, for s, x ∈ [0 +∞); this means G(x, s) is nondecreasing with
respect to x. Because of this and 0 ≤ x, we obtain G(0, s) ≤ G(x, s) where

G(x, s) ≥ G(0, s) =
1

2(1 − λη)

{
2ληs − λs2, s ≤ η;
λη2, η ≤ s.

By using nondecreasing of G with respect to x, we have

G(x, s)
G(s, s)

=



1, 0 ≤ s ≤ min{η, x} < +∞;
2λη(s − x) + 2x − λs2

2s − λs2 , 0 ≤ x ≤ s ≤ η < +∞;

1, 0 ≤ η ≤ s ≤ x < +∞;
λη2 + 2x(1 − λη)
λη2 + 2s(1 − λη)

, 0 ≤ max{η, x} ≤ s < +∞;

≤ 1,

which implies G(x, s) ≤ G(s, s) for s, x ∈ [0 +∞). This completes the proof of the lemma.
Let

X =

{
u ∈ C1[0,+∞) : lim

x→+∞

u(x)
1 + x

and lim
x→+∞

u′(x) exist
}

with the norm ‖u‖ = max{‖u‖1, ‖u‖∞}, where

‖u‖1 = sup
x∈[0,+∞)

|u(x)|
1 + x

, ‖u‖∞ = sup
x∈[0,+∞)

|u′(x)|.

Then by the standard arguments, it follows that (X, ‖.‖) is a Banach space. In what follows, we shall need
the following modified version of the Arzela-Ascoli lemma [16].

Lemma 2.4. Let M ⊂ X. Then M is relatively compact if the following conditions hold:

1. all functions from M are uniformly bounded in X;
2. the functions in {y : y = u

1+x ,u ∈M} and {z : z = u′(x),u ∈M} are locally equi-continuous on [0,+∞);
3. the functions in {y : y = u

1+x ,u ∈ M} and {z : z = u′(x),u ∈ M} are equi-convergent at +∞, that is, for any
ε > 0, there exists a δ = δ(ε) > 0 such that

|y(x) − y(+∞)| < ε, |z(x) − z(+∞)| < ε,

for all x > δ, and u ∈M.

Definition 2.5. A function α ∈ X ∩ C2(0,+∞) is called a lower solution of (1) if

α′′(x) + q(x) f (x, α(x), α′(x)) > 0, x ∈ (0,+∞), (6)

α(0) ≤ λ
∫ η

0
α(s)ds, α′(+∞) ≤ C. (7)

Similarly, a function β ∈ X ∩ C2(0,+∞) is called an upper solution of (1) if

β′′(x) + q(x) f (x, β(x), β′(x)) < 0, x ∈ (0,+∞), (8)

β(0) ≥ λ
∫ η

0
β(s)ds, β′(+∞) ≥ C. (9)

Definition 2.6. We say α(β) is a strict lower solution (strict upper solution) for problem (1) if the above inequality
(7) (or(9)) is strict for x ∈ (0,+∞).
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Definition 2.7. Let α, β ∈ X ∩ C2(0,+∞) be a pair of lower and upper solutions of (1) satisfying α(x) ≤ β(x), x ∈
[0,+∞). A continuous function f : [0,+∞) ×R2

→ R is said to satisfy the Nagumo’s condition with respect to the
pair of functions α, β, if there exist a nonnegative function φ ∈ C[0,+∞) and a positive function h ∈ C[0,+∞) such
that

| f (x,u, v)| ≤ φ(x)h(|v|) (10)

for all x ∈ [0,+∞), α(x) ≤ u ≤ β(x), v ∈ R and∫
∞

0

s
h(s)

ds = +∞. (11)

3. Main Results

The following result guarantees the existence of at least one solution of the problem (1).

Theorem 3.1. Assume that α, β are the lower and upper solutions of (1) satisfying α(x) ≤ β(x), and suppose that
f : [0,+∞) ×R2

→ R is continuous satisfying the Nagumo’s condition with respect to the pair of functions α, β. If∫
∞

0
max{s, 1}q(s)ds < +∞,

∫
∞

0
max{s, 1}q(s)φ(s)ds < +∞ (12)

and there exists a constant γ > 1 such that

m = sup
x∈[0,+∞)

(1 + x)γq(x)φ(x) < +∞ (13)

where φ(x) is the function in Nagumo’s condition of f , then (1) has at least one solution u ∈ X∩C2(0,+∞) satisfying

α(x) ≤ u(x) ≤ β(x), |u′(x)| < N for all x ∈ [0,+∞);

here, N is a constant depending on α, β, h and C.

