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Abstract. In this paper, we derive Ostrowski and Brauer type theorems for the left and right eigenvalues of
a quaternionic matrix. Generalizations of Gerschgorin type theorems are discussed for the left and the right
eigenvalues of a quaternionic matrix. After that, a sufficient condition for the stability of a quaternionic
matrix is given that generalizes the stability condition for a complex matrix. Finally, a characterization of
bounds is derived for the zeros of quaternionic polynomials.

1. Introduction

Quaternions are extensively used in the programming of video games, computer graphics, quantum
physics, flight dynamics, and control theory, etc. The solutions of linear differential equations with quater-
nion constant coefficients lead to quaternionic polynomials. So, the stability analysis of such differential
equations can be studied through localization theorems of quaternionic matrices. In recent past, finding
the zeros of quaternionic polynomials and finding the bounds of zeros of quaternionic polynomials have
gained much attention in the literature. This paper attempts to study the localization theorems for matrices
over a quaternion division algebra, which includes the Ostrowski, Brauer, and Gerschgorin type of the-
orems. Bounds for the zeros of quaternionic polynomials are also considered. Localization theorems for
quaternionic matrices have received much attention in the literature due to their numerous applications in
pure and applied sciences; see, e. g., [1, 2, 4, 6, 8, 13, 17–21, 27, 30, 31, 36–38] and the references therein.
Unlike the case of matrices over the field of complex numbers [3, 5, 11, 25, 35], localization theorems for
quaternionic matrices have been proposed for left and right eigenvalues separately in [16, 38, 39]. Ostrowski
and Brauer type theorems for the right eigenvalues of a quaternionic matrix with all real diagonal entries
have been introduced in [39]. A Brauer type theorem for the left eigenvalues of a quaternionic matrix has
been considered in [16, Theorem 4] for the deleted absolute row sums which is not same for the deleted
absolute column sums of a quaternionic matrix. Similar differences arise on the Gerschgorin and Ostrowski
type theorems for a quaternionic matrix. Therefore, more research is required to understand the Ostrowski,
Gershgorin, and Brauer type theorems for matrices over a quaternion division algebra. Furthermore, to
investigating their applications in finding various bounds for the zeros of quaternionic polynomials and to
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Corresponding author: Sk. Safique Ahmad
The second author was funded by the CSIR, Govt. of India
Email addresses: safique@iiti.ac.in, safique@gmail.com (Sk. Safique Ahmad), istkhara@iiti.ac.in (Istkhar Ali)



S. S. Ahmad, I. Ali / Filomat 32:2 (2018), 553–573 554

analyze conditions for the stability of a quaternionic matrix, one has to do further research in this direction.
Therefore we have developed a general framework using generalized Holder inequality of quaternions to
enhance our theory.

In the first part of this paper, we provide a general framework for localization theorems for quaternionic
matrices. Let Mn(H) be the space of all n×n quaternionic matrices. Then, for any A = (ai j) ∈Mn(H),we prove
a Ostrowski type theorem which states that all the left eigenvalues of A are located in the union of n balls
Ti(A) := {z ∈ H : |z − aii| ≤ ri(A)γci(A)1−γ

}, where ri(A) :=
∑n

j=1, j,i |ai j| and ci(A) :=
∑n

j=1, j,i |a ji|, ∀ γ ∈ [0, 1].
From this result, we deduce a sufficient condition for invertibility of a quaternionic matrix. We find that
the Brauer type theorem, proved in [16, Theorem 5] for the left eigenvalues in the case of deleted absolute
column sums of a quaternionic matrix, is incorrect, and we prove a corrected version. In fact, in the
case of the generalized Hölder inequality over the skew field of quaternions, we show that all the left
eigenvalues of A = (ai j) ∈ Mn(H) are contained in the union of n generalized balls: Bi(A) := {z ∈ H :

|z − aii| ≤ (n − 1)
1−γ

q ri(A)γ(n(p)
i (A))1−γ

}, where γ ∈ [0, 1], n(p)
i (A) :=

(∑n
j=1, j,i |ai j|

p
) 1

p , for any p, q ∈ (1, ∞) with
1
p + 1

q = 1. Further, we prove that all the right eigenvalues of A ∈ Mn(H) with all real diagonal entries are
contained in the union of n generalized balls Bi(A). In the sequel, we present localization theorems for the
right eigenvalues of quaternionic matrices.

In the second part of this paper, we provide bounds for the zeros of quaternionic polynomials using the
aforementioned localization theorems. Recall that quaternionic polynomials in general are expressed in the
following forms

pl(z) := qmzm + qm−1zm−1 + · · · + q1z + q0, (1)
pr(z) := zmqm + zm−1qm−1 + · · · + zq1 + q0, (2)

where q j, z ∈ H, (0 ≤ j ≤ m). The polynomials (1) and (2) are called simple and monic if qm = 1. Some
recent developments on the location and computation of zeros of quaternionic polynomials can be found
in [7, 14, 15, 22–24, 28, 32]. As a consequence of the localization theorems for quaternionic matrices, we
provide sharper bounds compared to the bound introduced by G. Opfer in [24] for the zeros of quaternionic
polynomials. Finally, we provide bounds for the zeros of quaternionic polynomials in terms of powers of
the companion matrices associated with the quaternionic polynomials (1) and (2). Some of our bounds are
sharper than the bound from [24].

The paper is organized as follows: Section 2 reviews some existing results from [26, 37]. Section 3
discusses the Greshgorin type, Ostrowski type, and Brauer type theorems for the left and right eigenvalues
of a quaternionic matrix. Section 4 explains bounds for the zeros of pl(z) and pr(z). Comparisons are made
with the bound provided in [24]. A sufficient condition for the stability of a quaternionic matrix is also
given. Section 5 introduces bounds for the zeros of the polynomials pl(z) and pr(z) in terms of powers of
their companion matrices. Finally, Section 6 summarizes this work.

2. Preliminaries

Notation: Throughout the paper,R and C denote the fields of real and complex numbers, respectively. The
set of real quaternions is defined by

H :=
{
q = a0 + a1i + a2j + a3k : a0, a1, a2, a3 ∈ R

}
with i2 = j2 = k2 = ijk = −1. The conjugate of q ∈ H is q := a0 − a1i − a2j − a3k and the modulus of

q is |q| :=
√

a2
0 + a2

1 + a2
2 + a2

3. =(a) denotes the imaginary part of a ∈ C. The real part of a quaternion
q = a0 + a1i + a2j + a3k is defined as<(q) = a0. The collection of all n-column vectors with elements inH is
denoted byHn. For x ∈ Kn,whereK ∈ {R,C,H}, the transpose of x is xT. If x = [x1, . . . , xn]T, the conjugate of
x is defined as x = [x1, . . . , xn]T and the conjugate transpose of x is defined as xH = [x1, . . . , xn]. For x, y ∈Hn,
the inner product is defined as 〈x, y〉 := yHx and the norm of x is defined as ‖x‖ :=

√
〈x, x〉. The sets of m× n

real, complex, and quaternionic matrices are denoted by Mm×n(R), Mm×n(C), and Mm×n(H), respectively.
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When m = n, these sets are denoted by Mn(K ), K ∈ {R,C,H}. For A ∈ Mm×n(K ), the conjugate, transpose,
and conjugate transpose of A are defined as A = (ai j), AT = (a ji) ∈ Mn×m(H), and AH = (A)T

∈ Mn×m(H),
respectively. For z ∈ Hn, the vector p-norm onHn is defined by ‖z‖p := (

∑n
i=1 |zi|

p)1/p, where 1 ≤ p < ∞ and
‖z‖∞ := max

1≤i≤n
{|zi|}. Define R+ := {α : α ∈ R, α > 0}. The set

[q] := {r ∈H : r = ρ−1 qρ f or all 0 , ρ ∈H}

is called an equivalence class of q ∈H.
Let x ∈ Hn. Then x can be uniquely expressed as x = x1 + x2j, where x1, x2 ∈ Cn. Define the function

ψ :Hn
→ C2n by

ψx :=
[

x1
−x2

]
.

This function ψ is an injective linear transformation fromHn to C2n.

Definition 2.1. Let A ∈Mn(H). Then A can be uniquely expressed as A = A1 + A2j,where A1,A2 ∈Mn(C).Define
the function Ψ : Mn(H)→M2n(C) by

ΨA :=
[

A1 A2

−A2 A1

]
.

