Filomat 32:1 (2018), 117–125 https://doi.org/10.2298/FIL1801117Y

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

EP elements and *-Strongly Regular Rings

Hua Yao^a, Junchao Wei^a

^aSchool of Mathematics, Yangzhou University, Yangzhou, 225002, P. R. China

Abstract. Let *R* be a ring with involution *. An element $a \in R$ is called *–strongly regular if there exists a projection *p* of *R* such that $p \in comm^2(a)$, ap = 0 and a + p is invertible, and *R* is said to be *–strongly regular if every element of *R* is *–strongly regular. We discuss the relations among strongly regular rings, *–strongly regular rings, regular rings and *–regular rings. Also, we show that an element *a* of a *–ring *R* is *–strongly regular if and only if *a* is *EP*. We finally give some characterizations of *EP* elements.

1. Introduction

In this article, all rings are associative with identity unless otherwise stated, and modules will be unitary modules. Let *R* be a ring, write E(R), N(R), U(R), J(R) and Z(R) to denote the set of all idempotents, the set of all nilpotents, the set of units, the Jacobson radical and the center of *R*, respectively.

Rings in which every element is the product of a unit and an idempotent which commute are said to be strongly regular, and have been studied by many authors. According to Koliha and Patricio [11], the commutant and double commutant of an element $a \in R$ are defined by $comm(a) = \{x \in R | xa = ax\}$ and $comm^2(a) = \{x \in R | xy = yx \text{ for all } y \in comm(a)\}$. It is known that a ring *R* is strongly regular if and only if for each $a \in R$, there exists an idempotent $p \in comm^2(a)$ such that $a + p \in U(R)$ and ap = 0.

Let *R* be a ring and write $R^{qnil} = \{a \in R | 1 + ax \in U(R) \text{ for every } x \in comm(a)\}$. Recall that an element $a \in R$ is called polar (quasipolar) provided that there exists an idempotent $p \in R$ such that $p \in comm^2(a), a + p \in U(R)$ and $ap \in N(R)$ ($ap \in R^{qnil}$), the idempotent p is unique, we denote it by a^{π} , which is called a spectral idempotent of a. A ring R is polar [7] (quasipolar [18]) in the case that every element in R is polar (quasipolar). [5, Theorem 2.4] shows that a ring R is strongly regular if and only if R is a quasipolar ring and $R^{qnil} = \{0\}$.

Following [3], an element *a* of a ring *R* is called group invertible if there is $a^{\sharp} \in R$ such that

$$a^{\sharp}a = a, a^{\sharp}aa^{\sharp} = a^{\sharp}, aa^{\sharp} = a^{\sharp}a.$$

Denote by R^{\sharp} the set of all group invertible elements of *R*. Clearly, a ring *R* is strongly regular if and only if $R = R^{\sharp}$.

An involution $a \mapsto a^*$ in a ring *R* is an anti-isomorphism of degree 2, that is,

$$(a^*)^* = a, (a + b)^* = a^* + b^*, (ab)^* = b^*a^*.$$

²⁰¹⁰ Mathematics Subject Classification. 16B99; 16W10, 46L05

Keywords. *-regular rings, *-strongly regular elements, projection elements, EP elements, involution is proper.

Received: 13 February 2017; Accepted: 13 May 2017

Communicated by Dragan S. Djordjević

Research supported by the National Natural Science Foundation of China (No. 11471282)

Email addresses: dalarston@126.com (Hua Yao), jcweiyz@126.com (Junchao Wei)

A ring *R* with an involution * is called *-ring. An element a^{\dagger} in a *-ring *R* is called the Moore-Penrose inverse (or MP-inverse)[?] f *a*, if Penr

$$aa^{\dagger}a = a, a^{\dagger}aa^{\dagger} = a^{\dagger}, aa^{\dagger} = (aa^{\dagger})^{*}, a^{\dagger}a = (a^{\dagger}a)^{*}.$$

In this case, we call *a* is MP-invertible in *R*. The set of all MP-invertible elements of *R* is denoted by R^+ .

An involution * of R is called proper if $x^*x = 0$ implies x = 0 for all $x \in R$. Following [1], a *-ring R is *-regular if and only if R is regular and the involution is proper.

An idempotent *p* of a *-ring *R* is called projection if $p = p^*$. Denote by PE(R) the set of all projection elements of *R*. Clearly, $PE(R) \subseteq E(R)$. It is known that an idempotent *e* in a *-ring *R* is projection if and only if $e = e^*e$ if and only if $Re = Re^*$. [6, Lemma 2.1] shows that a *-ring *R* is *-regular if and only if for each $a \in R$, there exists $p \in PE(R)$ such that aR = pR.

Following [11], a *-ring *R* is *-regular if and only if $R = R^+$. Due to [9], a *-ring *R* is said to satisfy the *k*-term star-cancellation law (or SC_k) if

$$a_1^*a_1 + \dots + a_k^*a_k = 0 \Longrightarrow a_1 = \dots = a_k = 0.$$

[10] shows that the 2 × 2 matrix ring $M_2(R)$ over a *-ring R is *-regular if and only if R is regular and satisfies SC_2 .

