Wiener-type Invariants on Graph Properties

Qiannan Zhou ${ }^{\text {a }}$, Ligong Wang ${ }^{\text {a }}$, Yong Lu ${ }^{\text {a }}$
${ }^{a}$ Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China

Abstract

The Wiener-type invariants of a simple connected graph $G=(V(G), E(G))$ can be expressed in terms of the quantities $W_{f}=\sum_{\{u, v\rangle \subseteq V(G)} f\left(d_{G}(u, v)\right)$ for various choices of the function $f(x)$, where $d_{\mathrm{G}}(u, v)$ is the distance between vertices u and v in G. In this paper, we mainly give some sufficient conditions for a connected graph to be k-connected, β-deficient, k-hamiltonian, k-edge-hamiltonian, k-path-coverable or satisfy $\alpha(G) \leq k$.

1. Introduction

Throughout this paper, we only consider graphs which are simple, undirected and finite. We refer the reader to [3] for terminologies and notations not defined here. Let G denote a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. Let $d_{i}=d_{v_{i}}=d_{G}\left(v_{i}\right)$ denote the degree of v_{i}. Denote by $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ the degree sequence of the graph G, where $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. Let G and H be two disjoint graphs. The disjoint union of G and H, denoted by $G+H$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. The disjoint union of k graphs G is denoted by $k G$. The join of G and H, denoted by $G \vee H$, is the graph obtained from disjoint union of G and H by adding edges joining every vertex of G to every vertex of H. The complement \bar{G} of G is the graph on $V(G)$ with edge set $[V]^{2} \backslash E(G)$.

In theoretical chemistry, molecular structure descriptors, also called topological indices, are used for modeling physico-chemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. For $v_{i}, v_{j} \in V(G)$, let $d_{G}\left(v_{i}, v_{j}\right)$ denote the distance between v_{i} and v_{j}. The Wiener index $W(G)$ of a connected graph G is defined by

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v) .
$$

In 1947, the Wiener index was introduced by Wiener [29], who used it for modeling the shape of organic molecules and for calculating several of their physico-chemical properties. More details on vertex distances and Wiener index can be found in $[8,9,16,28,29]$.

In 1993, for the characterization of molecular graphs, Ivanciuc et al. [14] and Plavšić et al. [26] independently introduced the Harary index $H(G)$ of a graph G. It has been named in honor of Professor

[^0]Frank Harary on the occasion of his 70th birthday. The definition of Harary index is as follows:

$$
H(G)=\sum_{\{u, v\} \subseteq V(G)} \frac{1}{d_{G}(u, v)} .
$$

More details on Harary index can be found in $[6,25,30,32,34]$.
Some generalizations and modifications of the Wiener index were proposed. Many of these Wiener-type invariants can be expressed in terms of the quantities

$$
W_{f}=W_{f}(G)=\sum_{\{u, v\} \subseteq V(G)} f\left(d_{G}(u, v)\right)
$$

for various choices of the function $f(x)$. We know that when $f(x)=x, W_{x}$ is the Wiener index; when $f(x)=\frac{1}{x}$, $W_{\frac{1}{x}}$ is the Harary index; when $f(x)=\frac{x^{2}+x}{2}, W_{\frac{x^{2}+x}{2}}$ is called the hyper-Wiener index [27], which is denoted by WW; when $f(x)=x^{\lambda}$, where $\lambda \neq 0$ is a real number, $W_{x^{\lambda}}$ is called the modified Wiener index [11], which is denoted by W_{λ}. More details on Wiener-type invariants can be found in [7, 12, 15].

In recent years, some sufficient conditions in terms of Wiener index and Harary index are given for a graph to be Hamiltonian, traceable or have other graph properties. More details can be found in [10, 13, 21$24,31,33]$. In 2016, Kuang et al. [18] gave some sufficient conditions on Wiener-type invariants for a graph to be Hamiltonian or traceable, for a connected bipartite graph to be Hamiltonian which included some previous results.

In this paper, we mainly give some sufficient conditions in terms of Wiener-type invariants for some graph properties. In Section 2, we will give some graph notations and useful lemmas. In Section 3, we will present some sufficient conditions for a connected graph to be k-connected, β-deficient, k-hamiltonian, k-edge-hamiltonian and k-path-coverable, respectively, in terms of Wiener-type index.

2. Some definitions and lemmas

First, we give some notations of graphs used in this paper.
A connected graph G is called to be k-connected (or k-vertex connected) if it has more than k vertices and remains connected whenever fewer than k vertices are removed.

The deficiency $\operatorname{def}(G)$ of a graph G is the number of vertices unmatched under a maximum matching in G. In particular, G has a 1 -factor if and only if $\operatorname{def}(G)=0$. If $\operatorname{def}(G) \leq \beta$, then we call G-deficient.

A cycle is called a Hamilton cycle if it contains every vertex of a graph. The graph is said to be Hamiltonian if it has a Hamilton cycle. A graph is k-hamiltonian if for all $|X| \leq k$, the subgraph induced by $V(G) \backslash X$ is Hamiltonian. Thus 0-hamilotnian is the same as Hamiltonian.

A graph G is k-edge-hamiltonian if any collection of vertex-disjoint paths with at most k edges altogether belong to a Hamilton cycle in G.

A path is called a Hamilton path if it contains every vertex of a graph. The graph is said to be traceable if it has a Hamilton path. More generally, G is k-path-coverable if $V(G)$ can be covered by k or fewer vertex-disjoint paths. In particular, 1-path-coverable is the same as traceable.

A subset S of $V(G)$ is called an independent set of G if no two vertices of S are adjacent in G. The number of vertices in a maximum independent set of G is called the independence number of G and is denoted by $\alpha(G)$.

An integer sequence $\pi=\left(d_{1} \leq d_{2} \leq \cdots \leq d_{n}\right)$ is called graphical if there exists a graph G having π as its vertex degree sequence, in that case, G is called a realization of π. If P is a graph property, such as hamiltonian or k-connected, we call a graphical sequence π forcibly P if every realization of π has property P. Historically, the vertex degrees of a graph have been used to provide sufficient conditions for the graph to have certain properties, such as hamiltonicity or k-connectedness.

Next, we give some useful lemmas.

Lemma 2.1. ([2]) Let G be a graph of order $n \geq 4$ with degree sequence $\pi=\left(d_{1} \leq d_{2} \leq \cdots \leq d_{n}\right)$. If

$$
d_{i} \leq i+k-2 \Rightarrow d_{n-k+1} \geq n-i, \text { for } 1 \leq i \leq \frac{1}{2}(n-k+1)
$$

then π is forcibly k-connected.
Lemma 2.2. ([19]) Let $\pi=\left(d_{1} \leq d_{2} \leq \cdots \leq d_{n}\right)$ be a graphical sequence and let $0 \leq \beta \leq n$ with $n \equiv \beta(\bmod 2)$. If

$$
d_{i+1} \leq i-\beta \Rightarrow d_{n+\beta-i} \geq n-i-1, \text { for } 1 \leq i \leq \frac{1}{2}(n+\beta-2)
$$

then π is forcibly β-deficient.
Lemma 2.3. ([4]) Let $\pi=\left(d_{1} \leq d_{2} \leq \cdots \leq d_{n}\right)$ be a graphical sequence and $0 \leq k \leq n-3$. If

$$
d_{i} \leq i+k \Rightarrow d_{n-i-k} \geq n-i, \text { for } 1 \leq i<\frac{1}{2}(n-k)
$$

then π is forcibly k-hamiltonian.
Lemma 2.4. ([17]) Let $\pi=\left(d_{1} \leq d_{2} \leq \cdots \leq d_{n}\right)$ be a graphical sequence and $0 \leq k \leq n-3$. If

$$
d_{i-k} \leq i \Rightarrow d_{n-i} \geq n-i+k, \text { for } k+1 \leq i<\frac{1}{2}(n+k)
$$

then π is forcibly k-edge-hamiltonian.
Lemma 2.5. ([5,20]) Let $\pi=\left(d_{1} \leq d_{2} \leq \cdots \leq d_{n}\right)$ be a graphical sequence and $k \geq 1$. If

$$
d_{i+k} \leq i \Rightarrow d_{n-i} \geq n-i-k, \text { for } 1 \leq i<\frac{1}{2}(n-k)
$$

then π is forcibly k-path-coverable.
Lemma 2.6. ([1]) Let $\pi=\left(d_{1} \leq d_{2} \leq \cdots \leq d_{n}\right)$ be a graphical sequence and $k \geq 1$. If

$$
d_{k+1} \geq n-k
$$

then π is forcibly $\alpha(G) \leq k$.

