# Trees with Equal Total Domination and 2-Rainbow Domination Numbers 

Zehui Shao ${ }^{\text {a }}$, Seyed Mahmoud Sheikholeslami ${ }^{\text {b }}$, Bo Wang ${ }^{\text {c }}$, Pu Wu ${ }^{\text {a }}$, Xiaosong Zhang ${ }^{\text {d }}$<br>${ }^{a}$ Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China<br>${ }^{b}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran<br>${ }^{\text {c School of Information Science and Engineering, Chengdu University, Chengdu, 610106, China }}$<br>${ }^{d}$ Center for Cyber Security, University of Electronic Science and Technology of China, Chengdu 611731, China


#### Abstract

A 2-rainbow dominating function (2RDF) of a graph $G$ is a function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ such that for each $v \in V(G)$ with $f(v)=\emptyset$ we have $\bigcup_{u \in N(v)} f(u)=\{1,2\}$. For a 2RDF $f$ of a graph $G$, the weight $w(f)$ of $f$ is defined as $w(f)=\sum_{v \in V(G)}|f(v)|$. The minimum weight over all 2RDFs of $G$ is called the 2-rainbow domination number of $G$, which is denoted by $\gamma_{r 2}(G)$. A subset $S$ of vertices of a graph $G$ without isolated vertices, is a total dominating set of $G$ if every vertex in $V(G)$ has a neighbor in $S$. The total domination number $\gamma_{t}(G)$ is the minimum cardinality of a total dominating set of $G$. Chellali, Haynes and Hedetniemi conjectured that $\gamma_{t}(G) \leq \gamma_{r 2}(G)$ [M. Chellali, T.W. Haynes and S.T. Hedetniemi, Bounds on weak Roman and 2-rainbow domination numbers, Discrete Appl. Math. 178 (2014), 27-32.], and later Furuya confirmed the conjecture [M. Furuya, A note on total domination and 2-rainbow domination in graphs, Discrete Appl. Math. 184 (2015), 229-230.]. In this paper, we provide a constructive characterization of trees $T$ with $\gamma_{r 2}(T)=\gamma_{t}(T)$.


## 1. Introduction

In this paper, we shall only consider graphs without multiple edges or loops or isolated vertices. Let $G$ be a graph, $S \subseteq V(G), v \in V(G)$, the open neighborhood of $v$ in $S$ is denoted by $N_{S}(v)$. That is to say $N_{S}(v)=\{u \mid u v \in E(G), u \in S\}$. The closed neighborhood $N_{S}[v]$ of $v$ in $S$ is defined as $N_{S}[v]=\{v\} \cup N_{S}(v)$. If $S=V(G)$, then $N_{S}(v)$ and $N_{S}[v]$ are denoted by $N(v)$ and $N[v]$, respectively. The degree of $v$ is the number of neighbors of $v$ and it is denoted by $\operatorname{deg}(v)$, i.e. $\operatorname{deg}(v)=|N(v)|$. A leaf of $G$ is a vertex with degree one in $G$ and a vertex that has a leaf neighbor is called a support vertex. The set of leaf neighbors of a vertex $v$ is denoted by $L(v)$. A strong support vertex is a support vertex adjacent to at least two leaves. An end support vertex is a support vertex whose all neighbors with exception at most one are leaves. We denote by $P_{n}$ the path on $n$ vertices. A pendant path $P$ of a graph $G$ is an induced path such that one of end points has degree one in $G$, and its other end point is the only vertex of $P$ adjacent to some vertex in $G-P$. The distance $d_{G}(u, v)$ between two vertices $u$ and $v$ in a connected graph $G$ is the length of a shortest $u v$-path in $G$. The diameter of a graph $G$, denoted by diam $(G)$, is the greatest distance between two vertices of $G$. A double star is a tree

[^0]with exactly two vertices that are not leaves. For a vertex $v$ in a rooted tree $T$, let $C(v)$ denotes the set of children of $v, D(v)$ denotes the set of descendants of $v$ and $D[v]=D(v) \cup\{v\}$. Also, the depth of $v, \operatorname{depth}(v)$, is the largest distance from $v$ to a vertex in $D(v)$. The maximal subtree at $v$ is the subtree of $T$ induced by $D(v) \cup\{v\}$, and is denoted by $T_{v}$.

In a graph $G$, a vertex is said to dominate all vertices adjacent to it. A total dominating set (TDS) in a graph $G$ is a subset $S \subseteq V(G)$ such that each vertex in $V(G)$ is dominated by at least a vertex in $S$, that is $N(S)=V(G)$. The total domination number $\gamma_{t}(G)$ is the minimum cardinality of a total dominating set of $G$. A TDS with cardinality $\gamma_{t}(G)$ is called a $\gamma_{t}$-set of $G$ (or $\gamma_{t}(G)$-set). The total domination number was introduced by Cockayne, Dawes and Hedetniemi [5] and is now well studied in graph theory. The literatures on this subject has been surveyed and detailed in the book by Henning and Yeo [10].

A 2-rainbow dominating function (2RDF) of a graph $G$ is a function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ such that for each $v \in V(G)$ with $f(v)=\emptyset$ we have $\bigcup_{u \in N(v)} f(u)=\{1,2\}$. For a 2RDF $f$ of a graph $G$, the weight $w(f)$ of $f$ is defined as $w(f)=\sum_{v \in V(G)}|f(v)|$. The minimum weight over all 2 RDFs of $G$ is called the 2 -rainbow domination number of $G$, and is denoted by $\gamma_{r 2}(G)$. A 2RDF with weight $\gamma_{r 2}(G)$ is called a $\gamma_{r_{2}}$-function of $G$ or a $\gamma_{12}(G)$-function. The rainbow domination number was introduced by Brešar, Henning, and Rall [1] and has been studied by several authors (see for example $[3,6,11,13,14]$ ).