Duo to [8], an element *a* of a *-ring *R* is said to be *EP* if $a \in R^{\sharp} \cap R^{\dagger}$ and $a^{\sharp} = a^{\dagger}$. In [14], many characterizations of *EP* elements are given.

The *EP* matrices and *EP* linear operators on Banach or Hilbert spaces have been investigated by many authors. This article is motivated by the papers [6, 14]. In this paper, we shall first give some new characterizations of *EP* elements. Next, we introduce *–strongly regular elements and *–strongly regular rings. We investigate the characterizations of *–strongly regular rings. Finally, we discuss *–exchange rings. With the help of *–exchange rings, we give some characterizations of *–strongly regular rings.

2. Some Characterizations of EP elements

Let *R* be a *-ring and $a \in R^{\dagger}$. Then by [14, Theorem 1.1], one knows that $a^* = a^*aa^{\dagger} = a^{\dagger}aa^*$. Hence we have the following proposition.

Proposition 2.1. Let R be a *-ring and $a \in R$. Then a is an EP element if and only if $a \in R^+$ and $Ra = Ra^+$.

Proof. Suppose that *a* is *EP*. Then $a \in R^{\dagger} \cap R^{\sharp}$ and $a^{\dagger} = a^{\sharp}$, it follows that $Ra = Ra^{\dagger}a = Ra^{\sharp}a = Raa^{\sharp} = Ra^{\sharp} = Ra^{\sharp}$. Conversely, assume that $a \in R^{\dagger}$ and $Ra = Ra^{\dagger}$. Then $Ra = Raa^{\dagger} = R(aa^{\dagger})^* = R(a^{\dagger})^*a^* \subseteq Ra^* = Ra^*aa^{\dagger} \subseteq Ra^{\dagger} = Ra$, it follows that $Ra = Ra^*$. By [13, Theorem 3.1], one knows that *a* is *EP*. \Box

Similar to the proof of Proposition 2.1, we have the following corollary.

Corollary 2.2. Let R be a *-ring and $a \in R$. Then a is an EP element if and only if $a \in R^+$ and $aR = a^+R$.

It is known that for a *-ring $R, a \in R$ is EP if and only if a^{\dagger} is EP. Hence we can obtain the following corollary.

Corollary 2.3. Let R be a *-ring and $a \in R$. Then a is an EP element if and only if $a \in R^{\dagger}$ and $Ra^{*} = R(a^{\dagger})^{*}$.

Proof. Suppose that *a* is *EP*. Then Proposition 2.1 and [13, Theorem 3.1] imply $Ra^* = Ra = Ra^+$. Note that a^+ is *EP*. Then [13, Theorem 3.1] gives $Ra^+ = R(a^+)^*$. Hence $Ra^* = R(a^+)^*$.

Conversely, assume that $Ra^* = R(a^*)^*$. Then $aR = a^*R$, by Corollary 2.2, one gets *a* is *EP*.

Theorem 2.4. Let *R* be a *-ring and $a \in R$. Then the following conditions are equivalent:

(1) *a* is EP;

(2) $a \in \mathbb{R}^+$ and $\mathbb{R}a = \mathbb{R}(a^+)^n$ for each $n \ge 2$;

(3) $a \in \mathbb{R}^+$ and $\mathbb{R}a = \mathbb{R}(a^+)^n$ for some $n \ge 2$.

Proof. (1) \implies (2) Since *a* is *EP*, by Proposition 2.1, we have $a \in R^{\dagger}$ and $Ra = Ra^{\dagger}$. Noting that $Ra^{\dagger} = Raa^{\dagger}$. Hence $Ra = Ra^{\dagger} = Raa^{\dagger} = Raa^{\dagger} = R(a^{\dagger})^2$, repeating the process, one obtains that $Ra = R(a^{\dagger})^n$ for each $n \ge 2$. (2) \implies (3) It is trivial.

(3) \implies (1) Since $Ra = R(a^{\dagger})^n$ for some $n \ge 2$, $Ra \subseteq Ra^{\dagger} = Ra^*$. Note that $Ra^{\dagger} = Raa^{\dagger}$. Then $Ra^{\dagger} = R(a^{\dagger})^{n+1} \subseteq R(a^{\dagger})^n = Ra$, it follows that $Ra \subseteq Ra^* = Ra^{\dagger} \subseteq Ra$. Hence $Ra = Ra^* = Ra^{\dagger}$, this implies that a is EP. \Box

Let *R* be a *-ring and $a \in R$. Then it is easy to show that $a \in R^{\dagger}$ and $aa^{*} = 0$ imply a = 0. Also, $a \in R^{\dagger} \cap R^{\sharp}$ is *EP* if and only if $aa^{\sharp} = a^{\dagger}a$. Hence we have the following theorem.

Theorem 2.5. Let R be a *-ring and $a \in \mathbb{R}$. Then the following conditions are equivalent:

(1) a is EP;

(2) $a \in R^{+} \cap R^{\sharp}$ and $a^{+}a^{2}a^{*} = a^{2}a^{+}a^{*};$

(3) $a \in R^{\dagger} \cap R^{\sharp}$ and $a^{\dagger}a^{2}a^{*} = aa^{*}aa^{\sharp};$

(4) $a \in \mathbb{R}^{\dagger} \cap \mathbb{R}^{\sharp}$ and $a^{\dagger}a^{n}a^{*} = a^{n-1}a^{*}a^{\dagger}a$ for some $n \geq 2$.