3. Main Results

Theorem 3.1. Let G be a connected graph of order $n \geq k+1$. If

$$
W_{f}(G) \leq \frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n-k[f(2)-f(1)]
$$

for a monotonically increasing function $f(x)$ on $x \in[1, n-1]$, or

$$
W_{f}(G) \geq \frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n+k[f(1)-f(2)]
$$

for a monotonically decreasing function $f(x)$ on $x \in[1, n-1]$, then G is k-connected unless $G=K_{k-1} \vee\left(K_{1}+K_{n-k}\right)$.

Proof. Assume that G is not k-connected and has degree sequence ($d_{1}, d_{2}, \ldots, d_{n}$), where $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. By Lemma 2.1, there is an integer $1 \leq i \leq \frac{n-k+1}{2}$ such that $d_{i} \leq i+k-2$ and $d_{n-k+1} \leq n-i-1$. Obviously, $1 \leq k \leq n-1$. Note that G is connected. If $f(x)$ is a monotonically increasing function for $x \in[1, n-1]$, then

$$
\begin{aligned}
W_{f}(G) & =\frac{1}{2} \sum_{s=1}^{n} \sum_{t=1}^{n} f\left(d_{G}\left(v_{s}, v_{t}\right)\right) \\
& \geq \frac{1}{2} \sum_{s=1}^{n}\left[f(1) d_{s}+f(2)\left(n-1-d_{s}\right)\right] \\
& =\frac{1}{2} \sum_{s=1}^{n}\left[(n-1) f(2)-(f(2)-f(1)) d_{s}\right] \\
& =\frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2} \sum_{s=1}^{n} d_{s} \\
& =\frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}\left(\sum_{s=1}^{i} d_{s}+\sum_{s=i+1}^{n-k+1} d_{s}+\sum_{s=n-k+2}^{n} d_{s}\right) \\
& \geq \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}[i(i+k-2)+(n-k-i+1)(n-i-1)+(k-1)(n-1)] \\
& =\frac{1}{2} n(n-1) f(2)-[f(2)-f(1)]\left[\frac{n^{2}-3 n}{2}-(i-1)(n-i-k)+k\right] \\
& =\frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n-k[f(2)-f(1)]+[f(2)-f(1)](i-1)(n-i-k) .
\end{aligned}
$$

Similarly, if $f(x)$ is a monotonically decreasing function for $x \in[1, n-1]$, then

$$
W_{f}(G) \leq \frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n+k[f(1)-f(2)]-[f(1)-f(2)](i-1)(n-i-k) .
$$

If $f(x)$ is a monotonically increasing function on $[1, n-1]$, by the condition of Theorem 3.1, we have $(i-1)(n-i-k) \leq 0$. Then we discuss the following two cases.

Case 1. Assume that $(i-1)(n-i-k)=0$. In this case, we get $W_{f}(G)=\frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n-k[f(2)-f(1)]$. So all the inequalities in the above arguments should be equalities. Thus, we have (a) the diameter of G is no more than two; (b) $d_{1}=\cdots=d_{i}=i+k-2, d_{i+1}=\cdots=d_{n-k+1}=n-i-1$ and $d_{n-k+2}=\cdots=d_{n}=n-1$; and (c) $i=1$ or $n=i+k$.

If $i=1$, then $d_{1}=k-1, d_{2}=\cdots=d_{n-k+1}=n-2, d_{n-k+2}=\cdots=d_{n}=n-1$. It implies that $G=K_{k-1} \vee\left(K_{1}+K_{n-k}\right)$, which is not k-connected as stated in [1]. If $n=i+k$, since $i \leq \frac{n-k+1}{2}$ and $n \geq k+1$, then $n=k+1$. Thus $1 \leq i \leq \frac{n-k+1}{2}=1$, then $i=1$. This case is the same as we discussed above.

Case 2. We assume $i \geq 2$ and $n-i-k<0$. Note that $i \leq \frac{n-k+1}{2}$, hence $0 \leq i-1 \leq n-i-k$, a contradiction. If $f(x)$ is a monotonically decreasing function on $[1, n-1]$, we can prove the result by a similar method.
The proof is complete.
From Theorem 3.1, the previous work (see Theorem 3.1 in [10]) is a direct corollary when $f(x)=x, \frac{1}{x}$. Moreover, when $f(x)=\frac{x^{2}+x}{2}, x^{\lambda}$ in Theorem 3.1, we have the following corollaries.

Corollary 3.2. Let G be a connected graph of order $n \geq k+1$. If its hyper-Wiener index

$$
W W(G) \leq \frac{1}{2} n^{2}+\frac{3}{2} n-2 k
$$

then G is k-connected unless $G=K_{k-1} \vee\left(K_{1}+K_{n-k}\right)$.
Corollary 3.3. Let G be a connected graph of order $n \geq k+1$. If its modified Wiener index

$$
W_{\lambda}(G) \leq \frac{1}{2} n^{2}+\left(2^{\lambda}-\frac{3}{2}\right) n-k\left(2^{\lambda}-1\right)
$$

for $\lambda>0$, or

$$
W_{\lambda}(G) \geq \frac{1}{2} n^{2}+\left(2^{\lambda}-\frac{3}{2}\right) n+k\left(1-2^{\lambda}\right)
$$

for $\lambda<0$, then G is k-connected unless $G=K_{k-1} \vee\left(K_{1}+K_{n-k}\right)$.
Theorem 3.4. Let G be a connected graph of order $n \geq 10$ with $n \equiv \beta$ (mod 2$)$ and $0 \leq \beta \leq n$. If

$$
W_{f}(G) \leq \frac{f(1)}{2} n^{2}+\left[2 f(2)-\frac{5}{2} f(1)\right] n+(2 \beta-5)[f(2)-f(1)]
$$

for a monotonically increasing function $f(x)$ on $x \in[1, n-1]$, or

$$
W_{f}(G) \geq \frac{f(1)}{2} n^{2}+\left[2 f(2)-\frac{5}{2} f(1)\right] n-(2 \beta-5)[f(1)-f(2)]
$$

for a monotonically decreasing function $f(x)$ on $x \in[1, n-1]$, then G is β-deficient unless $G \in\left\{K_{1} \vee\left(2 K_{1}+K_{n-3}\right), K_{4} \vee\right.$ $\left.6 K_{1}\right\}$.