The matrix ΨA is called the complex adjoint matrix of A.

Definition 2.2. Let A ∈Mn(H). Then the left, right, and the standard eigenvalues, respectively, are given by

Λl(A) :=
{
λ ∈H : Ax = λx for some nonzero x ∈Hn} ,

Λr(A) :=
{
λ ∈H : Ax = xλ for some nonzero x ∈Hn} and

Λs(A) :=
{
λ ∈ C : Ax = xλ for some nonzero x ∈Hn, =(λ) ≥ 0

}
.

Definition 2.3. Let A ∈Mn(H).Then the matrix A is said to be stable if and only if Λr(A) ⊂H− :=
{
q ∈H :<(q) < 0

}
.

Definition 2.4. Let A ∈Mn(H). Then A is said to be η-Hermitian if A = (Aη)H , where Aη = ηHAη and η ∈ {i, j,k}.

Definition 2.5. A matrix A ∈ Mn(H) is said to be invertible if there exists B ∈ Mn(H) such that AB = BA = In,
where In is the n × n identity matrix.

We next recall the following result necessary for the development of our theory.

Theorem 2.6. [37, Theorem 4.3]. Let A ∈Mn(H). Then the following statements are equivalent:
(a) A is invertible, (b) Ax = 0 has the unique solution, (c) det(ΨA) , 0, (d) ΨA is invertible, (e) A has no zero
eigenvalue.

Let A := (ai j) ∈Mn(H) and define the absolute row and column sums of A as

r′i (A) := ri(A) + |aii| and c′i (A) := ci(A) + |aii| (1 ≤ i ≤ n).

3. Distribution of the left and right eigenvalues of quaternionic matrices

It is known from [29, Corollary 3.2] that a quaternionic matrix A and its conjugate transpose AH have
the same right eigenvalues. However, A and AH may not have the same left eigenvalues, take for example

A =

[
i 0
0 j

]
and AH =

[
−i 0
0 −j

]
. We now present the following lemma for left eigenvalues of A and AH.

Lemma 3.1. Let A ∈ Mn(H) and let λ ∈ H. Then λ is a left eigenvalue of A if and only if λ is a left eigenvalue of
AH.
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Proof. Let λ be a left eigenvalue of A. Then there exists x(, 0) ∈ Hn such that (A − λIn)x = 0. This can be
written as Ψ(A−λIn)ψx = 0. Hence it follows that λ is a left eigenvalue of A if and only if det

[
Ψ(A−λIn)

]
= 0

⇔ det
[
ΨH

(A−λIn)

]
= 0⇔ det

[
Ψ(A−λIn)H

]
= 0⇔ det

[
Ψ(AH−λIn)

]
= 0. Thus, λ is a left eigenvalue of AH. �

The Gerschgorin type theorem is proved in [38] for the left eigenvalues using deleted absolute row sums
of a matrix A ∈ Mn(H). However, the Gerschgorin type theorem for the left eigenvalues using deleted
absolute column sums of A has not yet been established. We now state and prove the theorem.

Theorem 3.2. Let A := (ai j) ∈ Mn(H). Then all the left eigenvalues of A are located in the union of n Gerschgorin
balls Ωi(A) := {z ∈H : |z − aii| ≤ ci(A)} , 1 ≤ i ≤ n, that is,

Λl(A) ⊆ Ω(A) := ∪n
i=1Ωi(A).

Proof. Let λ be a left eigenvalue of A. Then from Lemma 3.1, λ is a left eigenvalue of AH. Then there exists
some nonzero x ∈Hn such that AHx = λx. Let x := [x1, . . . , xn]T

∈Hn and let xt be an element of x such that
|xt| ≥ |xi|, 1 ≤ i ≤ n. Then, |xt| > 0. From the t-th equation of AHx = λx, we have

n∑
j=1

a jtx j = λxt.

This shows

|λ − att| ≤

n∑
j=1, j,t

|a jt| := ct(A). �

We now have the following localization theorem for the deleted absolute row and column sums of a matrix
A ∈Mn(H) which is known as Ostrowski type theorem.

Theorem 3.3. (Ostrowski type theorem for the left eigenvalues) Let A := (ai j) ∈ Mn(H) and let γ ∈ [0, 1]. Then all
the left eigenvalues of A are located in the union of n balls Ti(A) := {z ∈ H : |z − aii| ≤ ri(A)γci(A)1−γ

}, 1 ≤ i ≤ n,
that is,

Λl(A) ⊆ T(A) := ∪n
i=1Ti(A).

Proof. Let γ ∈ (0, 1); as the cases γ = 0 and γ = 1 (Gerschgorin type theorems for column and row sums,
respectively) can be obtained by taking limits. We may assume that all ri(A) > 0, because we may perturb
A by inserting a small nonzero entry ε > 0 into any row in which ri(A) = 0; the resulting matrix has a ball
that is larger the ball for A, and the result follows in the limit as the perturbation goes to zero.

Let λ be a left eigenvalue of A. Then there exists some nonzero x ∈ Hn such that Ax = λx. Let
x = [x1, . . . , xn]T

∈Hn. Then for each i = 1, 2, . . . ,n, we have

|λ − aii||xi| = |

n∑
j=1, j,i

ai jx j| ≤

n∑
j=1, j,i

|ai j||x j| =

n∑
j=1, j,i

|ai j|
γ(|ai j|

1−γ
|x j|).

Applying the generalized Holder inequality with p = 1
γ and q = 1

1−γ , we obtain

|λ − aii||xi| ≤

 n∑
j=1, j,i

(|ai j|
γ)1/γ


γ  n∑

j=1, j,i

(|ai j|
1−γ
|x j|)

1
1−γ


1−γ

=

 n∑
j=1, j,i

|ai j|


γ  n∑

j=1, j,i

|ai j||x j|
1

1−γ


1−γ

= ri(A)γ
 n∑

j=1, j,i

|ai j||x j|
1

1−γ


1−γ

. (3)
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Since ri(A) > 0, then from (3) we have(
|λ − aii|

ri(A)γ

) 1
1−γ

|xi|
1

1−γ ≤

n∑
j=1, j,i

|ai j||x j|
1

1−γ .

Summing over all i, one obtains

n∑
i=1

(
|λ − aii|

ri(A)γ

) 1
1−γ

|xi|
1

1−γ ≤

n∑
i=1

n∑
j=1, j,i

|ai j||x j|
1

1−γ =

n∑
j=1

c j(A)|x j|
1

1−γ . (4)

If (
|λ − aii|

ri(A)γ

) 1
1−γ

> ci(A)

for each i such that x , 0, then (4) could not hold. Hence, we can conclude that at least one i exists such as(
|λ − aii|

ri(A)γ

) 1
1−γ

≤ ci(A)

that is |λ − aii| ≤ ri(A)γci(A)1−γ. Thus, all the left eigenvalues of A are located in the union of n balls Ti(A). �

Corollary 3.4. For any A := (ai j) ∈Mn(H), n ≥ 2 and for any γ ∈ [0, 1]. Let us assume that

|aii| > ri(A)γ ri(A)1−γ, 1 ≤ i ≤ n. (5)

Then A is invertible.

Proof. On the contrary, suppose A is not invertible. Then by Theorem 2.6, there is a left eigenvalue λ = 0 of
A. Now from Theorem 3.3, we obtain |aii| ≤ ri(A)γci(A)1−γ. This contradicts our assumption (5). Hence A is
invertible. �

The Brauer type theorem is proved in [16] for the left eigenvalues in the case of deleted absolute column
sums of a matrix A ∈ Mn(H). That is, if λ ∈ Λl(A), then its conjugate λ lies in the union of n(n−1)

2 ovals of
Cassini. However, this is incorrect as the following example suggests:

Example 3.5. Let A =

[
i k
0 j

]
. Then by [16, Theorem 5], oval of Cassini is given by

{
z ∈H : |z − i| |z − j| ≤ 0

}
.

Here, i is a left eigenvalue of A and its conjugate −i is not contained in the above oval of Cassini.

According to [16, Theorem 5], if λ ∈ Λl(A), then λ ∈ ∪n
i, j=1,
i, j

Fi j(A), where

Fi j(A) :=
{
z ∈H : |z − aii| |z − a j j| ≤ ci(A)c j(A)

}
, 1 ≤ i, j ≤ n, i , j.

