Filomat 32:2 (2018), 489–502 https://doi.org/10.2298/FIL1802489Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Wiener-type Invariants on Graph Properties

Qiannan Zhou^a, Ligong Wang^a, Yong Lu^a

^aDepartment of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China

Abstract. The Wiener-type invariants of a simple connected graph G = (V(G), E(G)) can be expressed in terms of the quantities $W_f = \sum_{\{u,v\} \subseteq V(G)} f(d_G(u,v))$ for various choices of the function f(x), where $d_G(u,v)$ is the distance between vertices u and v in G. In this paper, we mainly give some sufficient conditions for a connected graph to be k-connected, β -deficient, k-hamiltonian, k-edge-hamiltonian, k-path-coverable or satisfy $\alpha(G) \leq k$.

1. Introduction

Throughout this paper, we only consider graphs which are simple, undirected and finite. We refer the reader to [3] for terminologies and notations not defined here. Let *G* denote a graph with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ and edge set E(G). Let $d_i = d_{v_i} = d_G(v_i)$ denote the degree of v_i . Denote by $(d_1, d_2, ..., d_n)$ the degree sequence of the graph *G*, where $d_1 \le d_2 \le \cdots \le d_n$. Let *G* and *H* be two disjoint graphs. The disjoint union of *G* and *H*, denoted by G + H, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. The disjoint union of *k* graphs *G* is denoted by *kG*. The join of *G* and *H*, denoted by $G \lor H$, is the graph obtained from disjoint union of *G* and *H* by adding edges joining every vertex of *G* to every vertex of *H*. The complement \overline{G} of *G* is the graph on V(G) with edge set $[V]^2 \setminus E(G)$.

In theoretical chemistry, molecular structure descriptors, also called topological indices, are used for modeling physico-chemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. For $v_i, v_j \in V(G)$, let $d_G(v_i, v_j)$ denote the distance between v_i and v_j . The *Wiener index* W(G) of a connected graph *G* is defined by

$$W(G) = \sum_{\{u,v\}\subseteq V(G)} d_G(u,v).$$

In 1947, the Wiener index was introduced by Wiener [29], who used it for modeling the shape of organic molecules and for calculating several of their physico-chemical properties. More details on vertex distances and Wiener index can be found in [8, 9, 16, 28, 29].

In 1993, for the characterization of molecular graphs, Ivanciuc et al. [14] and Plavšić et al. [26] independently introduced the *Harary index* H(G) of a graph *G*. It has been named in honor of Professor

Keywords. Wiener-type index, degree sequence, graph properties.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C50; Secondary 05C40, 05C07

Received: 05 January 2016; Accepted: 24 October 2017

Communicated by Paola Bonacini

Corresponding author: Ligong Wang

Research supported by the National Natural Science Foundation of China (No. 11171273).

Email addresses: qnzhoumath@163.com (Qiannan Zhou), lgwangmath@163.com (Ligong Wang), luyong.gougou@163.com (Yong Lu)

Frank Harary on the occasion of his 70th birthday. The definition of Harary index is as follows:

$$H(G) = \sum_{\{u,v\}\subseteq V(G)} \frac{1}{d_G(u,v)}.$$

More details on Harary index can be found in [6, 25, 30, 32, 34].

Some generalizations and modifications of the Wiener index were proposed. Many of these Wiener-type invariants can be expressed in terms of the quantities

$$W_f=W_f(G)=\sum_{\{u,v\}\subseteq V(G)}f(d_G(u,v)),$$

for various choices of the function f(x). We know that when f(x) = x, W_x is the Wiener index; when $f(x) = \frac{1}{x}$, $W_{\frac{1}{x}}$ is the Harary index; when $f(x) = \frac{x^2+x}{2}$, $W_{\frac{x^2+x}{2}}$ is called the *hyper-Wiener index* [27], which is denoted by *WW*; when $f(x) = x^{\lambda}$, where $\lambda \neq 0$ is a real number, $W_{x^{\lambda}}$ is called the *modified Wiener index* [11], which is denoted by W_{λ} . More details on Wiener-type invariants can be found in [7, 12, 15].

In recent years, some sufficient conditions in terms of Wiener index and Harary index are given for a graph to be Hamiltonian, traceable or have other graph properties. More details can be found in [10, 13, 21–24, 31, 33]. In 2016, Kuang et al. [18] gave some sufficient conditions on Wiener-type invariants for a graph to be Hamiltonian or traceable, for a connected bipartite graph to be Hamiltonian which included some previous results.

In this paper, we mainly give some sufficient conditions in terms of Wiener-type invariants for some graph properties. In Section 2, we will give some graph notations and useful lemmas. In Section 3, we will present some sufficient conditions for a connected graph to be *k*-connected, β -deficient, *k*-hamiltonian, *k*-edge-hamiltonian and *k*-path-coverable, respectively, in terms of Wiener-type index.

2. Some definitions and lemmas

First, we give some notations of graphs used in this paper.

A connected graph *G* is called to be *k*-connected (or *k*-vertex connected) if it has more than *k* vertices and remains connected whenever fewer than *k* vertices are removed.

The *deficiency* def(*G*) of a graph *G* is the number of vertices unmatched under a maximum matching in *G*. In particular, *G* has a 1-factor if and only if def(*G*)=0. If def(*G*) $\leq \beta$, then we call *G* β -*deficient*.

A cycle is called a *Hamilton cycle* if it contains every vertex of a graph. The graph is said to be *Hamiltonian* if it has a Hamilton cycle. A graph is *k*-hamiltonian if for all $|X| \le k$, the subgraph induced by $V(G)\setminus X$ is Hamiltonian. Thus 0-hamilotnian is the same as Hamiltonian.

A graph *G* is *k*-edge-hamiltonian if any collection of vertex-disjoint paths with at most *k* edges altogether belong to a Hamilton cycle in *G*.

A path is called a *Hamilton path* if it contains every vertex of a graph. The graph is said to be *traceable* if it has a Hamilton path. More generally, G is *k*-path-coverable if V(G) can be covered by *k* or fewer vertex-disjoint paths. In particular, 1-path-coverable is the same as traceable.

A subset *S* of *V*(*G*) is called an *independent set* of *G* if no two vertices of *S* are adjacent in *G*. The number of vertices in a maximum independent set of *G* is called the *independence number* of *G* and is denoted by $\alpha(G)$.

An integer sequence $\pi = (d_1 \le d_2 \le \cdots \le d_n)$ is called *graphical* if there exists a graph *G* having π as its vertex degree sequence, in that case, *G* is called a *realization* of π . If *P* is a graph property, such as hamiltonian or *k*-connected, we call a graphical sequence π *forcibly P* if every realization of π has property *P*. Historically, the vertex degrees of a graph have been used to provide sufficient conditions for the graph to have certain properties, such as hamiltonicity or *k*-connectedness.

Next, we give some useful lemmas.

Lemma 2.1. ([2]) Let G be a graph of order $n \ge 4$ with degree sequence $\pi = (d_1 \le d_2 \le \cdots \le d_n)$. If

$$d_i \le i + k - 2 \Longrightarrow d_{n-k+1} \ge n - i, \text{ for } 1 \le i \le \frac{1}{2}(n - k + 1),$$

then π is forcibly k-connected.

Lemma 2.2. ([19]) Let $\pi = (d_1 \le d_2 \le \cdots \le d_n)$ be a graphical sequence and let $0 \le \beta \le n$ with $n \equiv \beta \pmod{2}$. If

$$d_{i+1} \leq i - \beta \Rightarrow d_{n+\beta-i} \geq n - i - 1, \text{ for } 1 \leq i \leq \frac{1}{2}(n+\beta-2),$$

then π is forcibly β -deficient.