Proof. We can choose an r such that

r ≥ max

 sup
x∈[0,+∞)

β′(x), sup
x∈[0,+∞)

α′(x), C

 , (14)

and an N > r such that∫ N

r

s
h(s)

ds > m

 sup
x∈[0,+∞)

β(x)
(1 + x)γ

− inf
x∈[0,+∞)

α(x)
(1 + x)γ

+ ‖β‖1
γ

γ − 1

 . (15)

We define the following auxiliary functions

f1(x,u, v) =


f (x, β, v), u > β(x);
f (x,u, v), α(x) ≤ u ≤ β(x);
f (x, α, v), u < α(x),

and

f ∗(x,u, v) =


f1(x,u,N), v > N;
f1(x,u, v), |v| ≤ N;
f1(x,u,−N), v < −N.

(16)

Now we consider the modified problem

u′′(x) + q(x) f ∗(x,u(x),u′(x)) = 0, x ∈ (0,+∞),

u(0) = λ

∫ η

0
u(s)ds, u′(+∞) = C. (17)
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As an application of Schauder’s fixed point theorem we will prove that (17) has at least one solution u such
that α(x) ≤ u(x) ≤ β(x) and |u′(x)| < N, x ∈ [0,+∞). To show this, for u ∈ X, we define two operators as
follows

(T1u)(x) =

∫
∞

0
G(x, s)q(s) f ∗(s,u(s),u′(s))ds, x ∈ [0,+∞), (18)

and

(Tu)(x) =
Cλη2

2(1 − λη)
+ Cx + (T1u)(x), x ∈ [0,+∞). (19)

Now we divide the proof into three steps.
Step 1. From the following three parts we shall conclude that T : X→ X is completely continuous.

(1) T : X→ X is well defined: For each u ∈ X, in view of (10), (12) and (16), we have∣∣∣∣∣∫ ∞

0
q(s) f ∗(s,u(s),u′(s))ds

∣∣∣∣∣ ≤ ∫
∞

0
H0q(s)φ(s)ds

≤

∫
∞

0
max{s, 1}H0q(s)φ(s)ds < +∞,

(20)

where H0 = max
0≤x≤‖u‖∞

h(x). For u ∈ X, we find from (20) that∫
∞

1
sH0q(s)φ(s)ds ≤

∫
∞

0
max{s, 1}H0q(s)φ(s)ds < +∞. (21)

Since ∫
∞

x
H0q(s)φ(s)ds ≤

∫
∞

x
sH0q(s)φ(s)ds < +∞, x ≥ 1, (22)

it follows that

lim
x→+∞

∫
∞

x
H0q(s)φ(s)ds = 0. (23)

Thus by Lemma 2.2, Lemma 2.3 and (21) , we have∣∣∣∣∣ lim
x→+∞

(T1u)(x)
1 + x

∣∣∣∣∣ ≤ lim
x→+∞

∫
∞

0

G(x, s)
1 + x

H0q(s)φ(s)ds

≤ lim
x→+∞

1
1 + x

∫
∞

0
G(s, s)H0q(s)φ(s)ds

= lim
x→+∞

1
1 + x

∫ η

0

(2s − λs2)
2(1 − λη)

H0q(s)φ(s)ds + lim
x→+∞

1
1 + x

∫
∞

η

(λη2 + 2s − 2ληs)
2(1 − λη)

H0q(s)φ(s)ds

= 0,

which implies lim
x→+∞

(T1u)(x)
1 + x

= 0. Therefore, it follows that

lim
x→+∞

(Tu)(x)
1 + x

= lim
x→+∞

Cλη2

2(1−λη) + Cx

1 + x
+ lim

x→+∞

(T1u)(x)
1 + x

= C.

Now from (23), we have∣∣∣∣∣ lim
x→+∞

∫
∞

x
q(s) f ∗(s,u(s),u′(s))ds

∣∣∣∣∣ ≤ lim
x→+∞

∫
∞

x
H0q(s)φ(s)ds = 0,
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and hence

lim
x→+∞

(Tu)′(x) = lim
x→+∞

C +

∫
∞

x
q(s) f ∗(s,u(s),u′(s))ds = C.