However, this result is not necessarily true as

|λ − aii| |λ − a j j| > ci(A)c j(A), 1 ≤ i, j ≤ n, i , j,

which follows from Example 3.5. Now, we derive a corrected version of [16, Theorem 5] as follows:

Theorem 3.6. Let A := (ai j) ∈ Mn(H). Then all the left eigenvalues of A are located in the union of n(n−1)
2 ovals of

Cassini
Fi j(A) :=

{
z ∈H : |z − aii| |z − a j j| ≤ ci(A)c j(A)

}
, 1 ≤ i, j ≤ n, i , j,

that is, Λl(A) ⊆ F(A) := ∪n
i, j=1,
i, j

Fi j(A).
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Proof. Let λ be a left eigenvalue of A. Then by Lemma 3.1, λ is a left eigenvalue of AH, so that there exists
some nonzero x ∈Hn such that AHx = λx. Let x := [x1, . . . , xn]T

∈Hn and let xs be an element of x such that
|xs| ≥ |xi|, 1 ≤ i ≤ n. Then, |xs| > 0. Clearly, if all the other elements of x are zero, then the required result
holds.

Let xs and xt be two nonzero elements of x such that |xs| ≥ |xt| ≥ |xi|, 1 ≤ i ≤ n, i , s. From the s-th
equation of AHx = λx, we have

∑n
j=1 a jsx j = λxs, which implies (λ − ass)xs =

∑n
j=1, j,s a jsx j. Thus

|λ − ass| ≤

(
|xt|

|xs|

)
cs(A). (6)

Similarly, from AHx = λx, we obtain

|λ − att| ≤

(
|xs|

|xt|

)
ct(A). (7)

Combining (6) and (7), we have
|λ − ass| |λ − att| ≤ cs(A)ct(A).

Hence, all the left eigenvalues of A are located in the union of n(n−1)
2 ovals of Cassini Fi j(A), 1 ≤ i, j ≤

n, i , j. �
For A := (ai j) ∈Mn(H), define

n(p)
i (A) :=

 n∑
j=1, j,i

|ai j|
p


1
p

, 1 ≤ i ≤ n, p ∈ (1,∞).

We are now ready to derive the following localization theorem for left eigenvalues of a quaternionic
matrix.

Theorem 3.7. Let A := (ai j) ∈ Mn(H) and let γ ∈ [0, 1]. Then all the left eigenvalues of A are contained in the
union of n generalized balls

Bi(A) :=
{
z ∈H : |z − aii| ≤ (n − 1)

1−γ
q ri(A)γ(n(p)

i (A))1−γ
}
, 1 ≤ i ≤ n,

that is,
Λl(A) ⊆ B(A) := ∪n

i=1Bi(A),

for any p, q ∈ (1,∞) with 1
p + 1

q = 1.

Proof. Let µ be a left eigenvalue of A. Then there exists some nonzero x ∈ Hn such that Ax = µx. Let
x := [x1, . . . , xn]T

∈ Hn and let xt be an element of x such that |xt| ≥ |xi|, 1 ≤ i ≤ n. Then from Ax = µx, we
have

attxt +

n∑
j=1, j,t

at jx j = µxt.

This implies

|µ − att||xt| =

∣∣∣∣∣∣∣∣
n∑

j=1, j,t

at jx j

∣∣∣∣∣∣∣∣ ≤
n∑

j=1, j,t

|at j| |x j|. (8)

Applying the generalized Hölder inequality to (8), we have

|µ − att||xt| ≤

 n∑
j=1, j,t

|at j|
p


1
p
 n∑

j=1, j,t

|x j|
q


1
q

.
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Since |xt| ≥ |xi| for all 1 ≤ i ≤ n, we have |µ − att||xt| ≤ n(p)
t (A) ((n − 1)|xt|

q)
1
q that is,

|µ − att| ≤ n(p)
t (A) (n − 1)

1
q . (9)

Similarly, using |xt| ≥ |xi| ∀ i (1 ≤ i ≤ n) in (8), we get

|µ − att| ≤

n∑
j=1, j,t

|at j| = rt(A). (10)

Combining (9) and (10) for γ ∈ [0, 1], we have

|µ − att|
1−γ
≤ (n(p)

t (A))1−γ(n − 1)
1−γ

q and |µ − att|
γ
≤ rt(A)γ, (11)

that is,
|µ − att| ≤ (n − 1)

1−γ
q (n(p)

t (A))1−γrt(A)γ. �

Let us relate Theorem 3.7 to some existing results:

• Setting p = q = 2 and γ = 1 implies that the left eigenvalues of A := (ai j) ∈Mn(H) are contained in the
union of n Greschgorin balls Bi(A) := {z ∈H : |z − aii| ≤ ri(A)} , 1 ≤ i ≤ n, that is,

Λl(A) ⊆ B(A) := ∪n
i=1Bi(A).

This result can be found in [38, Theorem 6].

• Setting p = q = 2 and γ = 0 implies that the left eigenvalues of A := (ai j) ∈Mn(H) are contained in the
union of n balls Bi(A) :=

{
z ∈H : |z − aii| ≤ (n − 1)

1
2 n(2)

i (A)
}
, 1 ≤ i ≤ n, that is,

Λl(A) ⊆ B(A) := ∪n
i=1Bi(A).

This result can be found in [36, Theorem 1].

We now present a generalization of [38, Theorem 7] and [39, Theorem 3.1] by applying the generalized
Hölder inequality over the skew field of quaternions. For a general matrix A := (ai j) ∈Mn(H) , all the right
eigenvalues may not lie in the union of n generalized balls Bi(A), 1 ≤ i ≤ n. On the other hand, we show
that every connected region of the generalized balls Bi(A), 1 ≤ i ≤ n contains some right eigenvalues of A.

Theorem 3.8. Let A := (ai j) ∈ Mn(H) and let γ ∈ [0, 1]. For every right eigenvalue µ of A there exists a nonzero
quaternion β such that β−1µβ (which is also a right eigenvalue) is contained in the union of n generalized balls

Bi(A) :=
{
z ∈H : |z − aii| ≤ (n − 1)

1−γ
q ri(A)γ(n(p)

i (A))1−γ
}
, 1 ≤ i ≤ n,

that is,
{
z−1µz : 0 , z ∈H

}
∩ ∪

n
i=1Bi(A) , ∅, where p, q ∈ (1,∞) with 1

p + 1
q = 1.

Proof. Let µ be a right eigenvalue of A. Then there exists some nonzero vector x ∈Hn such that Ax = xµ. Let
x := [x1, . . . , xn]T

∈ Hn and choose xt from x as given in Theorem 3.7. Consider ρ ∈ H such that xtµ = ρxt.
Then we have

|ρ − att||xt| =

∣∣∣∣∣∣∣∣
n∑

j=1, j,t

at jx j

∣∣∣∣∣∣∣∣ ≤
n∑

j=1, j,t

|at j| |x j|. (12)

Using the method from the proof of Theorem 3.7, we have

|ρ − att| ≤ (n − 1)
1−γ

q (n(p)
t (A))1−γrt(A)γ. �

Let us relate Theorem 3.8 to some existing results:
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• Substituting p = q = 2 and γ = 1, we obtain

{z−1µz : 0 , z ∈H} ∩ ∪n
i=1{z ∈H : |z − aii| ≤ ri(A)} , ∅.

This result can be found in [38, Theorem 7].

• Substituting p = q = 2 and γ = 0, we get

{z−1µz : 0 , z ∈H} ∩ ∪n
i=1

{
z ∈H : |z − aii| ≤

√

n − 1 n(2)
i (A)

}
, ∅.

This result can be found in [39, Theorem 3.1].

We next present a sufficient condition for the stability of a matrix A ∈Mn(H).

Proposition 3.9. Let A := (ai j) ∈Mn(H) and let γ ∈ [0, 1]. Assume that

<(aii) + (n − 1)
1−γ

q ri(A)γ(n(p)
i (A))1−γ < 0, 1 ≤ i ≤ n, (13)

where 1
p + 1

q = 1 with p, q ∈ (1,∞). Then the matrix A is stable.