Proof. Suppose that G is not β-deficient and has degree sequence ($d_{1}, d_{2}, \ldots, d_{n}$), where $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. By Lemma 2.2, there is an integer $1 \leq i \leq \frac{1}{2}(n+\beta-2)$ such that $d_{i+1} \leq i-\beta$ and $d_{n+\beta-i} \leq n-i-2$. Note that G is connected. If $f(x)$ is a monotonically increasing function for $x \in[1, n-1]$, as the proof of Theorem 3.1, then we have

$$
\begin{aligned}
W_{f}(G) & \geq \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2} \sum_{s=1}^{n} d_{s} \\
& =\frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}\left(\sum_{s=1}^{i+1} d_{s}+\sum_{s=i+2}^{n+\beta-i} d_{s}+\sum_{s=n+\beta-i+1}^{n} d_{s}\right) \\
& \geq \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}[(i+1)(i-\beta)+(n+\beta-2 i-1)(n-i-2)+(i-\beta)(n-1)] \\
& =\frac{1}{2} n(n-1) f(2)-[f(2)-f(1)]\left[\frac{n^{2}-5 n+10}{2}-(i-1)\left(n-\frac{3}{2} i+\beta-4\right)-2 \beta\right] \\
& =\frac{f(1)}{2} n^{2}+\left[2 f(2)-\frac{5}{2} f(1)\right] n+(2 \beta-5)[f(2)-f(1)]+[f(2)-f(1)](i-1)\left(n-\frac{3}{2} i+\beta-4\right) .
\end{aligned}
$$

Similarly, if $f(x)$ is a monotonically decreasing function for $x \in[1, n-1]$, then

$$
W_{f}(G) \leq \frac{f(1)}{2} n^{2}+\left[2 f(2)-\frac{5}{2} f(1)\right] n-(2 \beta-5)[f(1)-f(2)]-[f(1)-f(2)](i-1)\left(n-\frac{3}{2} i+\beta-4\right)
$$

If $f(x)$ is a monotonically increasing function on $[1, n-1]$, by the condition of Theorem 3.4, we have $(i-1)\left(n-\frac{3}{2} i+\beta-4\right) \leq 0$. Then we discuss the following two cases.

Case 1. Assume $(i-1)\left(n-\frac{3}{2} i+\beta-4\right)=0$. In this case, we get $W_{f}(G)=\frac{f(1)}{2} n^{2}+\left[2 f(2)-\frac{5}{2} f(1)\right] n+$ $(2 \beta-5)[f(2)-f(1)]$. So all the inequalities in the above arguments should be equalities. Thus, we have
(a) the diameter of G is no more than two; (b) $d_{1}=\cdots=d_{i+1}=i-\beta, d_{i+2}=\cdots=d_{n+\beta-i}=n-i-2$ and $d_{n+\beta-i+1}=\cdots=d_{n}=n-1$; and (c) $i=1$ or $n=\frac{3}{2} i-\beta+4$.

If $i=1$, then $d_{1}=d_{2}=1-\beta$, so $\beta=0$, otherwise v_{1} and v_{2} are two isolated vertices and G is disconnected. Then $d_{1}=d_{2}=1, d_{3}=\cdots=d_{n-1}=n-3, d_{n}=n-1$. It implies that $G=K_{1} \vee\left(2 K_{1}+K_{n-3}\right)$, which is not β-deficient as stated in [1]. If $n=\frac{3}{2} i-\beta+4$, since $i \leq \frac{1}{2}(n+\beta-2), n \geq 10$, then $n=10, \beta=0$ and $i=4$. The corresponding graphic sequences is ($4,4,4,4,4,4,9,9,9,9$), which implies $G=K_{4} \vee 6 K_{1}$.

Case 2. We assume $i \geq 2$ and $n-\frac{3}{2} i+\beta-4<0$. Since $i \leq \frac{1}{2}(n+\beta-2)$ and $n \geq 10, n-\frac{3}{2} i+\beta-4 \geq \frac{n}{4}+\frac{\beta}{4}-\frac{5}{2} \geq 0$, a contradiction.

If $f(x)$ is a monotonically decreasing function on $[1, n-1]$, we can prove the result by a similar method. The proof is complete.

From Theorem 3.4, the previous work (see Theorem 3.2 in [10]) is a direct corollary when $f(x)=x, \frac{1}{x}$. Moreover, when $f(x)=\frac{x^{2}+x}{2}, x^{\lambda}$ in Theorem 3.4, we have the following corollaries.

Corollary 3.5. Let G be a connected graph of order $n \geq 10$ with $n \equiv \beta(\bmod 2)$ and $0 \leq \beta \leq n$. If its hyper-Wiener index

$$
W W(G) \leq \frac{1}{2} n^{2}+\frac{7}{2} n+4 \beta-10
$$

then G is β-deficient unless $G \in\left\{K_{1} \vee\left(2 K_{1}+K_{n-3}\right), K_{4} \vee 6 K_{1}\right\}$.
Corollary 3.6. Let G be a connected graph of order $n \geq 10$ with $n \equiv \beta(\bmod 2)$ and $0 \leq \beta \leq n$. If its modified Wiener index

$$
W_{\lambda}(G) \leq \frac{1}{2} n^{2}+\left(2^{\lambda+1}-\frac{5}{2}\right) n+(2 \beta-5)\left(2^{\lambda}-1\right)
$$

for $\lambda>0$, or

$$
W_{\lambda}(G) \geq \frac{1}{2} n^{2}+\left(2^{\lambda+1}-\frac{5}{2}\right) n-(2 \beta-5)\left(1-2^{\lambda}\right)
$$

for $\lambda<0$, then G is β-deficient unless $G \in\left\{K_{1} \vee\left(2 K_{1}+K_{n-3}\right), K_{4} \vee 6 K_{1}\right\}$.
Theorem 3.7. Let G be a connected graph of order $n \geq 3$ and $0 \leq k \leq n-3$. If

$$
W_{f}(G) \leq \frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n-(k+2)[f(2)-f(1)],
$$

for a monotonically increasing function $f(x)$ on $x \in[1, n-1]$, or

$$
W_{f}(G) \geq \frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n+(k+2)[f(1)-f(2)]
$$

for a monotonically decreasing function $f(x)$ on $x \in[1, n-1]$, then G is k-hamiltonian unless $G \in\left\{K_{k+1} \vee\left(K_{1}+\right.\right.$ $\left.\left.K_{n-k-2}\right), 3 K_{1} \vee K_{k+2}(n=k+5)\right\}$.

Proof. Suppose that G is not k-hamiltonian and has degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, where $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. By Lemma 2.3, there exists an integer k, such that $d_{i} \leq i+k$ and $d_{n-i-k} \leq n-i-1$. Note that G is connected. If $f(x)$ is a monotonically increasing function for $x \in[1, n-1]$, as the proof of Theorem 3.1, then we have

$$
\begin{aligned}
W_{f}(G) & \geq \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2} \sum_{s=1}^{n} d_{s} \\
& =\frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}\left(\sum_{s=1}^{i} d_{s}+\sum_{s=i+1}^{n-i-k} d_{s}+\sum_{s=n-i-k+1}^{n} d_{s}\right) \\
& \geq \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}[i(i+k)+(n-2 i-k)(n-i-1)+(i+k)(n-1)] \\
& =\frac{1}{2} n(n-1) f(2)-[f(2)-f(1)]\left[\frac{n^{2}-3 n}{2}-(i-1)\left(n-\frac{3}{2} i-k-2\right)+k+2\right] \\
& =\frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n-(k+2)[f(2)-f(1)]+[f(2)-f(1)](i-1)\left(n-\frac{3}{2} i-k-2\right) .
\end{aligned}
$$

Similarly, if $f(x)$ is a monotonically decreasing function for $x \in[1, n-1]$, then

$$
W_{f}(G) \leq \frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n+(k+2)[f(1)-f(2)]-[f(1)-f(2)](i-1)\left(n-\frac{3}{2} i-k-2\right) .
$$

If $f(x)$ is a monotonically increasing function on $[1, n-1]$, by the condition of Theorem 3.7, we have $(i-1)\left(n-\frac{3}{2} i-k-2\right) \leq 0$. Then we discuss the following two cases.