Lemma 2.3. ([4]) Let $\pi = (d_1 \le d_2 \le \cdots \le d_n)$ be a graphical sequence and $0 \le k \le n-3$. If

$$d_i \leq i+k \Rightarrow d_{n-i-k} \geq n-i, for \ 1 \leq i < \frac{1}{2}(n-k),$$

then π is forcibly k-hamiltonian.

Lemma 2.4. ([17]) Let $\pi = (d_1 \le d_2 \le \cdots \le d_n)$ be a graphical sequence and $0 \le k \le n-3$. If

$$d_{i-k} \le i \Rightarrow d_{n-i} \ge n-i+k, \text{ for } k+1 \le i < \frac{1}{2}(n+k),$$

then π is forcibly k-edge-hamiltonian.

Lemma 2.5. ([5, 20]) Let $\pi = (d_1 \le d_2 \le \cdots \le d_n)$ be a graphical sequence and $k \ge 1$. If

$$d_{i+k} \le i \Rightarrow d_{n-i} \ge n-i-k, \text{ for } 1 \le i < \frac{1}{2}(n-k),$$

then π is forcibly k-path-coverable.

Lemma 2.6. ([1]) Let $\pi = (d_1 \le d_2 \le \cdots \le d_n)$ be a graphical sequence and $k \ge 1$. If

 $d_{k+1} \ge n-k,$

then π is forcibly $\alpha(G) \leq k$.

3. Main Results

Theorem 3.1. *Let G be a connected graph of order* $n \ge k + 1$ *. If*

$$W_f(G) \le \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n - k[f(2) - f(1)],$$

for a monotonically increasing function f(x) on $x \in [1, n - 1]$, or

$$W_f(G) \geq \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n + k[f(1) - f(2)],$$

for a monotonically decreasing function f(x) on $x \in [1, n-1]$, then G is k-connected unless $G = K_{k-1} \vee (K_1 + K_{n-k})$.

Proof. Assume that *G* is not *k*-connected and has degree sequence $(d_1, d_2, ..., d_n)$, where $d_1 \le d_2 \le \cdots \le d_n$. By Lemma 2.1, there is an integer $1 \le i \le \frac{n-k+1}{2}$ such that $d_i \le i+k-2$ and $d_{n-k+1} \le n-i-1$. Obviously, $1 \le k \le n-1$. Note that *G* is connected. If f(x) is a monotonically increasing function for $x \in [1, n-1]$, then

$$\begin{split} W_f(G) &= \frac{1}{2} \sum_{s=1}^n \sum_{t=1}^n f(d_G(v_s, v_t)) \\ &\geq \frac{1}{2} \sum_{s=1}^n [f(1)d_s + f(2)(n-1-d_s)] \\ &= \frac{1}{2} \sum_{s=1}^n [(n-1)f(2) - (f(2) - f(1))d_s] \\ &= \frac{1}{2} n(n-1)f(2) - \frac{f(2) - f(1)}{2} \sum_{s=1}^n d_s \\ &= \frac{1}{2} n(n-1)f(2) - \frac{f(2) - f(1)}{2} (\sum_{s=1}^i d_s + \sum_{s=i+1}^{n-k+1} d_s + \sum_{s=n-k+2}^n d_s) \\ &\geq \frac{1}{2} n(n-1)f(2) - \frac{f(2) - f(1)}{2} [i(i+k-2) + (n-k-i+1)(n-i-1) + (k-1)(n-1)] \\ &= \frac{1}{2} n(n-1)f(2) - [f(2) - f(1)] [\frac{n^2 - 3n}{2} - (i-1)(n-i-k) + k] \\ &= \frac{f(1)}{2} n^2 + [f(2) - \frac{3}{2} f(1)]n - k[f(2) - f(1)] + [f(2) - f(1)](i-1)(n-i-k). \end{split}$$

Similarly, if f(x) is a monotonically decreasing function for $x \in [1, n - 1]$, then

$$W_f(G) \le \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n + k[f(1) - f(2)] - [f(1) - f(2)](i - 1)(n - i - k).$$

If f(x) is a monotonically increasing function on [1, n - 1], by the condition of Theorem 3.1, we have $(i - 1)(n - i - k) \le 0$. Then we discuss the following two cases.

Case 1. Assume that (i-1)(n-i-k) = 0. In this case, we get $W_f(G) = \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n - k[f(2) - f(1)]$. So all the inequalities in the above arguments should be equalities. Thus, we have (a) the diameter of *G* is no more than two; (b) $d_1 = \cdots = d_i = i + k - 2$, $d_{i+1} = \cdots = d_{n-k+1} = n - i - 1$ and $d_{n-k+2} = \cdots = d_n = n - 1$; and (c) i = 1 or n = i + k.

If i = 1, then $d_1 = k - 1$, $d_2 = \cdots = d_{n-k+1} = n - 2$, $d_{n-k+2} = \cdots = d_n = n - 1$. It implies that $G = K_{k-1} \vee (K_1 + K_{n-k})$, which is not k-connected as stated in [1]. If n = i + k, since $i \le \frac{n-k+1}{2}$ and $n \ge k+1$, then n = k + 1. Thus $1 \le i \le \frac{n-k+1}{2} = 1$, then i = 1. This case is the same as we discussed above.

Case 2. We assume $i \ge 2$ and n - i - k < 0. Note that $i \le \frac{n-k+1}{2}$, hence $0 \le i - 1 \le n - i - k$, a contradiction.

If f(x) is a monotonically decreasing function on [1, n - 1], we can prove the result by a similar method. The proof is complete. \Box

From Theorem 3.1, the previous work (see Theorem 3.1 in [10]) is a direct corollary when $f(x) = x, \frac{1}{x}$. Moreover, when $f(x) = \frac{x^2+x}{2}$, x^{λ} in Theorem 3.1, we have the following corollaries.

Corollary 3.2. Let G be a connected graph of order $n \ge k + 1$. If its hyper-Wiener index

$$WW(G) \le \frac{1}{2}n^2 + \frac{3}{2}n - 2k,$$

then G is k-connected unless $G = K_{k-1} \vee (K_1 + K_{n-k})$.

Corollary 3.3. Let G be a connected graph of order $n \ge k + 1$. If its modified Wiener index

$$W_{\lambda}(G) \leq \frac{1}{2}n^2 + (2^{\lambda} - \frac{3}{2})n - k(2^{\lambda} - 1),$$

for $\lambda > 0$, or

$$W_{\lambda}(G) \geq \frac{1}{2}n^2 + (2^{\lambda} - \frac{3}{2})n + k(1 - 2^{\lambda}),$$

for $\lambda < 0$, then G is k-connected unless $G = K_{k-1} \vee (K_1 + K_{n-k})$.

Theorem 3.4. Let *G* be a connected graph of order $n \ge 10$ with $n \equiv \beta \pmod{2}$ and $0 \le \beta \le n$. If

$$W_f(G) \leq \frac{f(1)}{2}n^2 + [2f(2) - \frac{5}{2}f(1)]n + (2\beta - 5)[f(2) - f(1)],$$

for a monotonically increasing function f(x) on $x \in [1, n - 1]$, or

$$W_f(G) \ge \frac{f(1)}{2}n^2 + [2f(2) - \frac{5}{2}f(1)]n - (2\beta - 5)[f(1) - f(2)]$$

for a monotonically decreasing function f(x) on $x \in [1, n-1]$, then G is β -deficient unless $G \in \{K_1 \lor (2K_1 + K_{n-3}), K_4 \lor 6K_1\}$.