Proof. (1) \Longrightarrow (2) It is trivial.

(2) \implies (3) Suppose that $a^{\dagger}a^{2}a^{*} = a^{2}a^{\dagger}a^{*}$. Then $aa^{*} = a^{\sharp}a^{2}a^{*} = a^{\sharp}a(a^{\dagger}a^{2}a^{*}) = a^{\sharp}a(a^{2}a^{\dagger}a^{*}) = a^{2}a^{\dagger}a^{*} = a^{\dagger}a^{2}a^{*}$, it follows that $aa^{*} = (aa^{*})^{*} = aa^{*}a^{\dagger}a$, one obtains $a^{*} = a^{\dagger}aa^{*} = a^{\dagger}aa^{*}a^{\dagger}a = a^{*}a^{\dagger}a$, so $a = (a^{*}a^{\dagger}a)^{*} = a^{\dagger}a^{2}a^{*}$. Hence $aa^{*}aa^{\sharp} = aa^{*}(a^{\dagger}a^{2})a^{\sharp} = a(a^{*}a^{\dagger}a) = aa^{*} = a^{\dagger}a^{2}a^{*}$.

(3) \implies (4) Suppose that $a^{\dagger}a^{2}a^{*} = aa^{*}aa^{\sharp}$. Then similar to (2) \implies (3), one can show that $a = a^{\dagger}a^{2}$ and $a^{*} = a^{*}a^{\dagger}a$. Hence $a^{\dagger}a^{n}a^{*} = (a^{\dagger}a^{2})a^{n-2}a^{*} = a^{n-1}a^{*} = a^{n-1}a^{*}a^{\dagger}a$.

(4) \implies (1) Assume that $a^{\dagger}a^{n}a^{*} = a^{n-1}a^{*}a^{\dagger}a$. Then $a^{n-1}a^{*} = a^{\sharp}a^{n}a^{*} = a^{\sharp}a(a^{\dagger}a^{n}a^{*}) = a^{\sharp}a(a^{n-1}a^{*}a^{\dagger}a) = a^{n-1}a^{*}a^{\dagger}a$, it follows that $aa^{*} = (a^{\sharp})^{n-2}a^{n-1}a^{*} = (a^{\sharp})^{n-2}a^{n-1}a^{*}a^{\dagger}a = aa^{*}a^{\dagger}a$, so $a^{*} = a^{\dagger}aa^{*} = a^{\dagger}(aa^{*}a^{\dagger}a) = a^{*}a^{\dagger}a$, this gives $(a^{\sharp})^{*}a^{*} = (a^{\sharp})^{*}a^{*}a^{\dagger}a$, so $aa^{\sharp} = a^{\dagger}a$. Hence a is EP. \Box

Remark: The condition (4) of Theorem 2.5 exists in [12, Theorem 2.1(xii)] for m = n - 1 and n = 1.

Theorem 2.6. Let *R* be a *-ring and $a \in R$. Then the following conditions are equivalent:

(1) *a* is *EP*; (2) $a \in R^{+} \cap R^{\sharp}$ and $a^{2}a^{+} + a^{\sharp}aa^{+} = a + a^{+}$; (3) $a \in R^{+} \cap R^{\sharp}$ and $a^{2}a^{+} + a^{\sharp} = a + a^{+}$; (4) $a \in R^{+} \cap R^{\sharp}$ and $a^{\sharp}aa^{+} + a^{\dagger}aa^{\sharp} = 2a^{+}$; (5) $a \in R^{+} \cap R^{\sharp}$ and $a^{+} + a^{\sharp} = 2a^{+}aa^{\sharp}$; (6) $a \in R^{+} \cap R^{\sharp}$ and $a^{+} + a^{\sharp} = 2a^{+}a^{+}a$.

Proof. (1) \implies (*i*), *i* = 2, 3, 4, 5, 6 They are trivial.

(2) \implies (1) From the assumption $a^2a^{\dagger} + a^{\sharp}aa^{\dagger} = a + a^{\dagger}$, we get $a^2a^{\dagger}a + a^{\sharp}aa^{\dagger}a = a^2 + a^{\dagger}a$. So, $a^{\sharp}a = a^{\dagger}a$, it follows that *a* is *EP*.

(3) \implies (1) By the equality $a^2a^{\dagger} + a^{\sharp} = a + a^{\dagger}$, we get $a^2a^{\dagger}a + a^{\sharp}a = a^2 + a^{\dagger}a$, this gives $a^{\sharp}a = a^{\dagger}a$. Hence *a* is *EP*.

(4) \implies (1) Using the equality $a^{\sharp}aa^{\dagger} + a^{\dagger}aa^{\sharp} = 2a^{\dagger}$, we have $2aa^{\dagger} = aa^{\sharp}aa^{\dagger} + aa^{\dagger}aa^{\sharp} = aa^{\dagger} + aa^{\sharp}$, it follows that $aa^{\dagger} = aa^{\sharp}$. Hence *a* is *EP*.