Proof. Let λ ∈ Λr(A). From Theorem 3.8 there exists 0 , ρ ∈ H such that ρ−1λρ ∈ ∪n
i=1Bi(A). Without loss of

generality, we assume ρ−1λρ ∈ Bl(A), that is,

|ρ−1λρ − all| ≤ (n − 1)
1−γ

q rl(A)γ(n(p)
l (A))1−γ.

Consider λ := λ1 + λ2i + λ3j + λ4k and all = al + bli + clj + dlk. Then from (13), we obtain

|(λ1 − al) + (ρ−1λ2iρ − bli) + (ρ−1λ3jρ − clj) + (ρ−1λ4kρ − dlk)| < −<(all) = −al. (14)

The equality (14) is possible when λ1 < 0, that is,<(λ) < 0, hence λ ∈ H−. This shows that the matrix A is
stable. �

When all the diagonal entries of a matrix A ∈Mn(H) are real, we have the following theorem.

Theorem 3.10. Let A := (ai j) ∈ Mn(H) with aii ∈ R and let γ ∈ [0, 1]. Then all the right eigenvalues of A are
contained in the union of n generalized balls

Bi(A) :=
{
z ∈H : |z − aii| ≤ (n − 1)

1−γ
q ri(A)γ(n(p)

i (A))1−γ
}
, 1 ≤ i ≤ n,

that is, Λr(A) ⊆ B(A) := ∪n
i=1Bi(A), where p, q ∈ (1,∞) with 1

p + 1
q = 1.

Proof. Let λ be a right eigenvalue of A. Then there exists some nonzero vector x ∈ Hn such that Ax = xλ.
Let x := [x1, . . . , xn]T

∈ Hn and let xt be an element of x such that |xt| ≥ |xi|, 1 ≤ i ≤ n. Then |xt| > 0. Thus
from Ax = xλ, we have

attxt +

n∑
j=1, j,t

at jx j = xtλ,

since att ∈ R, so attxt = xtatt. Then from the proof method of Theorem 3.7, we have

|λ − att| ≤ (n − 1)
1−γ

q (n(p)
t (A))1−γrt(A)γ. �

The above result has great significance as Hermitian, and η-Hermitian matrices have all real diagonal
entries. In general, η-Hermitian matrices arise widely in applications [12, 33, 34]. To that end, we state the
following proposition when all diagonal entries of A ∈ Mn(H) are real. In particular, this result gives a
sufficient condition for the stability of a matrix A ∈Mn(H).
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Proposition 3.11. Let A := (ai j) ∈Mn(H) with aii ∈ R and let γ ∈ [0, 1]. Assume that

aii + (n − 1)
1−γ

q ri(A)γ(n(p)
i (A))1−γ < 0, 1 ≤ i ≤ n,

where p, q ∈ (1, ∞) with 1
p + 1

q = 1. Then the matrix A is stable.

From Theorem 3.10, all the complex right eigenvalues of a matrix A = (ai j) ∈Mn(H) with all real diagonal

entries lie in the union of n-discs Di(A) := {z ∈ C : |z − aii| ≤ (n − 1)
1−γ

q ri(A)γ(n(p)
i (A))1−γ

}, 1 ≤ i ≤ n, that is,

Λc(A) ⊆ D(A) := ∪n
i=1Di(A). (15)

However, if diagonal entries are from C \R, then it is not necessary that all the complex right eigenvalues
of A are contained in the union of n-discs Di(A), 1 ≤ i ≤ n as the following examples suggest.

Example 3.12. Let A :=

1 − 2i j k
0 −2i −i
0 k 3 + i

 . The set of complex right eigenvalues of A is

Λc(A) := {λ1, λ2, λ3, λ4, λ5, λ6},

where λ1 = −0.0164 + 2.0083i, λ2 = −0.0164 − 2.0083i, λ3 = 1 + 2i, λ4 = 1 − 2i, λ5 = 3.0164 + 1.0324i, and
λ6 = 3.0164 + 1.0324i. For γ = 1 in (15), the discs D1(A),D2(A), and D3(A) are as follows:

D1(A) := {z ∈ C : |z − 1 + 2i| ≤ 2}, D2(A) := {z ∈ C : |z + 2i| ≤ 1}, and

D3(A) := {z ∈ C : |z − 3 − i| ≤ 1}.

From Figure 1, it is clear that λ1, λ3, and λ6 lie outside the discs D1(A),D2(A), and D3(A).

−2 0 2 4
−4

−3

−2

−1

0

1

2

3

X−axis

Y
−

ax
is

D1(A)

D2(A)

λ1

λ4λ2

λ6

λ3

λ5

+ Λc(A)

D3(A)

Figure 1: Location of the complex right eigenvalues of A from Example 3.12.

Example 3.13. Let A =

 −4 1 + j +
√

2k j
i + j −10 2j − k

i − 2j + 2k
√

3 + 2j − 3k −8

 . In this example, there are six complex right

eigenvalues λ j (1 ≤ j ≤ 6) which are shown in Figure 2. Substituting γ = 1 in (15), then all the complex
right eigenvalues of the matrix A are contained in the union of three discs D1(A),D2(A), and D3(A), where

D1(A) := {z ∈ C : |z + 4| ≤ 3}, D2(A) := {z ∈ C : |z + 10| ≤
√

2 +
√

5}, and

D3(A) := {z ∈ C : |z + 8| ≤ 7}.
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From Figure 2, the standard right eigenvalues of A are λ1, λ3, and λ5. Then

Λr(A) = [λ1] ∪ [λ3] ∪ [λ5].

Also, from Figure 2, we observe that<(λi) ∈H− (i = 1, 3, 5). Hence

<(λ1) =<(ρ−1λ1ρ), <(λ2) =<(τ−1λ2τ), and<(λ3) =<(ν−1λ3ν) ∀ρ, τ, ν ∈H

Thus the matrix A is stable.

−15 −10 −5 0
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0
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−
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λ5

λ6
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λ2

λ1

+ Λc(A)

D2(A)

λ3

D3(A)

D1(A)

Figure 2: Location of the complex right eigenvalues of A from Example 3.13.

In general, similar quaternionic matrices may not have the same left eigenvalues, see, [38, Example 3.3].
However, the following result is true.

Proposition 3.14. Let A ∈Mn(H) and let W be any invertible real matrix. Then A and WAW−1 have the same left
eigenvalues.

Proof. Let λ be a left eigenvalue of A. Then there exists some nonzero vector x ∈Hn such that Ax = λx. Let
W be an invertible real matrix. Then

WAx = Wλx = λWx.

Now, WAW−1Wx = λWx. Setting Wx = y implies WAW−1y = λy. �
Let A := (ai j) ∈Mn(H). Suppose W = diag(w1,w2, . . . ,wn) with wi ∈ R+, 1 ≤ i ≤ n. Then

W−1AW =
(ai jw j

wi

)
and Λl(A) = Λl(W−1AW).

Define

rW
i (A) :=

n∑
j=1, j,i

|ai j|w j

wi
and cW

i (A) :=
n∑

j=1, j,i

|a ji|wi

w j
, 1 ≤ i ≤ n.

Applying Theorem 3.3 to W−1AW, we get the following theorem which may be sharper than Theorem
3.3 depending upon the choice of W.

Theorem 3.15. Let A := (ai j) ∈Mn(H). Then all the left eigenvalues of A are contained in the union of n balls

TW
i (A) := {z ∈H : |z − aii| ≤ (rW

i (A))γ (cW
i (A))1−γ

}, 1 ≤ i ≤ n,

that is,
Λl(A) = Λl(W−1AW) ⊆ TW(A) := ∪n

i=1TW
i (A).
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Since the above theorem holds for every W = diag(w1,w2, . . . ,wn), where wi ∈ R+, we have

Λl(A) = Λl(W−1AW) ⊆ ∩
W∈Mn(S)

TW(A) =: TS(A),

where Mn(S) is a set of real diagonal matrices with non-negative entries. TS(A) is called the minimal
Ostrowski type set for the matrix A.