Consequently, it follows that Tu ∈ X.

(2) T : X→ X is continuous. For any convergent sequence un → u in X, we have

un(x)→ u(x), u′n(x)→ u′(x), n→ +∞, x ∈ [0,+∞).

Thus the continuity of f ∗ implies that

| f ∗(s,un(s),u′n(s)) − f ∗(s,u(s),u′(s))| → 0, n→ +∞, s ∈ [0,+∞).

Since u′n(x)→ u′(x), we have sup
n∈N
‖un‖∞ < +∞. Let H1 = max

0≤x≤max{‖u‖∞,supn∈N ‖un‖∞}
h(x). Then we obtain∫

∞

0
sq(s)| f ∗(s,un(s),u′n(s)) − f ∗(s,u(s),u′(s))|ds

≤ 2
∫
∞

0
sH1q(s)φ(s)ds < +∞.

(24)

Therefore from the Lebesgue dominated convergence theorem and (24) it follows that

‖Tun − Tu‖1 = sup
x∈[0,+∞)

|Tun(x) − Tu(x)|
1 + x

= sup
x∈[0,+∞)

|T1un(x) − T1u(x)|
1 + x

= sup
x∈[0,+∞)

∣∣∣∣∣∫ ∞

0

G(x, s)
1 + x

q(s)( f ∗(s,un(s),u′n(s)) − f ∗(s,u(s),u′(s)))ds
∣∣∣∣∣

≤ sup
x∈[0,+∞)

∫
∞

0
G(x, s)q(s)| f ∗(s,un(s),u′n(s)) − f ∗(s,u(s),u′(s))|ds

≤

∫
∞

0
G(s, s)q(s)| f ∗(s,un(s),u′n(s)) − f ∗(s,u(s),u′(s))|ds

=

∫ η

0

(2s − λs2)
2(1 − λη)

q(s)| f ∗(s,un(s),u′n(s)) − f ∗(s,u(s),u′(s))|ds

+

∫
∞

η

(λη2 + 2s − 2ληs)
2(1 − λη)

q(s)| f ∗(s,un(s),u′n(s)) − f ∗(s,u(s),u′(s))|ds

≤

∫ η

0

s(2 − λs)
2(1 − λη)

q(s)| f ∗(s,un(s),u′n(s)) − f ∗(s,u(s),u′(s))|ds

+

∫
∞

η

s(λη + 2 − 2λη)
2(1 − λη)

q(s)| f ∗(s,un(s),u′n(s)) − f ∗(s,u(s),u′(s))|ds

≤
1

(1 − λη)

∫
∞

0
sq(s)| f ∗(s,un(s),u′n(s)) − f ∗(s,u(s),u′(s))|ds,

which approaches zero as n→∞. Lastly, we have

‖Tun − Tu‖∞ = sup
x∈[0,+∞)

|(Tun)′(x) − (Tu)′(x)| = sup
x∈[0,+∞)

|(T1un)′(x) − (T1u)′(x)|

= sup
x∈[0,+∞)

∣∣∣∣∣∫ ∞

x
q(s)( f ∗(s,un(s),u′n(s)) − f ∗(s,u(s),u′(s)))ds

∣∣∣∣∣
≤

∫
∞

0
q(s)| f ∗(s,un(s),u′n(s)) − f ∗(s,u(s),u′(s))|ds,
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which approaches zero as n→∞. As a result ‖Tun − Tu‖ → 0, as n→ +∞; so T : X→ X is continuous.
(3) We will next show that T : X → X is relatively compact. Let A be any bounded subset of X, then for
u ∈ A, let H2 = max

0≤x≤‖u‖∞,u∈A
h(x) < +∞, similar to the above proof, we get

‖Tu‖1 = sup
x∈[0,+∞)

|Tu(x)|
1 + x

= sup
x∈[0,+∞)

∣∣∣∣∣∣ Cλη2

2(1 − λη)(1 + x)
+

Cx
1 + x

+

∫
∞

0

G(x, s)
1 + x

q(s) f ∗(s,u(s),u′(s))ds

∣∣∣∣∣∣
≤

Cλη2

2(1 − λη)
+ C +

1
(1 − λη)

∫
∞

0
sq(s)| f ∗(s,u(s),u′(s))|ds

≤
Cλη2

2(1 − λη)
+ C +

1
(1 − λη)