Proof. Suppose that *G* is not β -deficient and has degree sequence (d_1, d_2, \dots, d_n) , where $d_1 \le d_2 \le \dots \le d_n$. By Lemma 2.2, there is an integer $1 \le i \le \frac{1}{2}(n + \beta - 2)$ such that $d_{i+1} \le i - \beta$ and $d_{n+\beta-i} \le n - i - 2$. Note that *G* is connected. If f(x) is a monotonically increasing function for $x \in [1, n - 1]$, as the proof of Theorem 3.1, then we have

$$\begin{split} W_f(G) &\geq \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} \sum_{s=1}^n d_s \\ &= \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} (\sum_{s=1}^{i+1} d_s + \sum_{s=i+2}^{n+\beta-i} d_s + \sum_{s=n+\beta-i+1}^n d_s) \\ &\geq \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} [(i+1)(i-\beta) + (n+\beta-2i-1)(n-i-2) + (i-\beta)(n-1)] \\ &= \frac{1}{2}n(n-1)f(2) - [f(2) - f(1)][\frac{n^2 - 5n + 10}{2} - (i-1)(n - \frac{3}{2}i + \beta - 4) - 2\beta] \\ &= \frac{f(1)}{2}n^2 + [2f(2) - \frac{5}{2}f(1)]n + (2\beta - 5)[f(2) - f(1)] + [f(2) - f(1)](i-1)(n - \frac{3}{2}i + \beta - 4). \end{split}$$

Similarly, if f(x) is a monotonically decreasing function for $x \in [1, n - 1]$, then

$$W_f(G) \leq \frac{f(1)}{2}n^2 + [2f(2) - \frac{5}{2}f(1)]n - (2\beta - 5)[f(1) - f(2)] - [f(1) - f(2)](i - 1)(n - \frac{3}{2}i + \beta - 4).$$

If f(x) is a monotonically increasing function on [1, n - 1], by the condition of Theorem 3.4, we have $(i - 1)(n - \frac{3}{2}i + \beta - 4) \le 0$. Then we discuss the following two cases.

Case 1. Assume $(i-1)(n-\frac{3}{2}i+\beta-4) = 0$. In this case, we get $W_f(G) = \frac{f(1)}{2}n^2 + [2f(2)-\frac{5}{2}f(1)]n + (2\beta-5)[f(2)-f(1)]$. So all the inequalities in the above arguments should be equalities. Thus, we have

(a) the diameter of *G* is no more than two; (b) $d_1 = \cdots = d_{i+1} = i - \beta$, $d_{i+2} = \cdots = d_{n+\beta-i} = n - i - 2$ and $d_{n+\beta-i+1} = \cdots = d_n = n - 1$; and (c) i = 1 or $n = \frac{3}{2}i - \beta + 4$.

If i = 1, then $d_1 = d_2 = 1 - \beta$, so $\beta = 0$, otherwise v_1 and v_2 are two isolated vertices and *G* is disconnected. Then $d_1 = d_2 = 1$, $d_3 = \cdots = d_{n-1} = n - 3$, $d_n = n - 1$. It implies that $G = K_1 \vee (2K_1 + K_{n-3})$, which is not β -deficient as stated in [1]. If $n = \frac{3}{2}i - \beta + 4$, since $i \le \frac{1}{2}(n + \beta - 2)$, $n \ge 10$, then n = 10, $\beta = 0$ and i = 4. The corresponding graphic sequences is (4, 4, 4, 4, 4, 9, 9, 9, 9), which implies $G = K_4 \vee 6K_1$.

Case 2. We assume $i \ge 2$ and $n - \frac{3}{2}i + \beta - 4 < 0$. Since $i \le \frac{1}{2}(n + \beta - 2)$ and $n \ge 10$, $n - \frac{3}{2}i + \beta - 4 \ge \frac{n}{4} + \frac{\beta}{4} - \frac{5}{2} \ge 0$, a contradiction.

If f(x) is a monotonically decreasing function on [1, n - 1], we can prove the result by a similar method. The proof is complete. \Box

From Theorem 3.4, the previous work (see Theorem 3.2 in [10]) is a direct corollary when $f(x) = x, \frac{1}{x}$. Moreover, when $f(x) = \frac{x^2 + x}{2}, x^{\lambda}$ in Theorem 3.4, we have the following corollaries.

Corollary 3.5. Let G be a connected graph of order $n \ge 10$ with $n \equiv \beta \pmod{2}$ and $0 \le \beta \le n$. If its hyper-Wiener index

$$WW(G) \le \frac{1}{2}n^2 + \frac{7}{2}n + 4\beta - 10,$$

then G is β -deficient unless $G \in \{K_1 \lor (2K_1 + K_{n-3}), K_4 \lor 6K_1\}$.

Corollary 3.6. Let *G* be a connected graph of order $n \ge 10$ with $n \equiv \beta \pmod{2}$ and $0 \le \beta \le n$. If its modified Wiener index

$$W_{\lambda}(G) \leq \frac{1}{2}n^{2} + (2^{\lambda+1} - \frac{5}{2})n + (2\beta - 5)(2^{\lambda} - 1),$$

for $\lambda > 0$, or

$$W_{\lambda}(G) \geq \frac{1}{2}n^2 + (2^{\lambda+1} - \frac{5}{2})n - (2\beta - 5)(1 - 2^{\lambda}),$$

for $\lambda < 0$, then G is β -deficient unless $G \in \{K_1 \lor (2K_1 + K_{n-3}), K_4 \lor 6K_1\}$.

Theorem 3.7. Let *G* be a connected graph of order $n \ge 3$ and $0 \le k \le n - 3$. If

$$W_f(G) \le \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n - (k+2)[f(2) - f(1)],$$

for a monotonically increasing function f(x) on $x \in [1, n - 1]$, or

$$W_f(G) \ge \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n + (k+2)[f(1) - f(2)],$$

for a monotonically decreasing function f(x) on $x \in [1, n - 1]$, then G is k-hamiltonian unless $G \in \{K_{k+1} \lor (K_1 + K_{n-k-2}), 3K_1 \lor K_{k+2} \ (n = k + 5)\}$.

Proof. Suppose that *G* is not *k*-hamiltonian and has degree sequence $(d_1, d_2, ..., d_n)$, where $d_1 \le d_2 \le \cdots \le d_n$. By Lemma 2.3, there exists an integer *k*, such that $d_i \le i + k$ and $d_{n-i-k} \le n - i - 1$. Note that *G* is connected. If f(x) is a monotonically increasing function for $x \in [1, n - 1]$, as the proof of Theorem 3.1, then we have

$$\begin{split} W_f(G) &\geq \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} \sum_{s=1}^n d_s \\ &= \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} (\sum_{s=1}^i d_s + \sum_{s=i+1}^{n-i-k} d_s + \sum_{s=n-i-k+1}^n d_s) \\ &\geq \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} [i(i+k) + (n-2i-k)(n-i-1) + (i+k)(n-1)] \\ &= \frac{1}{2}n(n-1)f(2) - [f(2) - f(1)][\frac{n^2 - 3n}{2} - (i-1)(n - \frac{3}{2}i - k - 2) + k + 2] \\ &= \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n - (k+2)[f(2) - f(1)] + [f(2) - f(1)](i-1)(n - \frac{3}{2}i - k - 2). \end{split}$$

Similarly, if f(x) is a monotonically decreasing function for $x \in [1, n - 1]$, then

$$W_f(G) \leq \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n + (k+2)[f(1) - f(2)] - [f(1) - f(2)](i-1)(n - \frac{3}{2}i - k - 2).$$

If f(x) is a monotonically increasing function on [1, n - 1], by the condition of Theorem 3.7, we have $(i - 1)(n - \frac{3}{2}i - k - 2) \le 0$. Then we discuss the following two cases.