Substituting γ = 1 in Theorem 3.15, we obtain

Λl(A) = Λl(W−1AW) ⊆ ηW(A) := ∪n
i=1η

W
i (A), (16)

where ηW
i (A) :=

{
z ∈H : |z − aii| ≤ rW

i (A)
}
. Therefore,

Λl(A) = Λl(W−1AW) ⊆ ∩
W∈Mn(S)

ηW(A) =: ηS(A),

where ηS(A) is called the first minimal Gerschgorin type set for the matrix A.
For γ = 0 in Theorem 3.15, we have

Λl(A) = Λl(W−1AW) ⊆ ΩW(A) := ∪n
i=1Ω

W
i (A), (17)

where ΩW
i (A) :=

{
z ∈H : |z − aii| ≤ cW

i (A)
}
. Then

Λl(A) = Λl(W−1AW) ⊆ ∩
W∈Mn(S)

ΩW(A) =: ΩS(A),

where ΩS(A) is called the second minimal Gerschgorin type set for the matrix A.

4. Bounds for the zeros of quaternionic polynomials

In this section, we derive bounds for the zeros of quaternionic polynomials by applying the localization
theorems for the left eigenvalues of a quaternionic matrix. Due to noncommutivity of quaternions, we first
define some basic facts on multiplication of quaternions. For p, q ∈H, define p × q := pq. For 0 , p ∈H and
q ∈H, define

1
p
× q := p−1

× q := p−1q, q ×
1
p

:= q × p−1 := qp−1.

Recall the quaternionic polynomials pl(z) and pr(z) from (1) and (2). Then the corresponding companion
matrices of the simple monic polynomials pl(z) and pr(z) are given by

Cpl :=


0 1 0
...

. . .
0 0 1
−q0 −q1 . . . −qm−1

 :=
[ 1 m−1

m−1 0 I
1 Cpl (m, 1) Cpl (m, 2 : m)

]
and Cpr := CT

pl
,

respectively. Let q0 , 0, and define simple monic reversal polynomials of pl(z) and pr(z) as follows:

ql(z) :=
1
q0
× pl

(1
z

)
× zm = zm + q−1

0 q1zm−1 + · · · + q−1
0 qm−1z + q−1

0 ,

qr(z) := zm
× pr

(1
z

)
×

1
q0

= zm + zm−1q1q−1
0 + · · · + zqm−1q−1

0 + q−1
0 ,

respectively. The corresponding companion matrices of the simple monic reversal polynomials ql(z) and
qr(z) are denoted by Cql and Cqr , respectively. We observe that the zeros of ql(z) and qr(z) are the reciprocal
of zeros of pl(z) and pr(z), respectively.

Now, we need the following result:
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Proposition 4.1. [32, Proposition 1]. Let λ ∈ H. Then λ is a zero of the simple monic polynomial pl(z) if and only
if λ is a left eigenvalue of its corresponding companion matrix Cpl .

In general, a right eigenvalue of Cpl is not necessarily a zero of the simple monic polynomial pl(z). For
example, let a simple monic polynomial pl(z) = z2 + jz + 2. Then its companion matrix is given by

Cpl =

[
0 1
−2 −j

]
.

Here i is a right eigenvalue of Cpl . However, i is not a zero of pl(z).
Analogous to Proposition 4.1, the following result is presented for pr(z).

Proposition 4.2. Let λ ∈H. Then λ is a zero of the simple monic polynomial pr(z) if and only if λ is a left eigenvalue
of its corresponding companion matrix Cpr .

We now present bounds for the zeros of pl(z) as follows.

Theorem 4.3. Let pl(z) be a simple monic polynomial over H of degree m. Then every zero z̃ of pl(z) satisfies the
following inequality: (

max
1≤i≤m

(
r′i (Cql )

γ c′i (Cql )
1−γ

))−1
≤ |z̃| ≤ max

1≤i≤m

(
r′i (Cpl )

γ c′i (Cpl )
1−γ

)
,

for every γ ∈ [0, 1].

Proof. From Proposition 4.1, zeros of pl(z) and left eigenvalues of Cpl are same. Thus, if z̃ is a zero of pl(z),
then z̃ is a left eigenvalue of Cpl . By applying Theorem 3.3 (Ostrowski type theorem) to Cpl , we obtain

|z̃| ≤ max
1≤i≤m

(
r′i (Cpl )

γ c′i (Cpl )
1−γ

)
.

We use the respective upper bounds for the zeros of the simple monic reversal polynomial ql(z) for the
desired lower bounds for the zeros of pl(z). �

Corollary 4.4. Let pl(z) be a simple monic polynomial over H of degree m. Then every zero z̃ of pl(z) satisfies the
following inequalities:

1.
|q0|

max
1≤i≤(m−1)

{
1, |q0| + |qi|

} ≤ |z̃| ≤ max
1≤i≤(m−1)

{
|q0|, 1 + |qi|

}
.

2.
|q0|

max
{
|q0|, 1 +

∑m−1
i=1 |qi|

} ≤ |z̃| ≤ max
{
1,

∑m−1
i=0 |qi|

}
.

Proof. Substituting γ = 0, 1 in Theorem 4.3, we obtain the desired results. �
Next, we derive the following lemma which gives a better bound than Opfer’s bound [24, Theorem 4.2]

for |q0| ≥ 1.

Lemma 4.5. Assume that |q0| ≥ 1. Then α ≤ T , where α := max
1≤i≤m−1

{
|q0|, 1 + |qi|

}
and T := max

{
1,

∑m−1
i=0 |qi|

}
.

Proof. Case 1: If |q0| = 1, then α = max
1≤i≤m−1

{
|q0|, 1 + |qi|

}
= max

1≤i≤m−1

{
1 + |qi|

}
and T := max

{
1,

∑m−1
i=0 |qi|

}
=

max
{
1, |q0| +

∑m−1
i=1 |qi|

}
= 1 +

∑m−1
i=1 |qi|.

Case 2: If |q0| > 1, thenα = max
1≤i≤(m−1)

{
|q0|, 1 + |qi|

}
= |q0| or max1≤i≤(m−1)

{
1 + |qi|

}
and T := max{1,

∑m−1
i=0 |qi|} =

max
{
1, |q0| +

∑m−1
i=1 |qi|

}
= |q0| +

∑m−1
i=1 |qi|. Thus α ≤ T . This completes the proof. �

On the other hand, if |q0| < 1 in Lemma 4.5 then α ≤ T or α > T . For example, for a simple monic
polynomial p′l (z) := z3 + (i + 2j + 2k)z2

− 2kz + 0.5k, we have α = 4 and T = 5.5. Hence α < T . Further, if
we consider p′′l (z) = z3 + 0.5jz2 + (0.2i + 0.3j)z + 0.5i, then α = 1.5 and T = 1.36. Hence α > T .

Next, by applying Theorem 3.3 to WCpl W
−1 and WCql W

−1 (W is an invertible real diagonal matrix), we
obtain different and potentially sharper bounds.
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Theorem 4.6. Let wi ∈ R+, 1 ≤ i ≤ m. Then every zero z̃ of the simple monic polynomial pl(z) satisfies the following
inequality: [

max
1≤i≤m

{
r′i (WCql W

−1)γ c′i (WCql W
−1)1−γ

}]−1
≤ |z̃| ≤ max

1≤i≤m

{
r′i (WCpl W

−1)γ c′i (WCpl W
−1)1−γ

}
,

where W := diag(w1,w2, . . . ,wm) and γ ∈ [0, 1].

Proof. The companion matrix of pl(z) is given by

Cpl =

[ 1 m−1

m−1 0 I
1 −q0 [−q1 . . . − qm−1]

]
.

Then

WCpl W
−1 =

[ 1 m−1

m−1 0 diag
(

w1
w2
, . . . , wm−1

wm

)
1 −

wm
w1

q0 −
wm
w2

q1 . . . − qm−1

]
.

By Proposition 3.14, Cpl and WCpl W
−1 have the same left eigenvalues. Rest of the proof follows from the

proof method of Theorem 4.3. �

Corollary 4.7. Let pl(z) be a simple monic polynomial over H of degree m. Then every zero z̃ of pl(z) satisfies the
following inequalities:

1.
[

max
0≤ j≤m−1

{
(|q0|w j + wm|qm− j|)

|q0|d j+1

}]−1

≤ |z̃| ≤ max
0≤ j≤m−1

{
w j + wm|q j|

w j+1

}
, where w0 = 0.