∫
∞

0
sH2q(s)φ(s)ds < +∞,

and

‖Tu‖∞ = sup
x∈[0,+∞)

|(Tu)′(x)|

= sup
x∈[0,+∞)

∣∣∣∣∣C +

∫
∞

x
q(s) f ∗(s,u(s),u′(s))ds

∣∣∣∣∣
≤ C +

∫
∞

0
H2q(s)φ(s)ds < +∞,

which implies that ‖Tu‖ < +∞. Thus TA is uniformly bounded. Meanwhile, for any k > 0, if x1, x2 ∈ [0, k],
we have∣∣∣∣∣ (Tu)(x1)

1 + x1
−

(Tu)(x2)
1 + x2

∣∣∣∣∣ ≤
∣∣∣∣∣∣ Cλη2

2(1 − λη)(1 + x1)
−

Cλη2

2(1 − λη)(1 + x2)

∣∣∣∣∣∣ +

∣∣∣∣∣ Cx1

1 + x1
−

Cx2

1 + x2

∣∣∣∣∣
+

∫
∞

0

∣∣∣∣∣G(x1, s)
1 + x1

−
G(x2, s)
1 + x2

∣∣∣∣∣ q(s)| f ∗(s,u(s),u′(s))|ds

≤

∣∣∣∣∣∣ Cλη2

2(1 − λη)(1 + x1)
−

Cλη2

2(1 − λη)(1 + x2)

∣∣∣∣∣∣ +

∣∣∣∣∣ Cx1

1 + x1
−

Cx2

1 + x2

∣∣∣∣∣
+

∫
∞

0

∣∣∣∣∣G(x1, s)
1 + x1

−
G(x2, s)
1 + x2

∣∣∣∣∣ H2q(s)φ(s)ds,

and

|(Tu)′(x1) − (Tu)′(x2)| =

∣∣∣∣∣∣
∫
∞

x1

q(s) f ∗(s,u(s),u′(s))ds −
∫
∞

x2

q(s) f ∗(s,u(s),u′(s))ds

∣∣∣∣∣∣
≤

∫ x2

x1

H2q(s)φ(s)ds.

Then, for any ε > 0, there exists a δ > 0 such that∣∣∣∣∣ (Tu)(x1)
1 + x1

−
(Tu)(x2)
1 + x2

∣∣∣∣∣ < ε, |(Tu)′(x1) − (Tu)′(x2)| < ε

if |x1 − x2| < δ, x1, x2 ∈ [0, k].
Since k is arbitrary, we know the functions belonging to

{
TA
1+x

}
and the functions belonging to {(TA)′} are

locally equi-continuous on [0,+∞). Now for u ∈ A one has∣∣∣∣∣ (Tu)(x)
1 + x

− lim
x→+∞

(Tu)(x)
1 + x

∣∣∣∣∣ =

∣∣∣∣∣ (Tu)(x)
1 + x

− C
∣∣∣∣∣→ 0, as x→ +∞,
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and

|(Tu)′(x) − lim
x→+∞

(Tu)′(x)| = |(Tu)′(x) − C| =
∣∣∣∣∣∫ ∞

x
f ∗(s,u(s),u′(s))ds

∣∣∣∣∣→ 0,

as x→ +∞ which yield that the functions from
{

TA
1+x

}
and the functions from {(TA)′} are equi-convergent at

+∞.
Consequently, the conditions of Lemma 2.4 hold and so TX is relatively compact. Therefore T : X → X is
completely continuous. Schauder’s fixed point theorem guarantees that T has at least one fixed point u ∈ X
which is a solution of (17).

Step 2. If u is a solution of (17), then it holds α(x) ≤ u(x) ≤ β(x), x ∈ [0,+∞). We solely need to show
α(x) ≤ u(x), x ∈ [0,+∞) since the proof of the other is analogous. If α(x) ≤ u(x) on [0,+∞), is not true, then
there exists x0 ∈ [0,+∞) such that

α(x0) > u(x0) and u(x0) − α(x0) = inf
x∈[0,+∞)

(u(x) − α(x)) < 0.