(5) \implies (1) The equality $a^{\dagger} + a^{\sharp} = 2a^{\dagger}aa^{\sharp}$ gives $aa^{\dagger} + aa^{\sharp} = 2aa^{\dagger}aa^{\sharp} = 2aa^{\sharp}$, again we have $aa^{\dagger} = aa^{\sharp}$. Hence *a* is *EP*.

(6) \implies (1) If $a^{\dagger} + a^{\sharp} = 2a^{\dagger}a^{\dagger}a$, then $a^{\dagger} + a^{\sharp} = 2a^{\dagger}a^{\dagger}a = a^{\dagger}a(2a^{\dagger}a^{\dagger}a) = a^{\dagger}a(a^{\dagger} + a^{\sharp}) = a^{\dagger} + a^{\dagger}aa^{\sharp}$, one obtains that $a^{\sharp} = a^{\dagger}aa^{\sharp}$. Hence $a^{\dagger}a = a^{\sharp}a$ and so a is EP. \Box

Remark: The condition (4) of Theorem 2.6 exists in [12, Theorem 2.1(xv)] for n = 1.

Theorem 2.7. Let R be a *-ring. Then E(R) = PE(R) if and only if every element of E(R) is EP.

Proof. Let $e \in E(R)$. If E(R) = PE(R), then $e = e^*$. It is not difficult to verify that e is EP with $e^{\sharp} = e^{\dagger} = e$. Conversely, we assume that e is EP. Then $e^{\sharp} = e^{\dagger}$, it follows that $e = ee^{\sharp}e = ee^{\sharp}$ and so $e^{\dagger} = e^{\sharp} = (ee^{\sharp})e^{\sharp} = ee^{\sharp} = e$. Hence $e \in PE(R)$. \Box Recall that a ring *R* is directly finite if ab = 1 implies ba = 1 for any $a, b \in R$. Clearly, a ring *R* is directly finite if and only if right invertible element of *R* is invertible.

Theorem 2.8. Let *R* be a *-ring. Then the following conditions are equivalent:

(1) *R* is a directly finite ring;

(2) Every right invertible element of R is group invertible;

(3) Every right invertible element of R is EP.

Proof. (1) \implies (3) It is trivial because every invertible element is *EP*.

 $(3) \Longrightarrow (2)$ It is evident.

(2) \implies (1) Suppose that $a, b \in R$ with ab = 1. By hypothesis, $a \in R^{\sharp}$, so $1 = ab = (aa^{\sharp})(ab) = aa^{\sharp} = a^{\sharp}a$, one obtains that a is invertible. Hence R is directly finite. \Box

Recall that a ring *R* is reduced if $N(R) = \{0\}$. Using the *EP* elements, we can characterize reduced rings as follows.

Theorem 2.9. *Let R be a* **-ring. Then the following conditions are equivalent:*

(1) *R* is a reduced ring;

(2) Every element of N(R) is group invertible;

(3) Every element of N(R) is EP.

Proof. (1) \Longrightarrow (3) \Longrightarrow (2) They are trivial.

(2) \implies (1) Suppose that the condition (2) holds. If *R* is not reduced, then there exists $b \in R \setminus \{0\}$, let *n* be the positive integer such that $b^n = 0$ and $b^{n-1} \neq 0$. Choose $a = b^{n-1}$. Then $a \in R \setminus \{0\}$ with $a^2 = 0$. Since $a \in R^{\ddagger}$, $a = a^2 a^{\ddagger} = 0$, which is a contradiction. Hence *R* is reduced. \square

Theorem 2.10. Let *R* be a *-ring and $a \in R$. Then *a* is *EP* if and only if there exists (unique) $p \in PE(R)$ such that pa = ap = 0 and $a + p \in U(R)$.

Proof. It is similar to the proof of [2, Theorem 2.1]. \Box

Also, similar to the proof of [2, Theorem 2.1], we have the following corollary.

Corollary 2.11. Let *R* be a *-ring and $a \in R$. Then *a* is *EP* if and only if there exists unique $p \in PE(R)$ such that pa = ap = 0 and $a - p \in U(R)$.

Corollary 2.12. Let R be a *-ring and $a \in R$. Then a is EP if and only if there exists $p \in PE(R)$ such that $p \in comm^2(a)$, ap = 0 and $a + p \in U(R)$.

Proof. The sufficiency follows from Theorem 2.10.

The necessity: Noting that $p = 1 - a^{\sharp}a$ in Theorem 2.10. Then, for any $x \in comm(a)$, we have $(1 - p)xp = a^{\sharp}axp = a^{\sharp}xap = 0$ and $px(1 - p) = pxaa^{\sharp} = paxa^{\sharp} = 0$, this implies that px = pxp = xp. Hence $p \in comm^2(a)$, we are done. \Box

Similarly, we have the following corollary.

Corollary 2.13. Let *R* be a *-ring and $a \in R$. Then *a* is *EP* if and only if there exists unique $p \in PE(R)$ such that $p \in comm^2(a)$, ap = 0 and $a - p \in U(R)$.