Case 1. Assume that $(i - 1)(n - \frac{3}{2}i - k - 2) = 0$. In this case, we get $W_f(G) = \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n - (k + 2)[f(2) - f(1)]$. So all the inequalities in the above arguments should be equalities. Thus, we have (a) the diameter of *G* is no more than two; (b) $d_1 = \cdots = d_i = i + k$, $d_{i+1} = \cdots = d_{n-i-k} = n - i - 1$ and $d_{n-i-k+1} = \cdots = d_n = n - 1$; and (c) i = 1 or $n = \frac{3}{2}i + k + 2$. **Subcase 1.1.** If i = 1, then $d_1 = k + 1$, $d_2 = \cdots = d_{n-k-1} = n - 2$, $d_{n-k} = \cdots = d_n = n - 1$. It implies that

Subcase 1.1. If i = 1, then $d_1 = k + 1$, $d_2 = \cdots = d_{n-k-1} = n - 2$, $d_{n-k} = \cdots = d_n = n - 1$. It implies that $G = K_{k+1} \lor (K_1 + K_{n-k-2})$.

Subcase 1.2. If $n = \frac{3}{2}i + k + 2$, since $i < \frac{1}{2}(n - k)$, then n < k + 8, i.e., $n \le k + 7$. Note that $n \ge k + 3$. Then n = k + 5, i = 2. Thus $d_1 = d_2 = k + 2$, $d_3 = n - 3 = k + 2$, $d_4 = \dots = d_n = n - 1 = k + 4$, which implies $G = K_{k+2} \lor 3K_1$.

Case 2. We assume $i \ge 2$ and $n - \frac{3}{2}i - k - 2 < 0$. Since $i < \frac{1}{2}(n-k)$, then $n - \frac{3}{2}i - k - 2 > n - \frac{3}{2} \cdot \frac{1}{2}(n-k) - k - 2 = \frac{n}{4} - \frac{k}{4} - 2$. When $n \le k + 7$, if n = k + 3 or n = k + 4, then i = 1, a contradiction. If n = k + 5, i = 2, then the case has been discussed in Subcase 1.2. If n = k + 6, i = 2, then $n - \frac{3}{2}i - k - 2 = k + 6 - 3 - k - 2 = 1 > 0$, a contradiction. If n = k + 7, i = 2, then $n - \frac{3}{2}i - k - 2 = k + 6 - 3 - k - 2 = 1 > 0$, a contradiction. If n = k + 7, i = 2, then $n - \frac{3}{2}i - k - 2 = k + 6 - 3 - k - 2 = 1 > 0$, a contradiction. If n = k + 7, i = 2, then $n - \frac{3}{2}i - k - 2 = k + 7 - 3 - k - 2 = 2 > 0$, a contradiction. If n = k + 7, i = 3, then $n - \frac{3}{2}i - k - 2 = k + 7 - \frac{9}{2} - k - 2 = \frac{1}{2} > 0$, a contradiction. When $n \ge k + 8$, then $n - \frac{3}{2}i - k - 2 > \frac{n}{4} - \frac{k}{4} - 2 \ge 0$, a contradiction.

If f(x) is a monotonically decreasing function on [1, n - 1], we can prove the result by a similar method. The proof is complete. \Box

By Theorem 3.7, when f(x) = x, $\frac{1}{x}$, $\frac{x^2 + x}{2}$, x^{λ} , we have the following corollaries.

Corollary 3.8. Let G be a connected graph of order $n \ge 3$ and $0 \le k \le n - 3$. If its Wiener index

$$W(G) \le \frac{1}{2}n^2 + \frac{1}{2}n - k - 2,$$

then G is k-hamiltonian unless $G \in \{K_{k+1} \lor (K_1 + K_{n-k-2}), 3K_1 \lor K_{k+2} \ (n = k + 5)\}.$

Corollary 3.9. Let G be a connected graph of order $n \ge 3$ and $0 \le k \le n - 3$. If its Harary index

$$H(G) \ge \frac{1}{2}n^2 - n + \frac{1}{2}(k+2),$$

then G is k-hamiltonian unless $G \in \{K_{k+1} \lor (K_1 + K_{n-k-2}), 3K_1 \lor K_{k+2} \ (n = k + 5)\}.$

Corollary 3.10. Let G be a connected graph of order $n \ge 3$ and $0 \le k \le n - 3$. If its hyper-Wiener index

$$WW(G) \le \frac{1}{2}n^2 + \frac{3}{2}n - 2(k+2),$$

then G is k-hamiltonian unless $G \in \{K_{k+1} \lor (K_1 + K_{n-k-2}), 3K_1 \lor K_{k+2} \ (n = k + 5)\}.$

Corollary 3.11. Let G be a connected graph of order $n \ge 3$ and $0 \le k \le n - 3$. If its modified Wiener index

$$W_f(G) \le \frac{1}{2}n^2 + (2^{\lambda} - \frac{3}{2})n - (2^{\lambda} - 1)(k+2),$$

for $\lambda > 0$, or

$$W_f(G) \ge \frac{1}{2}n^2 + (2^{\lambda} - \frac{3}{2})n + (1 - 2^{\lambda})(k + 2),$$

for $\lambda < 0$, then G is k-hamiltonian unless $G \in \{K_{k+1} \lor (K_1 + K_{n-k-2}), 3K_1 \lor K_{k+2} \ (n = k + 5)\}$.

Theorem 3.12. Let *G* be a connected graph of order $n \ge 8$ and $0 \le k \le n - 3$. If

$$W_f(G) \le \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n - (nk + \frac{1}{2}k^2 - \frac{5}{2}k + 2)[f(2) - f(1)]$$

for a monotonically increasing function f(x) on $x \in [1, n - 1]$, or

$$W_f(G) \ge \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n + (nk + \frac{1}{2}k^2 - \frac{5}{2}k + 2)[f(1) - f(2)],$$

for a monotonically decreasing function f(x) on $x \in [1, n-1]$, then G is k-edge-hamiltonian unless $G = K_1 \vee (K_1 + K_{n-2})$.

Proof. Suppose that *G* is not *k*-edge-hamiltonian and has degree sequence $(d_1, d_2, ..., d_n)$, where $d_1 \le d_2 \le \cdots \le d_n$. By Lemma 2.4, there exists an integer $k + 1 \le i < \frac{1}{2}(n + k)$, such that $d_{i-k} \le i$ and $d_{n-i} \le n - i + k - 1$. Note that *G* is connected. If f(x) is a monotonically increasing function for $x \in [1, n - 1]$, as the proof of Theorem 3.1, we have

$$\begin{split} W_f(G) &\geq \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} \sum_{s=1}^n d_s \\ &= \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} (\sum_{s=1}^{i-k} d_s + \sum_{s=i-k+1}^{n-i} d_s + \sum_{s=n-i+1}^n d_s) \\ &\geq \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} [(i-k)i + (n-2i+k)(n-i+k-1) + i(n-1)] \\ &= \frac{1}{2}n(n-1)f(2) - [f(2) - f(1)][\frac{n^2 - 3n}{2} - (i-1)(n - \frac{3}{2}i + 2k - 2) \\ &+ nk + \frac{1}{2}k^2 - \frac{5}{2}k + 2] \\ &= \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n - (nk + \frac{1}{2}k^2 - \frac{5}{2}k + 2)[f(2) - f(1)] \\ &+ [f(2) - f(1)](i-1)(n - \frac{3}{2}i + 2k - 2). \end{split}$$

Similarly, if f(x) is a monotonically decreasing function for $x \in [1, n - 1]$, then

$$\begin{split} W_f(G) &\leq \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n + (nk + \frac{1}{2}k^2 - \frac{5}{2}k + 2)[f(1) - f(2)] \\ &- [f(1) - f(2)](i - 1)(n - \frac{3}{2}i + 2k - 2). \end{split}$$

If f(x) is a monotonically increasing function on [1, n - 1], by the condition of Theorem 3.12, we have $(i - 1)(n - \frac{3}{2}i + 2k - 2) \le 0$. Then we discuss the following two cases.