Now in view of lim
x→+∞

(u′(x) − α′(x)) ≥ 0, there are three cases.
Case 1. If x0 ∈ (0,+∞), then we have u(x0) < α(x0), u′(x0) = α′(x0) and u′′(x0) ≥ α′′(x0). Since u(x0) < α(x0),

u′(x0) = α′(x0) and sup
x∈[0,+∞)

|α′(x)| < N, we have f ∗(x0,u(x0),u′(x0)) = f (x0, α(x0), α′(x0)) and

0 ≤ u′′(x0) − α′′(x0) < −q(x0)[ f ∗(x0,u(x0),u′(x0)) − f (x0, α(x0), α′(x0))] = 0,

which is a contradiction.
Case 2. If x0 = 0 and u(0) − α(0) = inf

x∈[0,+∞)
(u(x) − α(x)) < 0, then for all s ∈ [0, η],u(s) − α(s) ≥ u(0) − α(0)

and we have

λ

∫ η

0
(u(s) − α(s))ds ≥ λ

∫ η

0
(u(0) − α(0))ds = λη(u(0) − α(0)).

Moreover from boundary conditions we obtain

λ

∫ η

0
(u(s) − α(s))ds = u(0) − λ

∫ η

0
α(s)ds ≤ u(0) − α(0),

then we have
0 ≤ (1 − λη)(u(0) − α(0)),

unfortunately from 0 < λη < 1 and u(0) − α(0) < 0, we have a contradiction.
Case 3. If lim

x→+∞
u(x) − α(x) = inf

x∈[0,+∞)
(u(x) − α(x)) < 0, then for ∀x ∈ [0,+∞),u′(x) − α′(x) ≤ 0 and there

exists a x < +∞ is big enough such that for ∀s ∈ [x,+∞), u(s) − α(s) < 0. Obviously,

u′(x) − α′(x) =

∫
∞

x
(q(s) f ∗(s,u(s),u′(s)) + α′′(s))ds

=

∫
∞

x
(q(s) f (s, α(s), α′(s)) + α′′(s))ds

> 0,

which is also a contradiction. Therefore,

α(x) ≤ u(x), for all x ∈ [0,+∞).

Step 3. Lastly, we show that |u′(x)| < N for x ∈ [0,+∞). Suppose that there is a x0 ∈ [0,+∞) with
|u′(x0)| ≥ N. Since lim

x→+∞
u′(x) = C < N, there exists a T > 0 such that

|u′(x)| < N, ∀x ≥ T.
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Let x1 = inf{x ≤ T : |u′(s)| < N,∀s ∈ [x,+∞)}. Then |u′(x1)| = N and |u′(x)| < N for all x > x1 and there exists
a x2 such that |u′(x)| ≥ N for x ∈ [x2, x1]. We have two cases u′(x1) = N and u′(x) ≥ N for x ∈ [x2, x1] or
u′(x1) = −N and u′(x) ≤ −N for x ∈ [x2, x1]. We assume that u′(x1) = N and u′(x) ≥ N for x ∈ [x2, x1] then we
have ∫ N

r

s
h(s)

ds ≤

∫ N

C

s
h(s)

ds

= −

∫
∞

x1

u′(s)
h(u′(s))

u′′(s)ds

= −

∫
∞

x1

−q(s) f (s,u(s),u′(s))u′(s)
h(u′(s))

ds

≤

∫
∞

x1

q(s)φ(s)u′(s)ds

≤ m
∫
∞

x1

u′(s)
(1 + s)γ

ds

= m
(∫

∞

x1

(
u(s)

(1 + s)γ

)′
ds −

∫
∞

x1

u(s)
(

1
(1 + s)γ

)′
ds

)
≤ m

 sup
x∈[0,+∞)

β(x)
(1 + x)γ

− inf
x∈[0,+∞)

α(x)
(1 + x)γ

+ ‖β‖1
γ

γ − 1


<

∫ N

r

s
h(s)

ds,

which is a contradiction. If u′(x1) = −N and u′(x) ≤ −N for x ∈ [x2, x1], a similar contradiction can be
obtained. Hence, |u′(x)| < N for all x ∈ [0,+∞). Consequently,

u′′(x) = −q(x) f ∗(x,u(x),u′(x)) = −q(x) f1(x,u(x),u′(x)) = −q(x) f (x,u(x),u′(x)).

So, u is a solution of (1).
Before we establish the existence of at least three solutions of the problem (1), we give the following

theorem which is important to the strategy to obtain three solutions.