Theorem 2.14. Let *R* be a *-ring and $a \in R$. Then a is *EP* if and only if there exists $b \in comm^2(a)$, $ab = ba \in PE(R)$, $a = a^2b$ and $b = ab^2$.

Proof. Suppose that *a* is *EP*. Then by Corollary 2.12, there exists $p \in PE(R)$ such that $p \in comm^2(a)$, ap = 0 and $a + p \in U(R)$. Choose $b = (a + p)^{-1}(1 - p)$. Then clearly, $b \in comm^2(a)$ and $ab = ba = 1 - p \in PE(R)$. By a simple computation, we have $a = a^2b$ and $b = ab^2$.

Conversely, assume that there exists $b \in comm^2(a)$, $ab = ba \in PE(R)$, $a = a^2b$ and $b = ab^2$. Choose p = 1-ab. Then $p \in PE(R)$, $ap = a - a^2b = 0 = pa$ and $pb = b - ab^2 = 0 = bp$. Note that (a + p)(b + p) = ab + p = 1. Then $a + p \in U(R)$, by Theorem 2.10, a is EP. \Box

3. *****-Strongly Regular Rings

Recall that an element *a* of a ring *R* is strongly regular if $a \in a^2R \cap Ra^2$. It is well known that $a \in R$ is strongly regular if and only if there exist $e \in E(R)$ and $u \in U(R)$ such that a = eu = ue.

Let *R* be a *-ring. An element $a \in R$ is called *-strongly regular if there exist $p \in PE(R)$ and $u \in U(R)$ such that a = pu = up. A ring *R* is called *-strongly regular if every element of *R* is *-strongly regular.

Clearly, *-strongly regular elements are strongly regular, and so *-strongly regular rings are strongly regular. However, the converse is not true by the following example.

Example 3.1. Let D be a division ring and $R = D \oplus D$. Set * be an involution of R defined by *((a, b)) = (b, a). Evidently, R is a strongly regular ring, but R is not *-strongly regular. In fact (1,0) is not a *-strongly regular element.

Theorem 3.2. Let *R* be a *-ring. Then *R* is a *-strongly regular ring if and only if *R* is a strongly regular ring with E(R) = PE(R).

Proof. Suppose that *R* is a *-strongly regular ring and $e \in E(R)$. Then there exist $p \in PE(R)$ and $u \in U(R)$ such that e = pu = up, this gives e = pe = ep. Note that $p = eu^{-1}$. Then p = ep = e, so $E(R) \subseteq PE(R)$, this shows that E(R) = PE(R).

The converse is trivial. \Box

Theorem 3.3. Let *R* be a *-ring and $a \in R$. Then a is EP if and only if a is *-strongly regular.

Proof. Suppose that *a* is *EP*. Then, by Theorem 2.10, there exists $p \in PE(R)$ such that $a + p \in U(R)$ and ap = pa = 0. Write $a + p = u \in U(R)$. Then a = a(1 - p) = u(1 - p) = (1 - p)u. Since $1 - p \in PE(R)$, *a* is *-strongly regular.

Conversely, assume that *a* is *-strongly regular. Then there exist $p \in PE(R)$ and $u \in U(R)$ such that a = pu = up. Since $(a + 1 - p)(u^{-1}p + 1 - p) = (u^{-1}p + 1 - p)(a + 1 - p) = 1$, $a + 1 - p \in U(R)$. Noting that a(1 - p) = (1 - p)a = 0 and $1 - p \in PE(R)$. Hence *a* is *EP* by Theorem 2.10. \Box

Theorem 3.4. Let R be a *-ring. Then R is *-strongly regular if and only if R is Abel and for each $a \in R$, $Ra = Ra^*a$.

Proof. Suppose that *R* is *-strongly regular. Note that *-strongly regular rings are strongly regular. Then *R* is also Abel. Now let $a \in R$. Then *a* is *-strongly regular, so there exist $p \in PE(R)$ and $u \in U(R)$ such that a = pu = up. Hence $a^*a = u^*up$, one obtains that $Ra^*a = Rp = Ra$.

Conversely, assume that *R* is Abel and for each $a \in R$, $Ra = Ra^*a$. Write that $a = da^*a$ for some $d \in R$. Then $(ad^*)^2 = ad^*ad^* = (da^*a)d^*ad^* = d(a^*ad^*)ad^* = ad^*ad^* = ad^*$. Noting that *R* is Abel, ad^* is a central idempotent of *R*, so da^* is a central idempotent of *R*, this gives that $a = (da^*)a = a(da^*)$. Hence $Ra \subseteq Ra^*$. By [4, Proposition 2.7], *R* is a *-regular ring, so $a \in R^+$. Thus by [13, Theorem 3.1], one knows that *a* is *EP*, by Theorem 3.3, *a* is *-strongly regular. Hence *R* is *-strongly regular.

Corollary 3.5. *A* *-*ring R is a* *-*strongly regular ring if and only if R is an Abel ring and* *-*regular ring.*

Let *R* be a ring and write $ZE(R) = \{x \in R | ex = xe \text{ for each } e \in E(R)\}$. It is easy to show that ZE(R) is a subring of *R* and Z(R), the center, of *R* is contained in ZE(R).