Case 1. Assume that $(i - 1)(n - \frac{3}{2}i + 2k - 2) = 0$. In this case, we get $W_f(G) = \frac{f(1)}{2}n^2 + [f(2) - \frac{3}{2}f(1)]n - (nk + \frac{1}{2}k^2 - \frac{5}{2}k + 2)[f(2) - f(1)]$. So all the inequalities in the above arguments should be equalities. Thus we have (a) the diameter of *G* is no more than two; (b) $d_1 = \cdots = d_{i-k} = i$, $d_{i-k+1} = \cdots = d_{n-i} = n - i + k - 1$, $d_{n-i+1} = \cdots = d_n = n - 1$; and (c) i = 1 or $n = \frac{3}{2}i - 2k + 2$.

 $d_{n-i+1} = \dots = d_n = n-1$; and (c) i = 1 or $n = \frac{3}{2}i - 2k + 2$. **Subcase 1.1.** If i = 1, since $k + 1 \le i$, then k = 0. Hence $d_1 = 1$, $d_2 = \dots = d_{n-1} = n-2$, $d_n = n-1$, which implies $G = K_1 \lor (K_1 + K_{n-2})$.

Subcase 1.2. If $n = \frac{3}{2}i - 2k + 2$, since $i < \frac{1}{2}(n + k)$, then $k + 3 \le n < -5k + 8$. Hence k = 0, n = 5, i = 2, which is a contradiction to $n \ge 8$.

Case 2. We assume $i \ge 2$ and $n - \frac{3}{2}i + 2k - 2 < 0$. Since $i < \frac{1}{2}(n+k)$, $n \ge k+3$, $n - \frac{3}{2}i + 2k - 2 > n - \frac{3}{2} \cdot \frac{1}{2}(n+k) + 2k - 2 = \frac{n}{4} + \frac{5}{4}k - 2 \ge \frac{6k-5}{4}$. If $k \ge 1$, then $n - \frac{3}{2}i + 2k - 2 > 0$, a contradiction. If k = 0, then $i < \frac{n}{2}$, $n - \frac{3}{2}i - 2 > n - \frac{3}{2} \cdot \frac{n}{2} - 2 = \frac{n}{4} - 2 \ge 0$, a contradiction. Combining with the discussion of Case 1, we can get the conclusion.

If f(x) is a monotonically decreasing function on [1, n - 1], we can prove the result by a similar method. The proof is complete. \Box

By Theorem 3.12, when f(x) = x, $\frac{1}{x}$, $\frac{x^2 + x}{2}$, x^{λ} , we have the following corollaries.

Corollary 3.13. Let G be a connected graph of order $n \ge 8$ and $0 \le k \le n - 3$. If its Wiener index

$$W(G) \le \frac{1}{2}n^2 + \frac{1}{2}n - (nk + \frac{1}{2}k^2 - \frac{5}{2}k + 2),$$

then G is k-edge-hamiltonian unless $G = K_1 \vee (K_1 + K_{n-2})$.

Corollary 3.14. *Let G be a connected graph of order* $n \ge 8$ *and* $0 \le k \le n - 3$ *. If its Harary index*

$$H(G) \ge \frac{1}{2}n^2 - n + \frac{1}{2}(nk + \frac{1}{2}k^2 - \frac{5}{2}k + 2),$$

then G is k-edge-hamiltonian unless $G = K_1 \vee (K_1 + K_{n-2})$.

Corollary 3.15. Let G be a connected graph of order $n \ge 8$ and $0 \le k \le n - 3$. If its hyper-Wiener index

$$WW(G) \le \frac{1}{2}n^2 + \frac{3}{2}n - 2(nk + \frac{1}{2}k^2 - \frac{5}{2}k + 2),$$

then G is k-edge-hamiltonian unless $G = K_1 \vee (K_1 + K_{n-2})$.

Corollary 3.16. Let G be a connected graph of order $n \ge 8$ and $0 \le k \le n - 3$. If its modified Wiener index

$$W_f(G) \le \frac{1}{2}n^2 + (2^{\lambda} - \frac{3}{2})n - (2^{\lambda} - 1)(nk + \frac{1}{2}k^2 - \frac{5}{2}k + 2),$$

for $\lambda > 0$, or

$$W_f(G) \ge \frac{1}{2}n^2 + (2^{\lambda} - \frac{3}{2})n + (1 - 2^{\lambda})(nk + \frac{1}{2}k^2 - \frac{5}{2}k + 2)$$

for $\lambda < 0$, then G is k-edge-hamiltonian unless $G = K_1 \vee (K_1 + K_{n-2})$.

Theorem 3.17. Let G be a connected graph of order $n \ge 4$, $k \ge 1$.

- (1) If f(x) is a monotonically increasing function f(x) on $x \in [1, n 1]$, then we have the following results.
 - $\begin{array}{l} (i) \ \ For \ k = n-3 \ or \ k < \frac{n-2}{5} \ and \ n-k-1 \ is \ odd, \ or \ k < \frac{n-5}{5} \ and \ n-k-1 \ is \ even, \ if \ W_f(G) \leq \frac{f(1)}{2}(n^2-n) \frac{f(2)-f(1)}{2}(k^2-2nk-2n+5k+4), \ then \ G \ is \ k-path-coverable \ unless \ G = K_1 \lor (\overline{K_{k+1}} + K_{n-k-2}). \\ (ii) \ \ For \ \frac{n-2}{5} \leq k \leq n-4 \ and \ n-k-1 \ is \ odd, \ if \ W_f(G) \leq \frac{f(2)+3f(1)}{8}n^2 + \frac{f(2)-3f(1)}{4}n + \frac{f(2)-f(1)}{2}[\frac{1}{4}k^2 + \frac{1}{2}nk + \frac{1}{2}k 2], \ then \ G \ is \ k-path-coverable \ unless \ G = K_{\frac{n-k-2}{2}} \lor (\overline{K_{\frac{n+k-2}{2}}} + K_2). \\ (iii) \ \ For \ \frac{n-5}{5} \leq k \leq n-3 \ and \ n-k-1 \ is \ even, \ if \ W_f(G) \leq \frac{f(2)+3f(1)}{8}n^2 \frac{f(1)}{2}n + \frac{f(2)-f(1)}{8}[k^2+2nk-1], \ then \ G \ is \ k-path-coverable \ unless \ G = K_{\frac{n-k-1}{2}} \lor (\overline{K_{\frac{n+k-1}{2}}} + K_1). \end{array}$

(2) If f(x) is a monotonically decreasing function f(x) on $x \in [1, n - 1]$, then we have the following results.