Case 1. Assume that $(i-1)\left(n-\frac{3}{2} i-k-2\right)=0$. In this case, we get $W_{f}(G)=\frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n-$ $(k+2)[f(2)-f(1)]$. So all the inequalities in the above arguments should be equalities. Thus, we have (a) the diameter of G is no more than two; (b) $d_{1}=\cdots=d_{i}=i+k, d_{i+1}=\cdots=d_{n-i-k}=n-i-1$ and $d_{n-i-k+1}=\cdots=d_{n}=n-1$; and (c) $i=1$ or $n=\frac{3}{2} i+k+2$.

Subcase 1.1. If $i=1$, then $d_{1}=k+1, d_{2}=\cdots=d_{n-k-1}=n-2, d_{n-k}=\cdots=d_{n}=n-1$. It implies that $G=K_{k+1} \vee\left(K_{1}+K_{n-k-2}\right)$.

Subcase 1.2. If $n=\frac{3}{2} i+k+2$, since $i<\frac{1}{2}(n-k)$, then $n<k+8$, i.e., $n \leq k+7$. Note that $n \geq k+3$. Then $n=k+5, i=2$. Thus $d_{1}=d_{2}=k+2, d_{3}=n-3=k+2, d_{4}=\cdots=d_{n}=n-1=k+4$, which implies $G=K_{k+2} \vee 3 K_{1}$.

Case 2. We assume $i \geq 2$ and $n-\frac{3}{2} i-k-2<0$. Since $i<\frac{1}{2}(n-k)$, then $n-\frac{3}{2} i-k-2>n-\frac{3}{2} \cdot \frac{1}{2}(n-k)-k-2=$ $\frac{n}{4}-\frac{k}{4}-2$. When $n \leq k+7$, if $n=k+3$ or $n=k+4$, then $i=1$, a contradiction. If $n=k+5, i=2$, then the case has been discussed in Subcase 1.2. If $n=k+6, i=2$, then $n-\frac{3}{2} i-k-2=k+6-3-k-2=1>0$, a contradiction. If $n=k+7, i=2$, then $n-\frac{3}{2} i-k-2=k+7-3-k-2=2>0$, a contradiction. If $n=k+7, i=3$, then $n-\frac{3}{2} i-k-2=k+7-\frac{9}{2}-k-2=\frac{1}{2}>0$, a contradiction. When $n \geq k+8$, then $n-\frac{3}{2} i-k-2>\frac{n}{4}-\frac{k}{4}-2 \geq 0$, a contradiction.

If $f(x)$ is a monotonically decreasing function on $[1, n-1]$, we can prove the result by a similar method.
The proof is complete.
By Theorem 3.7, when $f(x)=x, \frac{1}{x}, \frac{x^{2}+x}{2}, x^{\lambda}$, we have the following corollaries.
Corollary 3.8. Let G be a connected graph of order $n \geq 3$ and $0 \leq k \leq n-3$. If its Wiener index

$$
W(G) \leq \frac{1}{2} n^{2}+\frac{1}{2} n-k-2,
$$

then G is k-hamiltonian unless $G \in\left\{K_{k+1} \vee\left(K_{1}+K_{n-k-2}\right), 3 K_{1} \vee K_{k+2}(n=k+5)\right\}$.

Corollary 3.9. Let G be a connected graph of order $n \geq 3$ and $0 \leq k \leq n-3$. If its Harary index

$$
H(G) \geq \frac{1}{2} n^{2}-n+\frac{1}{2}(k+2)
$$

then G is k-hamiltonian unless $G \in\left\{K_{k+1} \vee\left(K_{1}+K_{n-k-2}\right), 3 K_{1} \vee K_{k+2}(n=k+5)\right\}$.
Corollary 3.10. Let G be a connected graph of order $n \geq 3$ and $0 \leq k \leq n-3$. If its hyper-Wiener index

$$
W W(G) \leq \frac{1}{2} n^{2}+\frac{3}{2} n-2(k+2)
$$

then G is k-hamiltonian unless $G \in\left\{K_{k+1} \vee\left(K_{1}+K_{n-k-2}\right), 3 K_{1} \vee K_{k+2}(n=k+5)\right\}$.
Corollary 3.11. Let G be a connected graph of order $n \geq 3$ and $0 \leq k \leq n-3$. If its modified Wiener index

$$
W_{f}(G) \leq \frac{1}{2} n^{2}+\left(2^{\lambda}-\frac{3}{2}\right) n-\left(2^{\lambda}-1\right)(k+2)
$$

for $\lambda>0$, or

$$
W_{f}(G) \geq \frac{1}{2} n^{2}+\left(2^{\lambda}-\frac{3}{2}\right) n+\left(1-2^{\lambda}\right)(k+2)
$$

for $\lambda<0$, then G is k-hamiltonian unless $G \in\left\{K_{k+1} \vee\left(K_{1}+K_{n-k-2}\right), 3 K_{1} \vee K_{k+2}(n=k+5)\right\}$.
Theorem 3.12. Let G be a connected graph of order $n \geq 8$ and $0 \leq k \leq n-3$. If

$$
W_{f}(G) \leq \frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n-\left(n k+\frac{1}{2} k^{2}-\frac{5}{2} k+2\right)[f(2)-f(1)]
$$

for a monotonically increasing function $f(x)$ on $x \in[1, n-1]$, or

$$
W_{f}(G) \geq \frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n+\left(n k+\frac{1}{2} k^{2}-\frac{5}{2} k+2\right)[f(1)-f(2)]
$$

for a monotonically decreasing function $f(x)$ on $x \in[1, n-1]$, then G is k-edge-hamiltonian unless $G=K_{1} \vee\left(K_{1}+K_{n-2}\right)$.
Proof. Suppose that G is not k-edge-hamiltonian and has degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, where $d_{1} \leq d_{2} \leq$ $\cdots \leq d_{n}$. By Lemma 2.4, there exists an integer $k+1 \leq i<\frac{1}{2}(n+k)$, such that $d_{i-k} \leq i$ and $d_{n-i} \leq n-i+k-1$. Note that G is connected. If $f(x)$ is a monotonically increasing function for $x \in[1, n-1]$, as the proof of Theorem 3.1, we have

$$
\begin{aligned}
W_{f}(G) \geq & \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2} \sum_{s=1}^{n} d_{s} \\
= & \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}\left(\sum_{s=1}^{i-k} d_{s}+\sum_{s=i-k+1}^{n-i} d_{s}+\sum_{s=n-i+1}^{n} d_{s}\right) \\
\geq & \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}[(i-k) i+(n-2 i+k)(n-i+k-1)+i(n-1)] \\
= & \frac{1}{2} n(n-1) f(2)-[f(2)-f(1)]\left[\frac{n^{2}-3 n}{2}-(i-1)\left(n-\frac{3}{2} i+2 k-2\right)\right. \\
& \left.+n k+\frac{1}{2} k^{2}-\frac{5}{2} k+2\right] \\
= & \frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n-\left(n k+\frac{1}{2} k^{2}-\frac{5}{2} k+2\right)[f(2)-f(1)] \\
& +[f(2)-f(1)](i-1)\left(n-\frac{3}{2} i+2 k-2\right) .
\end{aligned}
$$

Similarly, if $f(x)$ is a monotonically decreasing function for $x \in[1, n-1]$, then

$$
\begin{aligned}
W_{f}(G) \leq & \frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n+\left(n k+\frac{1}{2} k^{2}-\frac{5}{2} k+2\right)[f(1)-f(2)] \\
& -[f(1)-f(2)](i-1)\left(n-\frac{3}{2} i+2 k-2\right) .
\end{aligned}
$$

If $f(x)$ is a monotonically increasing function on $[1, n-1]$, by the condition of Theorem 3.12, we have $(i-1)\left(n-\frac{3}{2} i+2 k-2\right) \leq 0$. Then we discuss the following two cases.