Theorem 3.2 ([17]). Let X show a Banach space and let Ω ⊂ X be an open bounded set. Assume that I be identity
function on X and T : Ω −→ X is a compact function. Let p ∈ X, p < (I − T)(∂Ω) and d(I − T,Ω, p) show the degree
of (I − T) at p depend on Ω. Then

(i) (Domain decomposition property) If Ω = Ω1 ∪Ω2 ∪Ω3 where Ωi is open sets and mutually disjoint, then
d(I − T,Ω, p) = d(I − T,Ω1, p) + d(I − T,Ω2, p) + d(I − T,Ω3, p).

(ii) (Excision property) If K ⊂ Ω is a compact set such that p < (I − T)(K), then

d(I − T,Ω, p) = d(I − T,Ω \ K, p).

Theorem 3.3. Assume that there exist strict lower and upper solutions α2, β1 and lower and upper solutions α1, β2
of BVP (1) satisfying

α1(x) ≤ α2(x) ≤ β2(x), α1(x) ≤ β1(x) ≤ β2(x), α2(x) � β1(x) f or x ∈ [0,+∞).

Suppose that f : [0,+∞)×R2
→ R is continuous function satisfying the Nagumo’s condition with respect to the pair

of functions α1, β2. If (12) and (13) hold, then (1) has at least three solutions u1,u2,u3 ∈ X ∩ C2(0,+∞) satisfying

α1(x) ≤ u1(x) ≤ β1(x), α2(x) ≤ u2(x) ≤ β2(x), u3(x) � β1(x), u3(x) � α2(x), x ∈ [0,+∞).
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Proof. We define the auxiliary function f ∗1 similar to f ∗ in Theorem 3.1 such that α and β are replaced with
α1 and β2, respectively. We consider the modified equation

u′′(x) + q(x) f ∗1 (x,u(x),u′(x)) = 0, x ∈ (0,+∞),

u(0) = λ

∫ η

0
u(s)ds, u′(+∞) = C. (25)

We want to show that (25) has at least three solutions. We define an operator by

(T2u)(x) =
Cλη2

2(1 − λη)
+ Cx +

∫
∞

0
G(x, s)q(s) f ∗1 (s,u(s),u′(s))ds.

We can prove that T2 : X → X is completely continuous as T in Theorem 3.1. By using the degree theory,
we will show that T2 has at least three fixed points which are the solutions of (25). For x ∈ Ω, similar to the
above proof in Theorem 3.1, we can find

‖T2u‖1 ≤
Cλη2

2(1 − λη)
+ C +

1
(1 − λη)

∫
∞

0
sH3q(s)φ(s)ds := k1,

‖T2u‖∞ ≤ C +

∫
∞

0
H3q(s)φ(s)ds := k2,

where H3 = sup
0≤x≤‖u‖∞

h(x) < +∞, Ω = {u ∈ X : ‖u‖ < K} and K > max{k1, k2}. Then we obtain ‖T2u‖ < K, which

implies that T2Ω ⊂ Ω. Thus deg(I − T2,Ω, 0) = 1. We take

Ωα2 = {u ∈ Ω : u(x) > α2(x), x ∈ [0,+∞)}, Ωβ1 = {u ∈ Ω : u(x) < β1(x), x ∈ [0,+∞)}.

By α2(x) � β1(x), α1(x) ≤ α2(x) ≤ β2(x), α1(x) ≤ β1(x) ≤ β2(x), x ∈ [0,+∞), we have Ωα2 ∩ Ωβ1 =

∅ and the set Ω \ Ωα2 ∪Ωβ1 , ∅. Because of the strict upper and lower solutions β1, α2 and Definition
2.6, T2 has no solution in ∂Ωα2 ∪ ∂Ω

β1. From Theorem 3.2 (i), we get

deg(I − T2,Ω, 0) = deg(I − T2,Ω \Ωα2 ∪Ωβ1 , 0) + deg(I − T2,Ωα2 , 0) + deg(I − T2,Ω
β1 , 0). (26)

First, we show that deg(I − T2,Ωα2 , 0) = 1. For this, we define completely continuous operator T3 : Ω→ Ω
by

(T3u)(x) =
Cλη2

2(1 − λη)
+ Cx +

∫
∞

0
G(x, s)q(s) f ∗2 (s,u(s),u′(s))ds,

where the function f ∗2 is similar to f ∗1 except α1 is replaced with α2. In a way similar to that the proof of
Theorem 3.1 it is easy to prove that T3 has a fixed point x satisfies α2(x) ≤ u(x) ≤ β2(x), x ∈ [0,+∞). Since the
lower solution α2 is strict and Definition 2.6, u(x) , α2(x), x ∈ [0,+∞). Therefore, u ∈ Ωα2 . Hence

deg(I − T3,Ω \Ωα2 , 0) = 0.