2.

 max
1≤ j≤m−1

 w j

w j+1
,

m−1∑
i=0

wm|qi|

|q0|wi+1



−1

≤ |z̃| ≤ max
1≤ j≤m−1

 w j

w j+1
,

m−1∑
i=0

wm|qi|

wi+1

.
Proof. Substituting γ = 0, 1 in Theorem 4.6, we get the desired results. �

Let w j = wm|q j|, 1 ≤ j ≤ m − 1, in the part (1) of Corollary 4.7. Then we obtain

|z̃| ≤ max
1≤ j≤m−1

{∣∣∣∣∣q0

q1

∣∣∣∣∣ , 2
∣∣∣∣∣∣ q j

q j+1

∣∣∣∣∣∣
}
.

This is called the Kojima type bound for the zeros of the simple monic polynomial pl(z).
For computation of bounds of the zeros of pr(z), we define the following polynomial:

p̃l(z) := pr(z) :=
m∑

j=0

q jz j, q j ∈H.

Now, we discuss the following theorem which shows relation between the zeros of pr(z) and p̃l(z).

Theorem 4.8. Let λ ∈H. Then λ is a zero of the simple monic polynomial pr(z) if and only if λ is a zero of the simple
monic polynomial p̃l(z).

Proof. The corresponding companion matrices of pr(z) and p̃l(z) are given by

Cpr := CT
pl

and Cp̃l := CH
pr
,

respectively. By Lemma 3.1, if λ is a left eigenvalue of Cpr , then λ is a left eigenvalue of CH
pr

= Cp̃l . By
Propositions 4.1 and 4.2, the left eigenvalues of Cpr and Cp̃l imply the zeros of pr(z) and p̃l(z), respectively.
Hence if λ is a zero of pr(z), then λ is also a zero of p̃l(z). �

Remark 4.9. Similar results can be obtained for the quaternionic polynomial pr(z) as well.
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5. Bounds for the zeros of quaternionic polynomials by using the powers of companion matrices

We present some preliminaries results for the powers of companion matrices Cpl and Cpr . In general,
if λ is a left eigenvalue of a quaternionic matrix A, then λ2 is not necessarily a left eigenvalue of A2. For

example, for a quaternionic matrix A =

[
0 i
−i 0

]
,we have Λl(A) :=

{
µ : µ = α + βj + γk, α2 + β2 + γ2 = 1

}
and

A2 =

[
1 0
0 1

]
. So Λl(A2) := {1}. Here j is a left eigenvalue of A but j2 is not a left eigenvalue of A2.

Proposition 5.1. If λ is a left eigenvalue of Cpl with respect to the eigenvector x ∈Hn, then λt is a left eigenvalue of
Ct

pl
corresponding to the same eigenvector x ∈Hn.

Proof. Case (a): Let t be a positive integer and let λ be a left eigenvalue of Cpl . Then, there exists 0 , x :=[
1, λ, λ2, . . . , λm−1

]T
∈Hn such that Cpl x = λx. Therefore,

C2
pl

x = Cpl (Cpl x) = Cpl xλ = xλ2

...

Ct
pl

x = Ct−1
pl

(Cpl x) = Ct−1
pl

xλ = · · · = xλt = λtx.

Thus, λt is a left eigenvalue of matrix Ct
pl

corresponding to the same eigenvector x ∈Hn.

Case (b): Let t be a negative integer. From Case (a), we have Cpl x = xλ. This implies C−1
pl

x = xλ−1.
Therefore,

C−2
pl

x = C−1
pl

(C−1
pl

x) = C−1
pl

xλ−1 = xλ−2

...

Ct
pl

x = C(t+1)
pl

(C−1
pl

x) = C(t+1)
pl

xλ−1 = · · · = xλt = λtx.

Thus, λt is a left eigenvalue of Ct
pl

with respect to the same eigenvector x ∈Hn. �
Next, we state the following result for left eigenvalues of Cpr and Ct

pr
(t is a nonzero integer).

Proposition 5.2. Ifλ is a left eigenvalue of Cpr with respect to the eigenvector x ∈Hn, thenλt (t is a nonzero integer)
is a left eigenvalue of Ct

pr
corresponding to the same eigenvector x ∈Hn.

Proof. Case (a): Let t be a positive integer and let λ be a left eigenvalue of Cpr . Now from Lemma 3.1, λ is a
left eigenvalue of CH

pr
. Then there exists 0 , x :=

[
1, λ, (λ)2, . . . , (λ)m−1

]
∈ Hn such that CH

pr
x = λx = xλ. This

gives (
CH

pr

)2
x = CH

pr
(CH

pr
x) = CH

pr
xλ = x(λ)2

...(
CH

pr

)t
x =

(
CH

pr

)t−1
(CH

pr
x) =

(
CH

pr

)t−1
xλ = · · · = x(λ)t = (λ)tx.

Thus, (λ)t is a left eigenvalue of
(
CH

pr

)t
. Then by Lemma 3.1, λt is a left eigenvalue of Ct

pr
.

Case (b): Let t be a negative integer. From Case (a), we have CH
pr

x = λx = xλ. This implies (CH
pr

)−1x =

x(λ)−1. Thus

(CH
pr

)−2x = (CH
pr

)−1
{(CH

pr
)−1x} = (CH

pr
)−1x(λ)−1 = x(λ)−2

...

(CH
pr

)tx = (CH
pr

)(t+1)
{(CH

pr
)−1x} = (CH

pr
)(t+1)x(λ)−1 = · · · = x(λ)t = (λ)tx.
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Thus, (λ)t is a left eigenvalue of
(
CH

pr

)t
. Then by Lemma 3.1, λt is a left eigenvalue of Ct

pr
. �

Further, we present a framework to find the powers of the companion matrix Cpl which can be derived
in a simple procedure as follows, keeping in view that quaternions do not commute.

Theorem 5.3. Consider Cpl =

[ 1 m−1

m−1 0 I
1 Cpl (m, 1) Cpl (m, 2 : m)

]
.

(a) If t < m is a positive integer, then

Ct
pl

=

[ t m−t

m−t 0 I
t C D

]
, (18)

(b) if t ≥ m, then

Ct
pl

=



Ct−(m−1)
pl

(m, 1 : m)
Ct−(m−2)

pl
(m, 1 : m)
...

Ct−1
pl

(m, 1 : m)
Ct

pl
(m, 1 : m)


m×m

, (19)

where

Ct
pl

(m, 1) := Ct−1
pl

(m,m)Cpl (m, 1),

Ct
pl

(m, 2 : m) := Ct−1
pl

(m, 1 : m − 1) + Ct−1
pl

(m,m)Cpl (m, 2 : m),

C :=


Cpl (m, 1 : t)
C2

pl
(m, 1 : t)
...

Ct
pl

(m, 1 : t)


t×t

, and D :=


Cpl (m, t + 1 : m)
C2

pl
(m, t + 1 : m)

...
Ct

pl
(m, t + 1 : m)


t×(m−t)

.

Note that Cpl (k, 1 : m) denotes the k-th row of the matrix Cpl .

Proof. Assuming t = 1, (18) becomes Cpl =

[ 1 m−1

m−1 0 I
1 Cpl (m, 1) Cpl (m, 2 : m)

]
,where Cpl (m, 1) := −q0,Cpl (m, 2 :

m) := [−q1 . . . − qm−1]. Thus the theorem is true for t = 1. Now, let us consider Cpl as

Cpl =

[ m−k k

k A′ B′

m−k C′ D′

]
, where

A′ := Cpl (1 : k, 1 : m − k),B′ := Cpl (k + 1 : m,m − k + 1 : m),C′ := Cpl (k + 1 : m, 1 : m − k),D′ := Cpl (k + 1 :
m,m − k + 1 : m). For t = k = 3, we get

C3
pl

=

[ 2 m−2

m−2 0 I
2 C D

] [ m−2 2

2 A′ B′

m−2 C′ D′

]
=

[ m−2 2

m−2 C′ D′

2 CA′ + DC′ CB′ + DD′

]
.

Note that in each step, size of the identity matrix I reduces by order 1 and the size of matrix C increases by
order 1. Similarly, the matrix D increases by 1 row and decreases by 1 column. Finally, after rearranging
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and separating 0 and I matrices we get

[ 2+1 m−2−1

m−2−1 0 I
2+1 C D

]
,

where C and D are of size 3 × 3 and 3 × (m − 3), respectively. Assuming that the theorem is true for t = k,
we have

Ck+1
pl

= Ck
pl

Cpl =

[ m−k k

m−k C′ D′

k CA′ + DC′ CB′ + DD′

]
=

[ k+1 m−k−1

m−k−1 0 I
k+1 C D

]
,

where the corresponding C and D matrices are given in the statement of the theorem.
The proof for t ≥ m is similar. �

In the case of quaternionic matrix, Cpl = CT
pr

but Ct
pr
, (Ct

pl
)T for t ≥ 2. This is illustrated by the following

example.