Case 1. Assume that $(i-1)\left(n-\frac{3}{2} i+2 k-2\right)=0$. In this case, we get $W_{f}(G)=\frac{f(1)}{2} n^{2}+\left[f(2)-\frac{3}{2} f(1)\right] n-$ $\left(n k+\frac{1}{2} k^{2}-\frac{5}{2} k+2\right)[f(2)-f(1)]$. So all the inequalities in the above arguments should be equalities. Thus we have (a) the diameter of G is no more than two; (b) $d_{1}=\cdots=d_{i-k}=i, d_{i-k+1}=\cdots=d_{n-i}=n-i+k-1$, $d_{n-i+1}=\cdots=d_{n}=n-1$; and (c) $i=1$ or $n=\frac{3}{2} i-2 k+2$.

Subcase 1.1. If $i=1$, since $k+1 \leq i$, then $k=0$. Hence $d_{1}=1, d_{2}=\cdots=d_{n-1}=n-2, d_{n}=n-1$, which implies $G=K_{1} \vee\left(K_{1}+K_{n-2}\right)$.

Subcase 1.2. If $n=\frac{3}{2} i-2 k+2$, since $i<\frac{1}{2}(n+k)$, then $k+3 \leq n<-5 k+8$. Hence $k=0, n=5, i=2$, which is a contradiction to $n \geq 8$.

Case 2. We assume $i \geq 2$ and $n-\frac{3}{2} i+2 k-2<0$. Since $i<\frac{1}{2}(n+k), n \geq k+3, n-\frac{3}{2} i+2 k-2>$ $n-\frac{3}{2} \cdot \frac{1}{2}(n+k)+2 k-2=\frac{n}{4}+\frac{5}{4} k-2 \geq \frac{6 k-5}{4}$. If $k \geq 1$, then $n-\frac{3}{2} i+2 k-2>0$, a contradiction. If $k=0$, then $i<\frac{n}{2}, n-\frac{3}{2} i-2>n-\frac{3}{2} \cdot \frac{n}{2}-2=\frac{n}{4}-2 \geq 0$, a contradiction. Combining with the discussion of Case 1, we can get the conclusion.

If $f(x)$ is a monotonically decreasing function on $[1, n-1]$, we can prove the result by a similar method.
The proof is complete.
By Theorem 3.12, when $f(x)=x, \frac{1}{x}, \frac{x^{2}+x}{2}, x^{\lambda}$, we have the following corollaries.
Corollary 3.13. Let G be a connected graph of order $n \geq 8$ and $0 \leq k \leq n-3$. If its Wiener index

$$
W(G) \leq \frac{1}{2} n^{2}+\frac{1}{2} n-\left(n k+\frac{1}{2} k^{2}-\frac{5}{2} k+2\right)
$$

then G is k-edge-hamiltonian unless $G=K_{1} \vee\left(K_{1}+K_{n-2}\right)$.
Corollary 3.14. Let G be a connected graph of order $n \geq 8$ and $0 \leq k \leq n$ - 3 . If its Harary index

$$
H(G) \geq \frac{1}{2} n^{2}-n+\frac{1}{2}\left(n k+\frac{1}{2} k^{2}-\frac{5}{2} k+2\right)
$$

then G is k-edge-hamiltonian unless $G=K_{1} \vee\left(K_{1}+K_{n-2}\right)$.
Corollary 3.15. Let G be a connected graph of order $n \geq 8$ and $0 \leq k \leq n-3$. If its hyper-Wiener index

$$
W W(G) \leq \frac{1}{2} n^{2}+\frac{3}{2} n-2\left(n k+\frac{1}{2} k^{2}-\frac{5}{2} k+2\right)
$$

then G is k-edge-hamiltonian unless $G=K_{1} \vee\left(K_{1}+K_{n-2}\right)$.

Corollary 3.16. Let G be a connected graph of order $n \geq 8$ and $0 \leq k \leq n-3$. If its modified Wiener index

$$
W_{f}(G) \leq \frac{1}{2} n^{2}+\left(2^{\lambda}-\frac{3}{2}\right) n-\left(2^{\lambda}-1\right)\left(n k+\frac{1}{2} k^{2}-\frac{5}{2} k+2\right)
$$

for $\lambda>0$, or

$$
W_{f}(G) \geq \frac{1}{2} n^{2}+\left(2^{\lambda}-\frac{3}{2}\right) n+\left(1-2^{\lambda}\right)\left(n k+\frac{1}{2} k^{2}-\frac{5}{2} k+2\right)
$$

for $\lambda<0$, then G is k-edge-hamiltonian unless $G=K_{1} \vee\left(K_{1}+K_{n-2}\right)$.
Theorem 3.17. Let G be a connected graph of order $n \geq 4, k \geq 1$.
(1) If $f(x)$ is a monotonically increasing function $f(x)$ on $x \in[1, n-1]$, then we have the following results.
(i) For $k=n-3$ or $k<\frac{n-2}{5}$ and $n-k-1$ is odd, or $k<\frac{n-5}{5}$ and $n-k-1$ is even, if $W_{f}(G) \leq$ $\frac{f(1)}{2}\left(n^{2}-n\right)-\frac{f(2)-f(1)}{2}\left(k^{2}-2 n k-2 n+5 k+4\right)$, then G is k-path-coverable unless $G=K_{1} \vee\left(\overline{K_{k+1}}+K_{n-k-2}\right)$.
(ii) For $\frac{n-2}{5} \leq k \leq n-4$ and $n-k-1$ is odd, if $W_{f}(G) \leq \frac{f(2)+3 f(1)}{8} n^{2}+\frac{f(2)-3 f(1)}{4} n+\frac{f(2)-f(1)}{2}\left[\frac{1}{4} k^{2}+\right.$ $\left.\frac{1}{2} n k+\frac{1}{2} k-2\right]$, then G is k-path-coverable unless $G=K_{\frac{n-k-2}{2}} \vee\left(\overline{K_{\frac{n+k-2}{2}}}+K_{2}\right)$.
(iii) For $\frac{n-5}{5} \leq k \leq n-3$ and $n-k-1$ is even, if $W_{f}(G) \leq \frac{f(2)+3 f(1)}{8} n^{2}-\frac{f(1)}{2} n+\frac{f(2)-f(1)}{8}\left[k^{2}+2 n k-1\right]$, then G is k-path-coverable unless $G=K_{\frac{n-k-1}{2}} \vee\left(\overline{K_{\frac{n+k-1}{2}}}+K_{1}\right)$.
(2) If $f(x)$ is a monotonically decreasing function $f(x)$ on $x \in[1, n-1]$, then we have the following results.
(i) For $k=n-3$ or $k<\frac{n-2}{5}$ and $n-k-1$ is odd, or $k<\frac{n-5}{5}$ and $n-k-1$ is even, if $W_{f}(G) \geq$ $\frac{f(1)}{2}\left(n^{2}-n\right)-\frac{f(2)-f(1)}{2}\left(k^{2}-2 n k-2 n+5 k+4\right)$, then G is k-path-coverable unless $G=K_{1} \vee\left(\overline{K_{k+1}}+K_{n-k-2}\right)$.
(ii) For $\frac{n-2}{5} \leq k \leq n-4$ and $n-k-1$ is odd, , $W_{f}(G) \geq \frac{f(2)+3 f(1)}{8} n^{2}+\frac{f(2)-3 f(1)}{4} n+\frac{f(2)-f(1)}{2}\left[\frac{1}{4} k^{2}+\right.$ $\left.\frac{1}{2} n k+\frac{1}{2} k-2\right]$, then G is k-path-coverable unless $G=K_{\frac{n-k-2}{2}} \vee\left(\overline{K_{\frac{n+k-2}{2}}}+K_{2}\right)$.
(iii) For $\frac{n-5}{5} \leq k \leq n-3$ and $n-k-1$ is even, if $W_{f}(G) \geq \frac{f(2)+3 f(1)}{8} n^{2}-\frac{f(1)}{2} n+\frac{f(2)-f(1)}{8}\left[k^{2}+2 n k-1\right]$, then G is k-path-coverable unless $G=K_{\frac{n-k-1}{2}} \vee\left(\overline{K_{\frac{n+k-1}{2}}}+K_{1}\right)$.
Proof. By refining the technique of Feng et al. [10], we have the following proof. Assume that G is not k-path-coverable and has degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, where $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. By Lemma 2.5 , there is an integer $1 \leq i \leq \frac{1}{2}(n-k-1)$ such that $d_{i+k} \leq i$ and $d_{n-i} \leq n-i-k-1$. Note that G is connected. If $f(x)$ is a monotonically increasing function for $x \in[1, n-1]$, as in the proof of Theorem 3.1, we have