Moreover, we can show T3Ω ⊂ Ω. Then we obtain

deg(I − T3,Ω, 0) = 1. (27)

Since f ∗2 = f in the region Ωα2 , we have

deg(I − T2,Ωα2 , 0) = deg(I − T3,Ωα2 , 0)

= deg(I − T3,Ωα2 , 0) + deg(I − T3,Ω \Ωα2 , 0) (28)
= deg(I − T3,Ω, 0) = 1.
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Similar to the proof of (28), we have

deg(I − T2,Ω
β1 , 0) = 1. (29)

By (26), (27) and (29) we obtain
deg(I − T2,Ω \Ωα2 ∪Ωβ1 , 0) = −1.

Therefore, T2 has at least three fixed points u1 ∈ Ωα2 , u2 ∈ Ωβ1 and u3 ∈ Ω \Ωα2 ∪Ωβ1 which are solutions
of the problem (1). Then the proof is complete.

Example 3.4. Consider the second-order three-point boundary value problem

u′′(x) +
1
ex (1 + x) arctan(−u(x))((u′(x))2 + 1) = 0, x ∈ (0,+∞),

u(0) =
1
2

∫ 1

0
u(s)ds, u′(+∞) =

1
5
,

(30)

where λ =
1
2
> 0, η = 1 and clearly 0 < λη < 1.

Let
q(x) =

1
ex , f (x,u, v) = (1 + x) arctan(−u)(v2 + 1).

Also, we notice that C =
1
5
. We take α(x) = −x − 1, β(x) = x + 1.

Then α(x), β(x) ∈ C2[0,+∞) and α′(x) = −1, α′′(x) = 0, β′(x) = 1, β′′(x) = 0. Moreover, we have

α′′(x) + q(x) f (x, α(x), α′(x)) =
2(1 + x)

ex arctan(x + 1) > 0, x ∈ (0,+∞),

α(0) = −1 < λ
∫ η

0
α(s)ds =

1
2

∫ 1

0
(−s − 1)ds =

−3
4
,

α′(+∞) = −1 <
1
5

= C,

and

β′′(x) + q(x) f (x, β(x), β′(x)) =
2(1 + x)

ex arctan(−x − 1) < 0, x ∈ (0,+∞),

β(0) = 1 > λ
∫ η

0
β(s)ds =

1
2

∫ 1

0
(s + 1)ds =

3
4
,

β′(+∞) = 1 >
1
5

= C.

Thus α, β are lower and upper solutions of (30), respectively. Furthermore, α, β ∈ X, α(x) ≤ β(x), x ∈ [0,+∞).
Clearly, f is continuous, moreover, f satisfies the Naguma’s condition with respect to α(x) = −x − 1 and
β(x) = x + 1; that is, when 0 ≤ x < +∞, −x − 1 ≤ u ≤ x + 1 and v ∈ R, it holds

| f (x,u, v)| ≤ φ(x)h(|v|),

where φ(x) = (1 + x) and h(v) =
π
2

(v2 + 1) and∫
∞

0

s
h(s)

ds =
2
π

∫
∞

0

s
s2 + 1

ds = +∞.

Also, ∫
∞

0
max{s, 1}q(s)ds =

∫ 1

0

1
es ds +

∫
∞

1

s
es ds = 1 +

1
e
< +∞,
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∞

0
max{s, 1}q(s)φ(s)ds =

∫ 1

0

1 + s
es ds +

∫
∞

1

s + s2

es ds = 2 +
4
e
< +∞;

and for γ = 2,

m = sup
x∈[0,+∞)

(1 + x)γq(x)φ(x) = sup
x∈[0,+∞)

(1 + x)2 1
ex (1 + x)

= sup
x∈[0,+∞)

(1 + x)3

ex

=
(1 + 2)3

e2 ≈ 3.65 < ∞,

that is, (12) and (13) are satisfied. Therefore, from Theorem 3.1, the boundary problem (30) has at least one
solution u such that

α(x) = −x − 1 ≤ u(x) ≤ x + 1 = β(x), |u′(x)| < N for all x ∈ [0,+∞),

where N >

√
e

108π
e2 (r2 + 1) − 1, r ≥ 1 with γ = 2.
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