Let *R* be a *-ring. Choose $a \in ZE(R)$ and $e \in E(R)$. Since $e^* \in E(R)$, $ae^* = e^*a$, it follows that $ea^* = a^*e$. Hence $a^* \in ZE(R)$, so ZE(R) becomes a *-ring.

Theorem 3.6. Let *R* be a *-regular ring. Then ZE(*R*) is a *-strongly regular ring.

Proof. Let $a \in ZE(R)$. Since *R* is a *-regular ring, by [6, Lemma 2.1], there exists $p \in PE(R)$ such that aR = pR. Write p = ab for some $b \in R$. Then a = pa = aba. Choose $e \in E(R)$. Then ae = ea, it follows that (1 - p)epa = (1 - p)ea = (1 - p)ae = 0, this gives (1 - p)ep = 0, that is, ep = pep. Since $e^* \in E(R)$, $e^*p = pe^*p$, one obtains pe = pep. Hence ep = pe, this implies $p \in ZE(R)$. Note that $ba \in E(R)$. Then

 $ba^2 = (ba)a = a(ba) = a = pa = ap = a^2b$, it follows that $b^3a^2 = a^2b^3$. Since $ba^2e = ae = ea = ea^2b = a^2eb$, $b^3a^2e = a^2eb^3 = ea^2b^3$, this implies that $a^2b^3 \in ZE(R)$. Choose $c = a^2b^3 \in ZE(R)$. Then $ac = a^3b^3 = a^2(ab)b^2 = a^2pb^2 = a^2b^2 = a(ab)b = apb = ab = p$. Hence $aZE(R) = paZE(R) \subseteq pZE(R) = acZE(R) \subseteq aZE(R)$, by [6, Lemma 2.1], ZE(R) is a *-regular ring. Note that ZE(R) is Abel. Then by Corollary 3.5, we have ZE(R) is *-strongly regular.

Clearly, if *R* is an Abel ring, then ZE(R) = R. Hence Corollary 3.5 and Theorem 3.6 give the following corollary.

Corollary 3.7. Let R be a *-ring. Then R is a *-strongly regular ring if and only if R is an Abel ring and ZE(R) is a *-strongly regular ring.

Due to [16], a *-ring is *-Abel if every projection is central. Clearly, Abel *-rings are *-Abel. A *-ring *R* is called *-quasi-normal if pR(1 - p)Rp = 0 for each $p \in PE(R)$. Clearly, *-Abel rings are *-quasi-normal.

Corollary 3.8. Let R be a *-ring. Then R is a *-strongly regular ring if and only if R is a *-quasi-normal *-regular ring.

Proof. The necessity follows from Corollary 3.5.

Conversely, assume that *R* is a *-quasi-normal *-regular ring. Then *R* is a semiprime ring and pR(1 - p)Rp = 0 for each $p \in PE(R)$, this implies pR(1 - p) = 0 = (1 - p)Rp. Hence *R* is *-Abel, by Corollary 3.5, *R* is *-strongly regular.

Corollary 3.9. If *R* is a *-strongly regular ring, then so is pRp for any $p \in PE(R)$.

Proof. It follows from Corollary 3.5 and [6, Proposition 2.8].

4. *-Exchange Rings

Definition 4.1. Let *R* be a *-ring and $a \in R$. If there exists $p \in PE(R)$ such that $p \in aR$ and $1 - p \in (1 - a)R$, then a is called *-exchange element of *R*. And a *-ring *R* is said to be *-exchange if every element of *R* is *-exchange.

Clearly, any *-exchange element of a *-ring *R* is exchange and the converse is true whenever PE(R) = E(R).

Lemma 4.2. Let R be a *-ring and $x \in R$. If x is *-strongly regular, then x is *-exchange.

Proof. Suppose that *x* is *-strongly regular. Then there exist $u \in U(R)$ and $p \in PE(R)$ such that x = pu = up, and hence x(1-p) = 0. Note that $p = xu^{-1}$ and (1-x)(1-p) = 1-p. Hence *x* is *-exchange. \Box

Lemma 4.3. Let *R* be a *-ring and $x \in R$. Then the following conditions are equivalent:

(1) x is *-exchange;

(2) There exists $p \in PE(R)$ such that $p - x \in (x - x^2)R$.

Proof. (1) \implies (2) Assume that *x* is *-exchange. Then there exists $p \in PE(R)$ such that $p \in xR$ and $1 - p \in (1 - x)R$, this gives $p - x = (1 - x)p - x(1 - p) \in (x - x^2)R$.

(2) \implies (1) Let $p \in PE(R)$ satisfy $p - x \in (x - x^2)R$. Write $p - x = (x - x^2)c$ for some $c \in R$. It follows that $p = x(1 + (1 - x)c) \in xR$ and $1 - p = (1 - x)(1 - xc) \in (1 - x)R$. Hence x is *-exchange. \Box

Let *R* be a *-ring and *I* be an (one-sided) ideal of *R*. *I* is called *-(one-sided) ideal of *R* if $a^* \in I$ for each $a \in I$. Clearly, the Jacobson radical *J*(*R*) of a *-ring *R* is *-ideal.

Lemma 4.4. Let *R* be a *-exchange ring and I a *-right ideal of *R*. Then the projection elements can be lifted modulo *I*.