$$\begin{array}{l} \text{(i) For } k = n-3 \text{ or } k < \frac{n-2}{5} \text{ and } n-k-1 \text{ is odd, or } k < \frac{n-5}{5} \text{ and } n-k-1 \text{ is even, if } W_f(G) \geq \frac{f(1)}{2}(n^2-n) - \frac{f(2)-f(1)}{2}(k^2-2nk-2n+5k+4), \text{ then } G \text{ is } k\text{-path-coverable unless } G = K_1 \vee (\overline{K_{k+1}}+K_{n-k-2}).\\ \text{(ii) For } \frac{n-2}{5} \leq k \leq n-4 \text{ and } n-k-1 \text{ is odd, if } W_f(G) \geq \frac{f(2)+3f(1)}{8}n^2 + \frac{f(2)-3f(1)}{4}n + \frac{f(2)-f(1)}{2}\left[\frac{1}{4}k^2 + \frac{1}{2}nk + \frac{1}{2}k - 2\right], \text{ then } G \text{ is } k\text{-path-coverable unless } G = K_{\frac{n-k-2}{2}} \vee (\overline{K_{\frac{n+k-2}{2}}} + K_2).\\ \text{(iii) For } \frac{n-5}{5} \leq k \leq n-3 \text{ and } n-k-1 \text{ is even, if } W_f(G) \geq \frac{f(2)+3f(1)}{8}n^2 - \frac{f(1)}{2}n + \frac{f(2)-f(1)}{8}[k^2+2nk-1], \text{ then } G \text{ is } k\text{-path-coverable unless } G = K_{\frac{n-k-1}{2}} \vee (\overline{K_{\frac{n+k-1}{2}}} + K_1). \end{array}$$

Proof. By refining the technique of Feng et al. [10], we have the following proof. Assume that *G* is not *k*-path-coverable and has degree sequence $(d_1, d_2, ..., d_n)$, where $d_1 \le d_2 \le \cdots \le d_n$. By Lemma 2.5, there is an integer $1 \le i \le \frac{1}{2}(n - k - 1)$ such that $d_{i+k} \le i$ and $d_{n-i} \le n - i - k - 1$. Note that *G* is connected. If f(x) is a monotonically increasing function for $x \in [1, n - 1]$, as in the proof of Theorem 3.1, we have

$$\begin{split} W_f(G) &\geq \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} \sum_{s=1}^n d_s \\ &= \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} (\sum_{s=1}^{i+k} d_s + \sum_{s=i+k+1}^{n-i} d_{n-i} + \sum_{s=n-i+1}^n d_s) \\ &\geq \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} [(i+k)i + (n-2i-k)(n-i-k-1) + i(n-1)] \\ &= \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} (n-k)(n-k-1) - \frac{f(2) - f(1)}{2} [3i^2 - (2n-4k-1)i]. \end{split}$$

Similarly, if f(x) is a monotonically decreasing function for $x \in [1, n - 1]$, then

$$W_f(G) \leq \frac{1}{2}n(n-1)f(2) + \frac{f(1) - f(2)}{2}(n-k)(n-k-1) + \frac{f(1) - f(2)}{2}[3i^2 - (2n-4k-1)i].$$

If f(x) is a monotonically increasing function on [1, n - 1], then we have the following discussion.

Suppose $g(x) = 3x^2 - (2n - 4k - 1)x$ with $1 \le x \le \frac{1}{2}(n - k - 1)$. Since $n - k \ge 2i + 1 \ge 3$, $1 \le k \le n - 3$. Because x is an integer, then we have to consider n - k - 1 is odd or even.

Case 1. If n - k - 1 is odd, then $1 \le x \le \frac{1}{2}(n - k - 2)$. So, g(1) = -2n + 4k + 4, $g(\frac{1}{2}(n - k - 2)) = -2n + 4k + 4$. $\left(-\frac{1}{4}n + \frac{5}{4}k - 1\right)(n - k - 2), g\left(\frac{1}{2}(n - k - 2)\right) - g(1) = -\frac{1}{4}(n - k - 4)(n - 5k - 2).$ Then we consider the following three subcases.

Subcase 1.1. If k = n - 3, then n - k - 4 = -1 < 0, n - 5k - 2 = -4n + 13 < 0. Hence $g(\frac{1}{2}(n - k - 2)) < g(1)$, $g_{max}(x) = g(1)$. Thus,

$$W_f(G) \ge \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2}(n-k)(n-k-1) - \frac{f(2) - f(1)}{2}(4 + 4k - 2n)$$
$$= \frac{f(1)}{2}(n^2 - n) - \frac{f(2) - f(1)}{2}(k^2 - 2nk - 2n + 5k + 4).$$

So we get the result. If $W_f(G) = \frac{f(1)}{2}(n^2 - n) - \frac{f(2) - f(1)}{2}(k^2 - 2nk - 2n + 5k + 4)$, then i = 1, and hence $d_{1} = \dots = d_{k+1} = 1, d_{k+2} = \dots = d_{n-1} = n - k - 2, d_{n} = n - 1, \text{ which implies } G = K_{1} \vee (\overline{K_{k+1}} + K_{n-k-2}).$ **Subcase 1.2.** If $\frac{n-2}{5} \le k \le n-4$, then n-k-4 > 0, n-5k-2 < 0. Hence $g(\frac{1}{2}(n-k-2)) > g(1)$,

 $g_{max}(x) = g(\frac{1}{2}(n-k-2)).$ Thus,

$$\begin{split} W_f(G) &= \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2}(n-k)(n-k-1) \\ &- \frac{f(2) - f(1)}{2}(-\frac{1}{4}n + \frac{5}{4}k - 1)(n-k-2) \\ &= \frac{f(2) + 3f(1)}{8}n^2 + \frac{f(2) - 3f(1)}{4}n + \frac{f(2) - f(1)}{2}[\frac{1}{4}k^2 + \frac{1}{2}nk + \frac{1}{2}k - 2] \end{split}$$

So we get the result. If $W_f(G) = \frac{f(2) + 3f(1)}{8}n^2 + \frac{f(2) - 3f(1)}{4}n + \frac{f(2) - f(1)}{2}[\frac{1}{4}k^2 + \frac{1}{2}nk + \frac{1}{2}k - 2]$, then $i = \frac{1}{2}(n-k-2)$, and hence $d_1 = d_2 = \cdots = d_{\frac{u+k-2}{2}} = \frac{n-k-2}{2}$, $d_{\frac{u+k}{2}} = d_{\frac{n+k+2}{2}} = \frac{n-k}{2}$, $d_{\frac{u+k+4}{2}} = \cdots = d_n = n-1$, which implies $G = K_{\frac{n-k-2}{2}} \vee (\overline{K_{\frac{n+k-2}{2}}} + K_2).$

Subcase 1.3. If $k < \frac{n-2}{5}$, then n - k - 4 > 0, n - 5k - 2 > 0. Then $g(\frac{1}{2}(n - k - 2)) < g(1)$, $g_{max}(x) = g(1)$. This case is the same as proved in Subcase 1.1. We omit the details.

Case 2. If n - k - 1 is even, then $1 \le x \le \frac{1}{2}(n - k - 1)$. So f(1) = -2n + 4k + 4, $f(\frac{1}{2}(n - k - 1)) = -2n + 4k + 4$. $-\frac{1}{4}(n-k-1)(n-5k+1), f(\frac{1}{2}(n-k-1)) - f(1) = -\frac{1}{4}(n-k-3)(n-5k-5).$ Then we consider the following two subcases.