$$
\begin{aligned}
W_{f}(G) & \geq \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2} \sum_{s=1}^{n} d_{s} \\
& =\frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}\left(\sum_{s=1}^{i+k} d_{s}+\sum_{s=i+k+1}^{n-i} d_{n-i}+\sum_{s=n-i+1}^{n} d_{s}\right) \\
& \geq \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}[(i+k) i+(n-2 i-k)(n-i-k-1)+i(n-1)] \\
& =\frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}(n-k)(n-k-1)-\frac{f(2)-f(1)}{2}\left[3 i^{2}-(2 n-4 k-1) i\right] .
\end{aligned}
$$

Similarly, if $f(x)$ is a monotonically decreasing function for $x \in[1, n-1]$, then

$$
W_{f}(G) \leq \frac{1}{2} n(n-1) f(2)+\frac{f(1)-f(2)}{2}(n-k)(n-k-1)+\frac{f(1)-f(2)}{2}\left[3 i^{2}-(2 n-4 k-1) i\right]
$$

If $f(x)$ is a monotonically increasing function on $[1, n-1]$, then we have the following discussion.
Suppose $g(x)=3 x^{2}-(2 n-4 k-1) x$ with $1 \leq x \leq \frac{1}{2}(n-k-1)$. Since $n-k \geq 2 i+1 \geq 3,1 \leq k \leq n-3$. Because x is an integer, then we have to consider $n-k-1$ is odd or even.

Case 1. If $n-k-1$ is odd, then $1 \leq x \leq \frac{1}{2}(n-k-2)$. So, $g(1)=-2 n+4 k+4, g\left(\frac{1}{2}(n-k-2)\right)=$ $\left(-\frac{1}{4} n+\frac{5}{4} k-1\right)(n-k-2), g\left(\frac{1}{2}(n-k-2)\right)-g(1)=-\frac{1}{4}(n-k-4)(n-5 k-2)$. Then we consider the following three subcases.

Subcase 1.1. If $k=n-3$, then $n-k-4=-1<0, n-5 k-2=-4 n+13<0$. Hence $g\left(\frac{1}{2}(n-k-2)\right)<g(1)$, $g_{\max }(x)=g(1)$. Thus,

$$
\begin{aligned}
W_{f}(G) & \geq \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}(n-k)(n-k-1)-\frac{f(2)-f(1)}{2}(4+4 k-2 n) \\
& =\frac{f(1)}{2}\left(n^{2}-n\right)-\frac{f(2)-f(1)}{2}\left(k^{2}-2 n k-2 n+5 k+4\right) .
\end{aligned}
$$

So we get the result. If $W_{f}(G)=\frac{f(1)}{2}\left(n^{2}-n\right)-\frac{f(2)-f(1)}{2}\left(k^{2}-2 n k-2 n+5 k+4\right)$, then $i=1$, and hence $d_{1}=\cdots=d_{k+1}=1, d_{k+2}=\cdots=d_{n-1}=n-k-2, d_{n}=n-1$, which implies $G=K_{1} \vee\left(\overline{K_{k+1}}+K_{n-k-2}\right)$.

Subcase 1.2. If $\frac{n-2}{5} \leq k \leq n-4$, then $n-k-4>0, n-5 k-2<0$. Hence $g\left(\frac{1}{2}(n-k-2)\right)>g(1)$, $g_{\text {max }}(x)=g\left(\frac{1}{2}(n-k-2)\right)$. Thus,

$$
\begin{aligned}
W_{f}(G)= & \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}(n-k)(n-k-1) \\
& -\frac{f(2)-f(1)}{2}\left(-\frac{1}{4} n+\frac{5}{4} k-1\right)(n-k-2) \\
= & \frac{f(2)+3 f(1)}{8} n^{2}+\frac{f(2)-3 f(1)}{4} n+\frac{f(2)-f(1)}{2}\left[\frac{1}{4} k^{2}+\frac{1}{2} n k+\frac{1}{2} k-2\right] .
\end{aligned}
$$

So we get the result. If $W_{f}(G)=\frac{f(2)+3 f(1)}{8} n^{2}+\frac{f(2)-3 f(1)}{4} n+\frac{f(2)-f(1)}{2}\left[\frac{1}{4} k^{2}+\frac{1}{2} n k+\frac{1}{2} k-2\right]$, then $i=\frac{1}{2}(n-k-2)$, and hence $d_{1}=d_{2}=\cdots=d_{\frac{n+k-2}{2}}=\frac{n-k-2}{2}, d_{\frac{n+k}{2}}=d_{\frac{n+k+2}{2}}=\frac{n-k}{2}, d_{\frac{n+k+4}{2}}=\cdots=d_{n}=n-1$, which implies $G=K_{\frac{n-k-2}{2}} \vee\left(\overline{K_{\frac{n+k-2}{2}}}+K_{2}\right)$.

Subcase 1.3. If $k<\frac{n-2}{5}$, then $n-k-4>0, n-5 k-2>0$. Then $g\left(\frac{1}{2}(n-k-2)\right)<g(1), g_{\max }(x)=g(1)$. This case is the same as proved in Subcase 1.1. We omit the details.

Case 2. If $n-k-1$ is even, then $1 \leq x \leq \frac{1}{2}(n-k-1)$. So $f(1)=-2 n+4 k+4, f\left(\frac{1}{2}(n-k-1)\right)=$ $-\frac{1}{4}(n-k-1)(n-5 k+1), f\left(\frac{1}{2}(n-k-1)\right)-f(1)=-\frac{1}{4}(n-k-3)(n-5 k-5)$. Then we consider the following two subcases.

Subcase 2.1. If $\frac{n-5}{5} \leq k \leq n-3$, then $n-k-3>0, n-5 k-5<0$. Hence $g\left(\frac{1}{2}(n-k-1)\right)>g(1)$, $g_{\max }(x)=g\left(\frac{n-k-1}{2}\right)$. Thus,

$$
\begin{aligned}
W_{f}(G)= & \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}(n-k)(n-k-1) \\
& -\frac{f(2)-f(1)}{2}\left[-\frac{1}{4}(n-k-1)(n-5 k+1)\right] \\
= & \frac{f(2)+3 f(1)}{8} n^{2}-\frac{f(1)}{2} n+\frac{f(2)-f(1)}{8}\left[k^{2}+2 n k-1\right] .
\end{aligned}
$$

So we get the result. If $W_{f}(G)=\frac{f(2)+3 f(1)}{8} n^{2}-\frac{f(1)}{2} n+\frac{f(2)-f(1)}{8}\left[k^{2}+2 n k-1\right]$, then $i=\frac{1}{2}(n-k-1)$, and hence $d_{1}=d_{2}=\cdots=d_{\frac{n+k-1}{2}}=\frac{n-k-1}{2}, d_{\frac{n+k+1}{2}}=\frac{n-k-1}{2}, d_{\frac{n+k+3}{2}}=\cdots=d_{n}=n-1$. Thus, $G=K_{\frac{n-k-1}{2}} \vee\left(\overline{K_{\frac{n+k-1}{2}}}+K_{1}\right)$.