Example 5.4. Consider the following simple monic polynomials overH :

pl(z) = z3
− kz2 + (k − j)z + (i + j) and pr(z) = z3

− z2k + z(k − j) + (i + j).

The corresponding companion matrices of pl(z) and pr(z) are given by

Cpl =

[ 1 2

2 0 I
1 Cpl (3, 1) Cpl (3, 2 : 3)

]
and Cpr = CT

pl
,

respectively, where Cpl (3, 1) = −i − j and Cpl (3, 2 : 3) := [j − k,k]. Then

C2
pl

=

 0 0 1
−i − j j − k k
i − j 1 − 2i − j j − k − 1

 and C2
pr

=

0 −i − j j − i
0 j − k 1 − j
1 k j − k − 1

 .
This shows that C2

pr
, (C2

pl
)T.

Hence, we can derive results analogous to Theorem 5.3 for the case of Ct
pr
, t ≥ 2.

Theorem 5.5. Consider Cpr =

[ m−1 1

1 0 Cpr (1,m)
m−1 I Cpr (2 : m,m)

]
.

(a) If t < m is a positive integer, then

Ct
pr

=

[ m−t t

t 0 C
m−t I D

]
, (20)

(b) if t ≥ m, then

Ct
pr

=
[

Ct−(m−1)
pr

(1 : m,m) Ct−(m−2)
pr

(1 : m,m) . . . Ct−1
pr

(1 : m,m) Ct
pr

(1 : m,m)
]

m×m
,

where

C :=
[
Cpr (1 : t,m) C2

pr
(1 : t,m) . . . Ct

pr
(1 : t,m)

]
,

D :=
[
Cpr (t + 1 : m,m) C2

pr
(t + 1 : m,m) . . . Ct

pr
(t + 1 : m,m)

]
,

Ct
pr

(1,m) := Cpr (1,m) Ct−1
pr

(m,m), and

Ct
pr

(2 : m,m) := Ct−1
pr

(1 : m − 1,m) + Cpr (2 : m,m) Ct−1
pr

(m,m).
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Proof. The proof follows from the proof method of Theorem 5.3. �
Polynomials from Example 5.4 satisfy

p̃l(z) := pr(z) = z3 + kz2 + (j − k)z + (−i − j), and p̃r(z) := pl(z) = z3 + z2k + z(j − k) − (i + j).

Thus the companion matrices corresponding to p̃l(z) and p̃r(z) are given by Cp̃l = Cpl and Cp̃r = Cpr , respec-
tively. Next,

C2
p̃l

=

 0 0 1
i + j −j + k −k
i − j 1 + j k − j − 1

 and C2
p̃r

=

0 i + j j − i
0 −j + k 1 + 2i + j
1 −k −1 − j + k

 .
Then

max
1≤i≤3

[
(r′i (C

2
pl

))1/2
]

= 2.3655 and max
1≤i≤3

[
(r′i (C

2
p̃r

))1/2
]

= 1.9656,

max
1≤i≤3

[(
r′i

(
C2

pr

))1/2
]

= 1.9319 and max
1≤i≤3

[
(r′i (C

2
p̃l

))1/2
]

= 2.1355.

Now, we have

max
1≤i≤3

[
(r′i (C

2
pl

))1/2
]
, max

1≤i≤3

[
(r′i (C

2
p̃r

))1/2
]

and max
1≤i≤3

[(
r′i

(
C2

pr

))1/2
]
, max

1≤i≤3

[
(r′i (C

2
p̃l

))1/2
]
.

Further, we have the following bounds for the zeros of pl(z) and pr(z) for γ ∈ [0, 1].

Theorem 5.6. Let pl(z) and pr(z) be the simple monic polynomials over H of degree m and let Ct
pl

and Ct
pr

(t ≥ 2)
be the t-th power of the companion matrices Cpl and Cpr , corresponding to pl(z) and pr(z), respectively. Then, for
γ ∈ [0, 1] bounds for every zero z̃ of pl(z) satisfy the following inequalities:(

max
1≤i≤m

[(
r′i

(
Ct

ql

))γ/t (
c′i

(
Ct

ql

))(1−γ)/t
])−1
≤ |z̃| ≤ max

1≤i≤m

[(
r′i

(
Ct

pl

))γ/t (
c′i

(
Ct

pl

))(1−γ)/t
]
, (21)

(
max
1≤i≤m

[(
r′i

(
Ct

q̃r

))γ/t (
c′i

(
Ct

q̃r

))(1−γ)/t
])−1
≤ |z̃| ≤ max

1≤i≤m

[(
r′i

(
Ct

p̃r

))γ/t (
c′i

(
Ct

p̃r

))(1−γ)/t
]
, (22)

and bounds for every zero z̃ of pr(z) satisfy the following inequalities:(
max
1≤i≤m

[(
r′i

(
Ct

qr

))γ/t (
c′i

(
Ct

qr

))(1−γ)/t
])−1
≤ |z̃| ≤ max

1≤i≤m

[(
r′i

(
Ct

pr

))γ/t (
c′i

(
Ct

pr

))(1−γ)/t
]
, (23)

(
max
1≤i≤m

[(
r′i

(
Ct

q̃l

))γ/t (
c′i

(
Ct

q̃l

))(1−γ)/t
])−1
≤ |z̃| ≤ max

1≤i≤m

[(
r′i

(
Ct

p̃l

))γ/t (
c′i

(
Ct

p̃l

))(1−γ)/t
]
. (24)

Proof. Let λ be a left eigenvalue of Cpl . Then by Proposition 5.1, λt ( t ≥ 2 is positive integer) is a left
eigenvalue of Ct

pl
. Hence by applying Theorem 3.3, we get (21).

By Lemma 3.1, λ is a left eigenvalue of Cp̃r and by Proposition 5.2, (λ)t is a left eigenvalue of (Cp̃r )
t. Then

from Theorem 3.3, (22) follows. The proof of (23) and (24) are similar. �
Substituting t = 2 and γ = 1 in Theorem 5.6, we have the following corollary.

Corollary 5.7. Let pl(z) and pr(z) be the simple monic polynomials overH of degree m. Then bounds for every zero
z̃ of pl(z) satisfy the following inequalities:

1
β1
≤ |z̃| ≤ α1 and

1
β2
≤ |z̃| ≤ α2,
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where

α1 = max

1,

m−1∑
j=0

|q j|


1/2

,

m−1∑
j=0

|qm−1q j − q j−1|


1/2,

α2 = max
2≤ j≤m−1

{(
|q0| + |q0 qm−1|

)1/2 ,
(
|q1| + |q1 qm−1 − q0|

)1/2 ,
(
1 + |q j| + |q j qm−1 − q j−1|

)1/2
}
,

β1 = max

1,

m−1∑
j=1

|q−1
0 q j|


1/2

,

m−1∑
j=0

|q−1
0 q1q−1

0 qm− j − q−1
0 qm− j+1|


1/2,

β2 = max
2≤ j≤m−1

{ (
|q−1

0 | + |q
−1
0 q1q−1

0 |

)1/2
,
(
|qm−1q−1

0 | + |qm−1q−1
0 q1q−1

0 − q−1
0 |

)1/2
,(

1 + |qm− jq−1
0 | + |qm− jq−1

0 q1q−1
0 − qm− j+1q−1

0 |

)1/2 }
,

and bounds for every zero z̃ of pr(z) satisfy the following inequalities:

1
β3
≤ |z̃| ≤ α3, and

1
β4
≤ |z̃| ≤ α4,

where

α3 = max
2≤ j≤m−1

{(
|q0| + |q0 qm−1|

)1/2 ,
(
|q1| + |q1 qm−1 − q0|

)1/2 ,
(
1 + |q j| + |q j qm−1 − q j−1|

)1/2
}
,

α4 = max

1,

m−1∑
j=0

|q j|


1/2

,

m−1∑
j=0

|qm−1 q j − q j−1|


1/2,

β3 = max
2≤ j≤m−1

{ (
|q−1

0 | + |q
−1
0 q1q−1

0 |
)1/2

,
(
|qm−1q−1

0 | + |qm−1q−1
0 q1q−1

0 − q−1
0 |

)1/2
,(

1 + |qm− jq−1
0 | + |qm− jq−1

0 q1q−1
0 − qm− j+1q−1

0 |
)1/2

}
,

β4 = max

1,

m−1∑
j=1

|q−1
0 q j|


1/2

,

m−1∑
j=0

|q−1
0 q1 q−1

0 qm− j − q−1
0 qm− j+1|


1/2, q−1 = 0 = qm+1, qm = 1.