Proof. Let $x \in R$ satisfy $x - x^2 \in I$. Since R is *-exchange, there exists $p \in PE(R)$ such that $p - x \in (x - x^2)R$ by Lemma 4.3. Note that I is a *-right ideal of R. Hence $p - x \in I$, we are done. \Box

Lemma 4.5. If *R* is a *-exchange ring, then E(R) = PE(R).

Proof. Let $e \in E(R)$. Then by the hypothesis, there exists $p \in PE(R)$ such that $p \in eR$ and $1 - p \in (1 - e)R$. It follows that p = ep = e. Hence $e \in PE(R)$, this gives $E(R) \subseteq PE(R)$. Therefore E(R) = PE(R). \Box

Let *R* be a *-ring and *I* a *-ideal of *R*. For each $\bar{a} = a + I$ in $\bar{R} = R/I$, we define $\bar{a}^* = a^* + I$. Then R/I becomes a *-ring.

Theorem 4.6. Let *R* be a *-ring. Then *R* is a *-exchange ring if and only if (1) *R*/*J*(*R*) is *-exchange ring; (2) Projection elements can be lifted modulo J(*R*);

(3) E(R) = PE(R).

Proof. Suppose that *R* is *-exchange. Then the projection elements can be lifted modulo J(R) by Lemma 4.4 and E(R) = PE(R) by Lemma 4.5. Note that *R* is exchange. Then R/J(R) is exchange, it follows that R/J(R) is *-exchange because E(R) = PE(R).

Conversely, let $a \in R$. Since $\overline{R} = R/J(R)$ is *-exchange, there exists $p \in R$ such that $\overline{p} \in PE(\overline{R}) \cap \overline{aR}$ and $\overline{1} - \overline{p} \in (\overline{1} - \overline{a})\overline{R}$. Note that the projection elements can be lifted modulo J(R). Then we can assume that $p \in PE(R)$. Let $b, c \in R$ satisfy $p - ab \in J(R)$ and $1 - p - (1 - a)c \in J(R)$. Write u = 1 - p + ab. Then $u \in U(R)$. Let $e = upu^{-1}$. Then we have $e^2 = e = abpu^{-1} \in aR$. Note that E(R) = PE(R). Then $e \in PE(R)$. Since $p - ab \in J(R)$, $\overline{ab} = \overline{p}$, it follows that $\overline{u} = \overline{1} - \overline{p} + \overline{ab} = \overline{1}$, so $\overline{e} = \overline{ab}\overline{p}\overline{u}^{-1} = \overline{p}$, $e - p \in J(R)$, it follows that $1 - e - (1 - a)c = 1 - p - (1 - a)c + p - e \in J(R)$. Write $1 - e - (1 - a)c = d \in J(R)$. Then $1 = e(1 - d)^{-1} + (1 - a)c(1 - d)^{-1}$. Choose $f = e + e(1 - d)^{-1}(1 - e)$. Then $f \in PE(R) \cap aR$ and $1 - f = (1 - e(1 - d)^{-1})(1 - e) = (1 - a)c(1 - d)^{-1}(1 - e) \in (1 - a)R$. Therefore a is *-exchange and so R is *-exchange. \Box

Theorem 4.6 implies the following corollary.

Corollary 4.7. A *-ring R is *-exchange if and only if R is exchange and <math>PE(R) = E(R).

Lemma 4.8. Let *R* be a *-ring. Then E(R) = PE(R) if and only if for each $e, g \in E(R)$, $e^*e = ee^*$ and $g^*g = 0$ implies g = 0.

Proof. Suppose that E(R) = PE(R) and $e \in E(R)$. We claim that eR(1 - e) = 0. If not, then there exists $a \in R$ such that $ea(1 - e) \neq 0$. Note that $g = e + ea(1 - e) \in E(R) = PE(R)$. Then $e + ea(1 - e) = g = g^* = e^* + (1 - e^*)a^*e^* = e + (1 - e)a^*e$, it follows that $ea(1 - e) = (1 - e)a^*e$, so ea(1 - e) = 0, which is a contradiction. Hence eR(1 - e) = 0. Similarly, we can show that (1 - e)Re = 0. Hence $e^*e = ee^*e = ee^*$.

Now assume that $g \in E(R)$ and $g^*g = 0$. Noting that E(R) = PE(R). Then $g^* = g$, so g = 0.

Conversely, let $e \in E(R)$. Then by hypothesis, one has $e^*e = ee^*$. Since $e - e^*e \in E(R)$ and $(e - e^*e)^*(e - e^*e) = 0$, again by hypothesis, one obtains that $e - e^*e = 0$, this implies $e \in PE(R)$. Hence E(R) = PE(R).

By the proof of Lemma 4.8, we have the following corollary.

Corollary 4.9. Let R be a *-ring and E(R) = PE(R). Then R is an Abel ring.

It is known that Abel exchange rings are clean. Hence Theorem 4.6 and Corollary 4.9 imply the following corollary.

Corollary 4.10. *-exchange rings are clean.

Since clean rings are always exchange, hence Theorem 4.6 and Corollary 4.10 give the following corollary.