Subcase 2.2. If $k<\frac{n^{2}-5}{5}$, then $n-k-3>0, n-5 k-5>0$. Hence $g\left(\frac{1}{2}(n-k-1)\right)<g(1), g_{\max }=g(1)$. This case is the same as proved in Subcase 1.1. We omit the details.

If $f(x)$ is a monotonically decreasing function on $[1, n-1]$, we can prove the result by a similar method. The proof is complete.

From Theorem 3.17, the previous work (see Theorem 3.4 in [10]) is a direct corollary when $f(x)=x, \frac{1}{x}$. Moreover, when $f(x)=\frac{x^{2}+x}{2}, x^{\lambda}$ in Theorem 3.17, we have the following corollaries.

Corollary 3.18. Let G be a connected graph of order $n \geq 4, k \geq 1$.
(1) For $k=n-3$ or $k<\frac{n-2}{5}$ and $n-k-1$ is odd, or $k<\frac{n-5}{5}$ and $n-k-1$ is even, if its hyper-Wiener index $W W(G) \leq \frac{1}{2}\left(n^{2}-n\right)-\left(k^{2}-2 n k-2 n+5 k+4\right)$, then G is k-path-coverable unless $G=K_{1} \vee\left(\overline{K_{k+1}}+K_{n-k-2}\right)$.
(2) For $\frac{n-2}{5} \leq k \leq n-4$ and $n-k-1$ is odd, if its hyper-Wiener index $W W(G) \leq \frac{3}{4} n^{2}+\frac{1}{4} k^{2}+\frac{1}{2} n k+\frac{1}{2} k-2$, then G is k-path-coverable unless $G=K_{\frac{n-k-2}{2}} \vee\left(\overline{K_{\frac{n+k-2}{2}}}+K_{2}\right)$.
(3) For $\frac{n-5}{5} \leq k \leq n-3$ and $n-k-1$ is even, if its hyper-Wiener index $W W(G) \leq \frac{3}{4} n^{2}-\frac{1}{2} n+\frac{1}{4}\left[k^{2}+2 n k-1\right]$, then G is k-path-coverable unless $G=K_{\frac{n-k-1}{2}} \vee\left(\overline{K_{\frac{n+k-1}{2}}}+K_{1}\right)$.

Corollary 3.19. Let G be a connected graph of order $n \geq 4, k \geq 1$.
(1) If $\lambda>0$, then we have the following results.
(i) For $k=n-3$ or $k<\frac{n-2}{5}$ and $n-k-1$ is odd, or $k<\frac{n-5}{5}$ and $n-k-1$ is even, if its modified Wiener index $W_{\lambda}(G) \leq \frac{1}{2}\left(n^{2}-n\right)-\frac{2^{\lambda}-1}{2}\left(k^{2}-2 n k-2 n+5 k+4\right)$, then G is k-path-coverable unless $G=K_{1} \vee\left(\overline{K_{k+1}}+K_{n-k-2}\right)$.
(ii) For $\frac{n-2}{5} \leq k \leq n-4$ and $n-k-1$ is odd, if its modified Wiener index $W_{\lambda}(G) \leq \frac{2^{\lambda}+3}{8} n^{2}+\frac{2^{\lambda}-3}{4} n+\frac{2^{\lambda}-1}{2}\left(\frac{1}{4} k^{2}+\right.$ $\left.\frac{1}{2} n k+\frac{1}{2} k-2\right)$, then G is k-path-coverable unless $G=K_{\frac{n-k-2}{2}} \vee\left(\overline{K_{\frac{n+k-2}{2}}}+K_{2}\right)$.
(iii) For $\frac{n-5}{5} \leq k \leq n-3$ and $n-k-1$ is even, if its modified Wiener index $W_{\lambda}(G) \leq \frac{2^{\lambda}+3}{8} n^{2}-\frac{1}{2} n+\frac{2^{\lambda}-1}{8}\left(k^{2}+2 n k-1\right)$, then G is k-path-coverable unless $G=K_{\frac{n-k-1}{2}} \vee\left(\overline{K_{\frac{n+k-1}{2}}}+K_{1}\right)$.
(2) If $\lambda<0$, then we have the following results.
(i) For $k=n-3$ or $k<\frac{n-2}{5}$ and $n-k-1$ is odd, or $k<\frac{n-5}{5}$ and $n-k-1$ is even, if its modified Wiener index $W_{\lambda}(G) \geq \frac{1}{2}\left(n^{2}-n\right)-\frac{2^{\lambda}-1}{2}\left(k^{2}-2 n k-2 n+5 k+4\right)$, then G is k-path-coverable unless $G=K_{1} \vee\left(\overline{K_{k+1}}+K_{n-k-2}\right)$.
(ii) For $\frac{n-2}{5} \leq k \leq n-4$ and $n-k-1$ is odd, if its modified Wiener index $W_{\lambda}(G) \geq \frac{2^{\lambda}+3}{8} n^{2}+\frac{2^{\lambda}-3}{4} n+\frac{2^{\lambda}-1}{2}\left(\frac{1}{4} k^{2}+\right.$ $\left.\frac{1}{2} n k+\frac{1}{2} k-2\right)$, then G is k-path-coverable unless $G=K_{\frac{n-k-2}{2}} \vee\left(\overline{K_{\frac{n+k-2}{2}}}+K_{2}\right)$.
(iii) For $\frac{n-5}{5} \leq k \leq n-3$ and $n-k-1$ is even, ifits modified Wiener index $W_{\lambda}(G) \geq \frac{2^{\lambda}+3}{8} n^{2}-\frac{1}{2} n+\frac{2^{\lambda}-1}{8}\left(k^{2}+2 n k-1\right)$, then G is k-path-coverable unless $G=K_{\frac{n-k-1}{2}} \vee\left(\overline{K_{\frac{n+k-1}{2}}}+K_{1}\right)$.
Theorem 3.20. Let G be a connected graph of order n and $\alpha(G)$ be its independent number. If

$$
W_{f}(G) \leq \frac{f(1)}{2}\left(n^{2}-n\right)+\frac{f(2)-f(1)}{2}\left(k^{2}+k\right)
$$

for a monotonically increasing function $f(x)$ on $x \in[1, n-1]$, or

$$
W_{f}(G) \geq \frac{f(1)}{2}\left(n^{2}-n\right)-\frac{f(1)-f(2)}{2}\left(k^{2}+k\right),
$$

for a monotonically decreasing function $f(x)$ on $x \in[1, n-1]$, then G satisfies $\alpha(G) \leq k$ unless $G=\overline{K_{k+1}} \vee K_{n-k-1}$.
Proof. Suppose that G does not satisfy $\alpha(G) \leq k$ and has degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, where $d_{1} \leq d_{2} \leq$ $\cdots \leq d_{n}$. By Lemma 2.6, we have $d_{k+1} \leq n-k-1$. Note that G is connected. If $f(x)$ is a monotonically increasing function for $x \in[1, n-1]$, as the proof of Theorem 3.1, we have

$$
\begin{aligned}
W_{f}(G) & \geq \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2} \sum_{s=1}^{n} d_{s} \\
& =\frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}\left(\sum_{s=1}^{k+1} d_{s}+\sum_{s=k+2}^{n} d_{s}\right) \\
& \geq \frac{1}{2} n(n-1) f(2)-\frac{f(2)-f(1)}{2}[(k+1)(n-k-1)+(n-k-1)(n-1)] \\
& =\frac{f(1)}{2}\left(n^{2}-n\right)+\frac{f(2)-f(1)}{2}\left(k^{2}+k\right) .
\end{aligned}
$$

Similarly, if $f(x)$ is a monotonically decreasing function for $x \in[1, n-1]$, then

$$
W_{f}(G) \leq \frac{f(1)}{2}\left(n^{2}-n\right)-\frac{f(1)-f(2)}{2}\left(k^{2}+k\right)
$$

If $f(x)$ is a monotonically increasing function on $[1, n-1]$, we can get a contradiction. If $W_{f}(G)=$ $\frac{f(1)}{2}\left(n^{2}-n\right)+\frac{f(2)-f(1)}{2}\left(k^{2}+k\right)$, then all the inequalities in the above arguments should be equalities. Thus, we have (a) the diameter of G is no more than two; (b) $d_{1}=\cdots=d_{k+1}=n-k-1, d_{k+2}=\cdots=d_{n}=n-1$. It implies that $G=\overline{K_{k+1}} \vee K_{n-k-1}$, which does not satisfy $\alpha(G) \leq k$.