Proof. The proof follows from Theorem 5.6 and Appendix A. �

Example 5.8. Consider the following polynomials pl(z) and pr(z) overH:

pl(z) = z6 + (i + 3k)z5 + (3 + j)z4 + (5i + 15k)z3 + (−4 + 5j)z2 + (6i + 18k)z + (6j − 12),
pr(z) = z6 + z5(i + 3k) + z4(3 + j) + z3(5i + 15k) + z2(−4 + 5j) + z(6i + 18k) + (6j − 12).

The zeros of pl(z) are given in [32]. Moreover, we find the zeros of pr(z) by Niven’s algorithm [23]. Thus,
the zeros and bounds for the zeros of pl(z) and pr(z). are given in the following tables.

6. Conclusion

In this paper, we have derived Ostrowski type theorem for left eigenvalues of a quaternionic matrix that
generalizes Ostrowski type theorem for right eigenvalues of a quaternionic matrix when all the diagonal
entries of a quaternionic matrix are real. We have derived a corrected version of the Brauer type theorem
for left eigenvalues for the deleted absolute column sums of a quaternionic matrix. Moreover, we have
extended localization theorems by applying the generalized Hölder inequality for left as well as right
eigenvalues of a quaternionic matrix. Bounds for the zeros of quaternionic polynomials have derived. As
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z1 |z1| z2 |z2|

−i − 2k 2.2361 −0.4i − 2.2k 2.2361
[i
√

3] 1.7321 [i
√

3] 1.7321
[i
√

2] 1.4142 [i
√

2] 1.4142
−0.6i − 0.8k 1 −k 1

Table 1: Zeros of pl(z) and pr(z) and their absolute values, where z1 and z2 are the set of zeros of pl(z), and pr(z), respectively.

Example 5.8 lower bound upper bound
Corollary 4.4 (1) 0.4142 19.9737
Corollary 4.4 (2) 0.2766 60.9291
Theorem 4.3, γ = 1/4 0.3744 8.1415

Table 2: Lower and upper bounds for the zeros of pl(z) and pr(z).

Example 5.4 lower bound lower bound
Corollary 5.7 1(a) 0.6156 2.3655
Corollary 5.7 1(b) 0.6078 1.9656
Corollary 5.7 2(a) 0.6078 1.9319
Corollary 5.7 2(b) 0.6436 2.1355

Table 3: Lower and upper bounds for the zeros of pl(z) and pr(z).

a consequence, we have shown that some of our bounds are sharper than the bound given in [24]. Further,
we have derived bounds via the powers of companion matrices which are always sharper than the bound
given in [24].

Appendix A.

In this appendix, we state formulas for the squares of quaternionic companion matrices. For t = 2,
Theorem 5.3 implies

C2
pl

=

[ 2 m−2

m−2 0 I
2 C D

]
, where C :=

[
Cpl (m, 1 : 2)
C2

pl
(m, 1 : 2)

]
=

[
−q0 −q1

qm−1q0 qm−1q1 − q0

]
and

D =

[
Cpl (m, 3 : m)
C2

pl
(m, 3 : m)

]
=

[
−q2 −q3 . . . −qm−1

qm−1q2 − q1 qm−1q3 − q1 . . . (qm−1)2
− qm−2

]
,

C2
p̃l

=

[ 2 m−2

m−2 0 I
2 C D

]
, where C =

[
Cp̃l (m, 1 : 2)
C2

p̃l
(m, 1 : 2)

]
=

[
−q0 −q1

qm−1 q0 qm−1 q1 − q0

]
and

D =

[
Cp̃l (m, 3 : m)
C2

p̃l
(m, 3 : m)

]
=

[
−q2 −q3 . . . −qm−1

qm−1 q2 − q1 qm−1 q3 − q1 . . . (qm−1)2
− qm−2

]
,

C2
ql

=

[ 2 m−2

m−2 0 I
2 C D

]
, where C =

[
−q−1

0 −q−1
0 qm−1

q−1
0 q1q−1

0 q−1
0 q1q−1

0 qm−1 − q−1
0

]
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and

D =

[
−q−1

0 qm−2 . . . −q−1
0 q1

q−1
0 q1q−1

0 qm−2 − q−1
0 qm−1 . . . (q−1

0 q1)2
− q−1

0 q2

]
,

C2
q̃l

=

[ 2 m−2

m−2 0 I
2 C D

]
, where C =


−q−1

0 −q−1
0 qm−1

q−1
0 q1 q−1

0 q−1
0 q1 q−1

0 qm−1 − q−1
0


and

D =


−q−1

0 qm−2 . . . −q−1
0 q1

q−1
0 q1 q−1

0 qm−2 − q−1
0 qm−1 . . .

(
q−1

0 q1

)2
− q−1

0 q2

 .
For t = 2, Theorem 5.5 implies

C2
pr

=

[ m−2 2

2 0 C
m−2 I D

]
,where C =

[
Cpr (1 : 2,m) C2

pr
(1 : 2,m)

]
=

[
−q0 q0qm−1
−q1 q1qm−1 − q0

]
,

and

D =
[
Cpr (3 : m,m) C2

pr
(3 : m,m)

]
=


−q2 q2qm−1 − q1
−q3 q3qm−1 − q2
...

...
−qm−1 (qm−1)2

− qm−2

 ,

C2
p̃r

=

[ m−2 2

2 0 C
m−2 I D

]
,where C =

[
−q0 q0 qm−1
−q1 q1 qm−1 − q0

]
and D =


−q2 q2 qm−1 − q1
−q3 q3 qm−1 − q2
...

...
−qm−1

(
qm−1

)2
− qm−2

 ,

C2
qr

=

[ m−2 2

2 0 C
m−2 I D

]
,where

C =

[
−q−1

0 q−1
0 q1q−1

0
−qm−1q−1

0 qm−1q−1
0 q1q−1

0 − q−1
0

]
and D =


−qm−2q−1

0 qm−2q−1
0 q1q−1

0 − qm−1q−1
0

...
...

−q1q−1
0 (q1q−1

0 )2
− q2q−1

0

 ,

C2
q̃r

=

[ m−2 2

2 0 C
m−2 I D

]
,where

C =


−q−1

0 q−1
0 q1q−1

0

−qm−1q−1
0 qm−1q−1

0 q1q−1
0 − q−1

0

 and D =


−qm−2q−1

0 qm−2q−1
0 q1q−1

0 − qm−1q−1
0

...
...

−q1q−1
0

(
q1q−1

0

)2
− q2q−1

0

 .
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[25] A. M. Ostrowski, Über die determinanten mit uberwiegender hauptdiagonale, Comment. Math. Helv. 10(1937), 69–96.
[26] R. Pereira, P. Rocha, On the determinant of quaternionic polynomial matrices and its application to system stability, Math.

Methods Appl. Sci. 31(2008), 99–122.
[27] R. Pereira, P. Rocha, and P. Vettori, Algebraic tools for the study of quaternionic behavioral systems, Linear Algebra Appl.

400(2005), 121–140.
[28] A. Pogorui, M. Shapiro, On the structure of the set of zeros of quaternionic polynomials, Complex Var. and Elliptic Funct. 49(2004),

379–389.
[29] L. Rodman, Pairs of hermitian and skew hermitian quaternionic matrices canonical forms and their applications, Linear Algebra

Appl. 429(2008), 981–1019.
[30] L. Rodman, Stability of invariant subspaces of quaternion matrices, Complex Anal. Oper. Theory 6(5)(2012), 1069–1119.
[31] L. Rodman, Topics in Quaternion Linear Algebra, Princeton University Press, Princeton (NJ), 2014.
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