Corollary 4.11. *Let R be a *-ring. Then the following conditions are equivalent:*

(1) *R* is a *-exchange ring;

(2) *R* is an exchange ring and E(R) = PE(R);

(3) R is a clean ring and E(R) = PE(R).

The following corollary follows from [17, Theorem 3.3, Corollary 3.4, Theorem 3.12, Corollary 4.9], Corollary 4.7 and Corollary 4.9.

Corollary 4.12. *Let R be a* **–exchange ring and P is an ideal of R.*

(1) If *P* is a prime ideal of *R*, then *R*/*P* is a local ring;

(2) If P is a left (right) primitive ideal of R, then R/P is a division ring;

(3) *R* is a left and right quasi-duo ring;

(4) *R* has stable range one.

Theorem 4.13. *The following conditions are equivalent for a* **-ring R:*

(1) *R* is a *-strongly regular ring;

(2) *R* is a semiprime *-exchange ring and every prime ideal of *R* is maximal;

(3) *R* is a semiprime *-exchange ring and every prime ideal of *R* is left (right) primitive.

Proof. (1) \implies (2) Suppose that *R* is *–strongly regular. Then, by Lemma 4.2, *R* is *–exchange, this implies *R* is left and right quasi-duo by Corollary 4.12. Note that *R* is strongly regular. Hence, by [19, Theorem 2.6], *R* is a semiprime and every prime ideal of *R* is maximal.

 $(2) \Longrightarrow (3)$ It is trivial.

(3) \implies (1) Suppose that *R* is a semiprime *–exchange ring and every prime ideal of *R* is left (right) primitive. Then *R* is left and right quasi-duo by Corollary 4.12 and *PE*(*R*) = *E*(*R*) by Theorem 4.6. Note that *R* is strongly regular by [19, Theorem 2.6]. Hence *R* is *–strongly regular by Theorem 3.2. \Box

Corollary 4.14. Let *R* be a *-exchange semiprimitive ring such that every left *R*-module has a maximal submodule, then *R* is *-strongly regular.

Proof. Note that *R* is left and right quasi-duo and PE(R) = E(R) by Corollary 4.7 and Corollary 4.12. Then, by [19, Lemma 3.2], *R* is von neumann regular, it follows that *R* is *–strongly regular by Theorem 3.2.

Corollary 4.15. Let R be a *-exchange ring. If every prime ideal of R is left (right) primitive, then R/J(R) is *-strongly regular.

Proof. Since *R* is a *–exchange ring, by Theorem 4.6, R/J(R) is *–exchange. Note that R/J(R) is semiprime and every prime ideal of R/J(R) is left (right) primitive. Then, by Theorem 4.13, one obtains that R/J(R) is *–strongly regular.

References

- [1] S. K. Berberian, Baer *-rings, Grundlehren der Mathematischen Wissenschaften, 195, Springer, Berlin, 1972.
- [2] J. Benitez, Moore. Penrose inverses and commuting elements of C*-algebras, J. Math. Anal. Appl 345 (2008) 766-770.
- [3] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, (2nd edition), Springer, New York, 2003.
- [4] J. L. Chen, J. Cui, Two questions of L. Vaš on *-clean rings, Bull. Aust. Math. Soc 88 (2013) 499-505.
- [5] J. Cui, J. Chen, Characterizations of quasipolar rings, Comm. Algebra 41 (2013) 3207–3217.
- [6] J. Cui, X. B. Yin, Some characterizations of *-regular rings, Comm. Algebra 45 (2017) 841-848.
- [7] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506-514.
- [8] D. S. Djordjević, Products of EP operators on Hilbert spaces, Proc. Amer. Math. Soc 129 (2000) 1727-1731.
- [9] R. E. Hartwig, An application of the Moore Penrose inverse to antisymmetric relations, Proc. Amer. Math. Soc 78 (1980) 181–186.
- [10] R. E. Hartwig, P. Patricio, When does the Moore-Penrose inverse flip, Oper. Matrices 6 (2012) 181–192.
- [11] J. J. Koliha, P. Patricio, Elements of rings with equal spectral idempotents, J. Austral. Math. Soc 72 (2002) 137–152.
- [12] D. Mosić, D. S. Djordjević, New characterizations of EP, generalized normal and generalized Hermitian elements in rings, Applied Math. Comput 218(12) (2012) 6702–6710.
- [13] D. Mosić, D. S. Djordjević, J. J. Koliha, EP elements in rings, Linear Algebra Appl 431 (2009) 527-535.

- [14] D. Mosić, D. S. Djordjević, Further results on partial isometries and EP elements in rings with involution, Math. Compu. Model 54 (2011) 460–465.
- [15] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc 51 (1955) 406-413.
- [16] L. Vaš, *-clean rings; some clean and almost clean Baer *-rings and von Neumann algebras, J. Algebra 324(12) (2010) 3388–3400.
 [17] J. C. Wei, L. B. Li, Quasi-normal rings, Comm. Algebra 38 (2010) 1855–1868.
- [18] Z. L. Ying, J. Chen, On quasipolar rings, Algebra Colloq 19 (2012) 683–692.
 [19] H. P. Yu, On quasi-duo rings, Glasgow Math. J 37(1) (1995) 21–31.