Subcase 2.1. If $\frac{n-5}{5} \le k \le n-3$, then n-k-3 > 0, n-5k-5 < 0. Hence $g(\frac{1}{2}(n-k-1)) > g(1)$, $g_{max}(x) = g(\frac{n-k-1}{2})$. Thus,

$$\begin{split} W_f(G) &= \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2}(n-k)(n-k-1) \\ &\quad - \frac{f(2) - f(1)}{2}[-\frac{1}{4}(n-k-1)(n-5k+1)] \\ &= \frac{f(2) + 3f(1)}{8}n^2 - \frac{f(1)}{2}n + \frac{f(2) - f(1)}{8}[k^2 + 2nk - 1]. \end{split}$$

So we get the result. If $W_f(G) = \frac{f(2) + 3f(1)}{8}n^2 - \frac{f(1)}{2}n + \frac{f(2) - f(1)}{8}[k^2 + 2nk - 1]$, then $i = \frac{1}{2}(n - k - 1)$, and hence $d_1 = d_2 = \dots = d_{\frac{n+k-1}{2}} = \frac{n-k-1}{2}$, $d_{\frac{n+k+1}{2}} = \frac{n-k-1}{2}$, $d_{\frac{n+k+3}{2}} = \dots = d_n = n - 1$. Thus, $G = K_{\frac{n-k-1}{2}} \vee (\overline{K_{\frac{n+k-1}{2}}} + K_1)$. **Subcase 2.2.** If $k < \frac{n-5}{5}$, then n - k - 3 > 0, n - 5k - 5 > 0. Hence $g(\frac{1}{2}(n - k - 1)) < g(1)$, $g_{max} = g(1)$. This case is the same as proved in Subcase 1.1. We omit the details.

If f(x) is a monotonically decreasing function on [1, n - 1], we can prove the result by a similar method. The proof is complete. \Box

From Theorem 3.17, the previous work (see Theorem 3.4 in [10]) is a direct corollary when f(x) = x, $\frac{1}{x}$. Moreover, when $f(x) = \frac{x^2 + x}{2}$, x^{λ} in Theorem 3.17, we have the following corollaries.

Corollary 3.18. *Let G be a connected graph of order* $n \ge 4$, $k \ge 1$.

- (1) For k = n 3 or $k < \frac{n-2}{5}$ and n k 1 is odd, or $k < \frac{n-5}{5}$ and n k 1 is even, if its hyper-Wiener index $WW(G) \le \frac{1}{2}(n^2 n) (k^2 2nk 2n + 5k + 4)$, then G is k-path-coverable unless $G = K_1 \lor (\overline{K_{k+1}} + K_{n-k-2})$.
- (2) For $\frac{n-2}{5} \le k \le n-4$ and n-k-1 is odd, if its hyper-Wiener index $WW(G) \le \frac{3}{4}n^2 + \frac{1}{4}k^2 + \frac{1}{2}nk + \frac{1}{2}k-2$, then G is k-path-coverable unless $G = K_{\frac{n-k-2}{2}} \lor (\overline{K_{\frac{n+k-2}{2}}} + K_2)$.
- (3) For $\frac{n-5}{5} \le k \le n-3$ and n-k-1 is even, if its hyper-Wiener index WW(G) $\le \frac{3}{4}n^2 \frac{1}{2}n + \frac{1}{4}[k^2 + 2nk 1]$, then *G* is *k*-path-coverable unless $G = K_{\frac{n-k-1}{2}} \lor (\overline{K_{\frac{n+k-1}{2}}} + K_1)$.

Corollary 3.19. *Let G be a connected graph of order* $n \ge 4$, $k \ge 1$.

- (1) If $\lambda > 0$, then we have the following results.
 - (*i*) For k = n 3 or $k < \frac{n-2}{5}$ and n k 1 is odd, or $k < \frac{n-5}{5}$ and n k 1 is even, if its modified Wiener index $W_{\lambda}(G) \le \frac{1}{2}(n^2 n) \frac{2^{\lambda} 1}{2}(k^2 2nk 2n + 5k + 4)$, then G is k-path-coverable unless $G = K_1 \vee (\overline{K_{k+1}} + K_{n-k-2})$.
 - (ii) For $\frac{n-2}{5} \le k \le n-4$ and n-k-1 is odd, if its modified Wiener index $W_{\lambda}(G) \le \frac{2^{\lambda}+3}{8}n^2 + \frac{2^{\lambda}-3}{4}n + \frac{2^{\lambda}-1}{2}(\frac{1}{4}k^2 + \frac{1}{2}nk + \frac{1}{2}k 2)$, then G is k-path-coverable unless $G = K_{\frac{n-k-2}{2}} \lor (\overline{K_{\frac{n+k-2}{2}}} + K_2)$.
 - (iii) For $\frac{n-5}{5} \le k \le n-3$ and n-k-1 is even, if its modified Wiener index $W_{\lambda}(G) \le \frac{2^{\lambda}+3}{8}n^2 \frac{1}{2}n + \frac{2^{\lambda}-1}{8}(k^2+2nk-1)$, then G is k-path-coverable unless $G = K_{\frac{n-k-1}{2}} \lor (\overline{K_{\frac{n+k-1}{2}}} + K_1)$.
- (2) If $\lambda < 0$, then we have the following results.
 - (i) For k = n 3 or $k < \frac{n-2}{5}$ and n k 1 is odd, or $k < \frac{n-5}{5}$ and n k 1 is even, if its modified Wiener index $W_{\lambda}(G) \ge \frac{1}{2}(n^2 n) \frac{2^{\lambda} 1}{2}(k^2 2nk 2n + 5k + 4)$, then G is k-path-coverable unless $G = K_1 \lor (\overline{K_{k+1}} + K_{n-k-2})$.

- (ii) For $\frac{n-2}{5} \le k \le n-4$ and n-k-1 is odd, if its modified Wiener index $W_{\lambda}(G) \ge \frac{2^{\lambda}+3}{8}n^2 + \frac{2^{\lambda}-3}{4}n + \frac{2^{\lambda}-1}{2}(\frac{1}{4}k^2 + \frac{1}{2}nk + \frac{1}{2}k 2)$, then G is k-path-coverable unless $G = K_{\frac{n-k-2}{2}} \lor (\overline{K_{\frac{n+k-2}{2}}} + K_2)$.
- (iii) For $\frac{n-5}{5} \le k \le n-3$ and n-k-1 is even, if its modified Wiener index $W_{\lambda}(G) \ge \frac{2^{\lambda}+3}{8}n^2 \frac{1}{2}n + \frac{2^{\lambda}-1}{8}(k^2+2nk-1)$, then G is k-path-coverable unless $G = K_{\frac{n-k-1}{2}} \lor (\overline{K_{\frac{n+k-1}{2}}} + K_1)$.

Theorem 3.20. Let G be a connected graph of order n and $\alpha(G)$ be its independent number. If

$$W_f(G) \le \frac{f(1)}{2}(n^2 - n) + \frac{f(2) - f(1)}{2}(k^2 + k),$$

for a monotonically increasing function f(x) on $x \in [1, n - 1]$, or

$$W_f(G) \ge \frac{f(1)}{2}(n^2 - n) - \frac{f(1) - f(2)}{2}(k^2 + k),$$

for a monotonically decreasing function f(x) on $x \in [1, n-1]$, then G satisfies $\alpha(G) \leq k$ unless $G = \overline{K_{k+1}} \vee K_{n-k-1}$.