If $f(x)$ is a monotonically decreasing function on $[1, n-1]$, we can prove the result by a similar method.
The proof is complete.
From Theorem 3.20, the previous work (see Theorem 3.6 in [10]) is a direct corollary when $f(x)=x, \frac{1}{x}$. Moreover, when $f(x)=\frac{x^{2}+x}{2}, x^{\lambda}$ in Theorem 3.20, we have the following corollaries.
Corollary 3.21. Let G be a connected graph of order $n, \alpha(G)$ be its independent number. If its hyper-Wiener index

$$
W W(G) \leq \frac{1}{2}\left(n^{2}-n\right)+k^{2}+k
$$

then G satisfies $\alpha(G) \leq k$ unless $G=\overline{K_{k+1}} \vee K_{n-k-1}$.

Corollary 3.22. Let G be a connected graph of order $n, \alpha(G)$ be its independent number. If its modified Wiener index

$$
W_{\lambda}(G) \leq \frac{1}{2}\left(n^{2}-n\right)+\frac{2^{\lambda}-1}{2}\left(k^{2}+k\right),
$$

for $\lambda>0$, or

$$
W_{\lambda}(G) \geq \frac{1}{2}\left(n^{2}-n\right)-\frac{1-2^{\lambda}}{2}\left(k^{2}+k\right)
$$

for $\lambda<0$, then G satisfies $\alpha(G) \leq k$ unless $G=\overline{K_{k+1}} \vee K_{n-k-1}$.

Acknowledgements

The authors thank to Professor Lihua Feng for giving them the preprints of [10]. The authors are also grateful to the referees for their valuable comments, corrections and suggestions which led to considerable improvements in presentation.

References

[1] D. Bauer, H.J. Broersma, J. van den Heuvel, N. Kahl, A. Nevo, E. Schmeichel, D.R. Woodall, M. Yatauro, Best monotone degree conditions for graph properties: a survey, Graphs Combin. 31 (2015) 1-22.
[2] J.A. Bondy, Properties of graphs with constraints on degree, Studia Sci. Math. Hunger, 4 (1969) 473-475.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory, Grad. Texts in Math, vol. 244, Springer, New York, 2008.
[4] V. Chvátal, On Hamiltons ideals, J. Combin. Theory Ser. B, 12 (1972) 163-168.
[5] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[6] K.C. Das, B. Zhou, N. Trinajstić, Bounds on Harary index, J. Math. Chem. 46 (2009) 1369-1376.
[7] M.V. Diudea, I. Gutman, Wiener-type topological indices, Croatica Chemica Acta, 71 (1998) 21-52.
[8] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math., 66 (2001) $211-249$.
[9] A.A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-924.
[10] L. H. Feng, X. M. Zhu, W. J. Liu, Wiener index, Harary index and graph properties, Discrete Appl. Math. 223 (2017) 72-83.
[11] I. Gutman, A property of the Wiener number and its modidications, Indian J. Chem. 36A (1997) 128-132.
[12] A. Hamzeh, S. Hossein-Zadeh, A.R. Ashrafi, Extremal graphs under Wiener-type invariants, MATCH Commun. Math. Comput. Chem. 69 (2013) 47-54.
[13] H.B. Hua, M.L. Wang, On Harary index and traceable graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 297-300.
[14] O. Ivanciuc, T.S. Balaban, A.T. Balaban, Reciprocal distance matrix, related local vertex invariants and topolgical indices, J. Math. Chem. 12 (1993) 309-318.
[15] S. Klavšić, I. Gutman, Relation between Wiener-type topological indices of benzenoid molecules, Chem. Phys. Lett. 373 (2003) 328-332.
[16] M. Knor, R. Škrekovski, A. Tepeh, Mathematical aspects of Wiener index, Ars Math. Contemp., 11 (2016) 327-352.
[17] H.V. Kronk, A note on k-path hamiltonian graphs, J. Combin. Theory, 7 (1969) 104-106.
[18] M.J. Kuang, G.H. Huang, H.Y. Deng, Some sufficient conditions for Hamiltonian property in terms of Wiener-type invariants, Proceedings Mathematical Sciences, 126 (2016) 1-9.
[19] M. Las Vergnas, Problémes de Couplages et Problémes Hamiltoniens en Théorie des Graphes, PhD Thesis, Université Paris VIPierre et Marie Curie, 1972.
[20] L. Lesniak, On n-hamiltonian graphs, Discrete Math. 14 (1976) 165-169.
[21] R. Li, Harary index and some Hamiltonian properties of graphs, AKCE International Journal of Graphs and Computing, 12 (2015) 64-69.
[22] R. Li, Wiener index and some Hamiltonian properties of graphs, International Journal of Mathematics and Soft Computing, 5 (2015) 11-16.
[23] R.F. Liu, X. Du, H.C. Jia, Some observations on Harary index and traceable graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 195-208.
[24] R.F. Liu, X. Du, H.C. Jia, Wiener index on traceable and Hamiltonian graphs. Bull. Aust. Math. Soc. 94 (2016) 362-372.
[25] B. Lučić, A. Miličević, N. Trinajstić, Harary index-twelve years later, Croat. Chem. Acta. 75 (2002) 847-868.
[26] D. Plavšić, S. Nikolić, Z. Mihalić, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) 235-250.
[27] M. Randić, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478-483.
[28] R. Todeschini, V. Consonni, Handbook of Molecular Descriptpors, (2000) (Weinheim: Wiley VCH).
[29] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20.
[30] K.X. Xu, N. Trinajstić, Hyper-Wiener indices and Harary indices of graphs with cut edges, Util. Math. 84 (2011) 153-163.
[31] L.H. Yang, Wiener index and traceable graphs, Bulletin of the Australian Mathematical Society, 88 (2013) 380-383.
[32] G.H. Yu, L.H. Feng, On the maximal Harary index of a class of bicyclic graphs, Util. Math. 82 (2010) 285-292.
[33] T. Zeng, Harary index and Hamiltonian property of graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 645-649.
[34] B. Zhou, X. Cai, N. Trinajstić, On the Harary index, J. Math. Chem. 44 (2008) 611-618.

[^0]: 2010 Mathematics Subject Classification. Primary 05C50; Secondary 05C40, 05C07
 Keywords. Wiener-type index, degree sequence, graph properties.
 Received: 05 January 2016; Accepted: 24 October 2017
 Communicated by Paola Bonacini
 Corresponding author: Ligong Wang
 Research supported by the National Natural Science Foundation of China (No. 11171273).
 Email addresses: qnzhoumath@163.com (Qiannan Zhou), lgwangmath@163.com (Ligong Wang), luyong.gougou@163.com (Yong Lu)