Proof. Suppose that *G* does not satisfy $\alpha(G) \le k$ and has degree sequence $(d_1, d_2, ..., d_n)$, where $d_1 \le d_2 \le \cdots \le d_n$. By Lemma 2.6, we have $d_{k+1} \le n - k - 1$. Note that *G* is connected. If f(x) is a monotonically increasing function for $x \in [1, n - 1]$, as the proof of Theorem 3.1, we have

$$\begin{split} W_f(G) &\geq \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} \sum_{s=1}^n d_s \\ &= \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} (\sum_{s=1}^{k+1} d_s + \sum_{s=k+2}^n d_s) \\ &\geq \frac{1}{2}n(n-1)f(2) - \frac{f(2) - f(1)}{2} [(k+1)(n-k-1) + (n-k-1)(n-1)] \\ &= \frac{f(1)}{2}(n^2 - n) + \frac{f(2) - f(1)}{2} (k^2 + k). \end{split}$$

Similarly, if f(x) is a monotonically decreasing function for $x \in [1, n - 1]$, then

$$W_f(G) \le \frac{f(1)}{2}(n^2 - n) - \frac{f(1) - f(2)}{2}(k^2 + k).$$

If f(x) is a monotonically increasing function on [1, n - 1], we can get a contradiction. If $W_f(G) = \frac{f(1)}{2}(n^2 - n) + \frac{f(2)-f(1)}{2}(k^2 + k)$, then all the inequalities in the above arguments should be equalities. Thus, we have (a) the diameter of *G* is no more than two; (b) $d_1 = \cdots = d_{k+1} = n - k - 1$, $d_{k+2} = \cdots = d_n = n - 1$. It implies that $G = \overline{K_{k+1}} \vee K_{n-k-1}$, which does not satisfy $\alpha(G) \le k$.

If f(x) is a monotonically decreasing function on [1, n - 1], we can prove the result by a similar method. The proof is complete. \Box

From Theorem 3.20, the previous work (see Theorem 3.6 in [10]) is a direct corollary when f(x) = x, $\frac{1}{x}$. Moreover, when $f(x) = \frac{x^2 + x}{2}$, x^{λ} in Theorem 3.20, we have the following corollaries.

Corollary 3.21. Let G be a connected graph of order n, $\alpha(G)$ be its independent number. If its hyper-Wiener index

$$WW(G) \le \frac{1}{2}(n^2 - n) + k^2 + k,$$

then G satisfies $\alpha(G) \leq k$ unless $G = \overline{K_{k+1}} \vee K_{n-k-1}$.

Corollary 3.22. Let G be a connected graph of order n, $\alpha(G)$ be its independent number. If its modified Wiener index

$$W_{\lambda}(G) \leq \frac{1}{2}(n^2 - n) + \frac{2^{\lambda} - 1}{2}(k^2 + k),$$

for $\lambda > 0$, or

$$W_{\lambda}(G) \ge \frac{1}{2}(n^2 - n) - \frac{1 - 2^{\lambda}}{2}(k^2 + k),$$

for $\lambda < 0$, then G satisfies $\alpha(G) \le k$ unless $G = \overline{K_{k+1}} \lor K_{n-k-1}$.

Acknowledgements

The authors thank to Professor Lihua Feng for giving them the preprints of [10]. The authors are also grateful to the referees for their valuable comments, corrections and suggestions which led to considerable improvements in presentation.

References

- D. Bauer, H.J. Broersma, J. van den Heuvel, N. Kahl, A. Nevo, E. Schmeichel, D.R. Woodall, M. Yatauro, Best monotone degree conditions for graph properties: a survey, Graphs Combin. 31 (2015) 1–22.
- [2] J.A. Bondy, Properties of graphs with constraints on degree, Studia Sci. Math. Hunger, 4 (1969) 473–475.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory, Grad. Texts in Math, vol. 244, Springer, New York, 2008.
- [4] V. Chvátal, On Hamiltons ideals, J. Combin. Theory Ser. B, 12 (1972) 163-168.
- [5] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
- [6] K.C. Das, B. Zhou, N. Trinajstić, Bounds on Harary index, J. Math. Chem. 46 (2009) 1369-1376.
- [7] M.V. Diudea, I. Gutman, Wiener-type topological indices, Croatica Chemica Acta, 71 (1998) 21-52.
- [8] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math., 66 (2001) 211–249.
- [9] A.A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247–924.
- [10] L. H. Feng, X. M. Zhu, W. J. Liu, Wiener index, Harary index and graph properties, Discrete Appl. Math. 223 (2017) 72-83.
- [11] I. Gutman, A property of the Wiener number and its modidications, Indian J. Chem. 36A (1997) 128–132.
- [12] A. Hamzeh, S. Hossein-Zadeh, A.R. Ashrafi, Extremal graphs under Wiener-type invariants, MATCH Commun. Math. Comput. Chem. 69 (2013) 47–54.
- [13] H.B. Hua, M.L. Wang, On Harary index and traceable graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 297–300.
 [14] O. Ivanciuc, T.S. Balaban, A.T. Balaban, Reciprocal distance matrix, related local vertex invariants and topolgical indices, J. Math. Chem. 12 (1993) 309–318.
- [15] S. Klavšić, I. Gutman, Relation between Wiener-type topological indices of benzenoid molecules, Chem. Phys. Lett. 373 (2003) 328–332.
- [16] M. Knor, R. Škrekovski, A. Tepeh, Mathematical aspects of Wiener index, Ars Math. Contemp., 11 (2016) 327–352.
- [17] H.V. Kronk, A note on k-path hamiltonian graphs, J. Combin. Theory, 7 (1969) 104–106.
- [18] M.J. Kuang, G.H. Huang, H.Y. Deng, Some sufficient conditions for Hamiltonian property in terms of Wiener-type invariants, Proceedings Mathematical Sciences, 126 (2016) 1–9.
- [19] M. Las Vergnas, Problémes de Couplages et Problémes Hamiltoniens en Théorie des Graphes, PhD Thesis, Université Paris VIPierre et Marie Curie, 1972.
- [20] L. Lesniak, On *n*-hamiltonian graphs, Discrete Math. 14 (1976) 165–169.
- [21] R. Li, Harary index and some Hamiltonian properties of graphs, AKCE International Journal of Graphs and Computing, 12 (2015) 64–69.
- [22] R. Li, Wiener index and some Hamiltonian properties of graphs, International Journal of Mathematics and Soft Computing, 5 (2015) 11–16.
- [23] R.F. Liu, X. Du, H.C. Jia, Some observations on Harary index and traceable graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 195–208.
- [24] R.F. Liu, X. Du, H.C. Jia, Wiener index on traceable and Hamiltonian graphs. Bull. Aust. Math. Soc. 94 (2016) 362–372.
- [25] B. Lučić, A. Miličević, N. Trinajstić, Harary index-twelve years later, Croat. Chem. Acta. 75 (2002) 847-868.
- [26] D. Plavšić, S. Nikolić, Z. Mihalić, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) 235–250.
- [27] M. Randić, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478-483.
- [28] R. Todeschini, V. Consonni, Handbook of Molecular Descriptpors, (2000) (Weinheim: Wiley VCH).
- [29] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20.
- [30] K.X. Xu, N. Trinajstić, Hyper-Wiener indices and Harary indices of graphs with cut edges, Util. Math. 84 (2011) 153-163.
- [31] L.H. Yang, Wiener index and traceable graphs, Bulletin of the Australian Mathematical Society, 88 (2013) 380–383.
- [32] G.H. Yu, L.H. Feng, On the maximal Harary index of a class of bicyclic graphs, Util. Math. 82 (2010) 285–292.
- [33] T. Zeng, Harary index and Hamiltonian property of graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 645-649.
- [34] B. Zhou, X. Cai, N. Trinajstić, On the Harary index, J. Math. Chem. 44 (2008) 611-618.