Chellali, Haynes and Hedetniemi [4] investigated difference between many domination-like parameters and they conjectured that $\gamma_{t}(G) \leq \gamma_{r 2}(G)$ for any graph $G$ without isolated vertices. Later, Furuya [7] confirmed this conjecture. A natural problem that may arise is the characterization of graphs (or trees) $G$ with $\gamma_{t}(G)=\gamma_{12}(G)$. In this paper, we provide a constructive characterization of trees $T$ with $\gamma_{12}(T)=\gamma_{t}(T)$.

We make use of the following results in this paper.
Observation 1.1. ([6]) Let $G$ be a connected graph. If there is a path $v_{3} v_{2} v_{1}$ in $G$ with $\operatorname{deg}\left(v_{2}\right)=2$ and $\operatorname{deg}\left(v_{1}\right)=1$, then $G$ has a $\gamma_{r 2}(G)$-function $f$ such that $f\left(v_{1}\right)=\{1\}$ and $2 \in f\left(v_{3}\right)$.
Observation 1.2. Let $H$ be an induced subgraph of a graph $G$ such that $G$ and $H$ have no isolated vertices. If $\gamma_{r 2}(H)=\gamma_{t}(H), \gamma_{t}(G) \geq \gamma_{t}(H)+s$ and $\gamma_{r 2}(G) \leq \gamma_{r 2}(H)+s$ for some positive integer $s$, then $\gamma_{12}(G)=\gamma_{t}(G)$.
Proof. It follows from the assumptions and the fact $\gamma_{t}(G) \leq \gamma_{12}(G)$ that

$$
\gamma_{t}(G) \geq \gamma_{t}(H)+s=\gamma_{r 2}(H)+s \geq \gamma_{r 2}(G) \geq \gamma_{t}(G)
$$

and this leads to the result.
Observation 1.3. Let $H$ be an induced subgraph of a graph $G$ such that $G$ and $H$ have no isolated. If $\gamma_{r 2}(G)=\gamma_{t}(G)$, $\gamma_{t}(G) \leq \gamma_{t}(H)+s$ and $\gamma_{r 2}(G) \geq \gamma_{r 2}(H)+s$ for some positive integer $s$, then $\gamma_{r 2}(H)=\gamma_{t}(H)$.
Proof. By assumptions and the fact $\gamma_{t}(H) \leq \gamma_{r 2}(H)$, we have

$$
\gamma_{t}(G) \leq \gamma_{t}(H)+s \leq \gamma_{r 2}(H)+s \leq \gamma_{r 2}(G)=\gamma_{t}(G)
$$

and this leads to the result.

## 2. Trees with equal total domination and 2 -rainbow domination numbers

In this section, we provide a constructive characterization of all trees with $\gamma_{t}(T)=\gamma_{r 2}(T)$. We begin with three definitions.

Definition 2.1. For a tree $T$ and $v \in V(T)$, let

$$
\gamma_{t}(T, v)=\min \{|S|: S \subseteq V(T) \text { and each vertex } w \neq v \text { has a neighbor in } S\} .
$$

Clearly $\gamma_{t}(T, v) \leq \gamma_{t}(v)$ for each $v \in V(T)$. We define

$$
W_{T}^{1}=\left\{v \mid \gamma_{t}(T, v)=\gamma_{t}(T)\right\} .
$$

Definition 2.2. For a tree $T$ and $v \in V(T)$, we say $v$ has property $P$ in $T$ if there exists a $\gamma_{r 2}(T)$-function $f$ such that $f(v) \neq \emptyset$. Define

$$
W_{T}^{2}=\{v \mid v \text { has property } P \text { in } T\} .
$$

Definition 2.3. An extended spider with $t(t \geq 2)$ feet is a tree obtained from star $K_{1, t}$ by subdividing every edge of $K_{1, t}$ twice. The center of star is called the head of spider.

In order to presenting our constructive characterization, we define a family of trees as follows. Let $\mathcal{T}$ be the family of trees $T$ that can be obtained from a sequence $T_{1}, T_{2}, \cdots, T_{k}$ of trees for some $k \geq 1$, where $T_{1}$ is $P_{2}$ or $P_{3}$ and $T=T_{k}$. If $k \geq 2, T_{i+1}$ can be obtained from $T_{i}$ by one of the following ten operations.

Operation $\mathcal{O}_{1}$ : If $x \in V\left(T_{i}\right)$ and $x$ is a strong support vertex, then $O_{1}$ adds a vertex $y$ and an edge $x y$ to obtain $T_{i+1}$.

Operation $O_{2}:$ If $x \in W_{T_{i}}^{1}$, then $O_{2}$ adds a star $K_{1, s}(s \geq 3)$ with a leaf $c$ and an edge $x c$ to obtain $T_{i+1}$ (see Fig. 1 (a));

Operation $O_{3}$ : If $x \in V\left(T_{i}\right)$ and there is a pendant path $x y z$, then $O_{3}$ adds a pendant path $x b a$ to obtain $T_{i+1}$ (see Fig. 1 (b));

Operation $\mathcal{O}_{4}$ : If $x \in V\left(T_{i}\right)$ and $x$ is adjacent to the center of a pendant star $K_{1, s}(s \geq 1)$, then $O_{4}$ adds a pendant path $x c b a$ to obtain $T_{i+1}$ (see Fig. 1 (c));

Operation $O_{5}$ : If $T_{i}$ contains a strong support vertex $z$ and a pendant path $z y x$, then $O_{5}$ adds a pendant edge $x a$ to obtain $T_{i+1}$ (see Fig. 1 (d));

Operation $O_{6}:$ If $x \in W_{T_{i}}^{1}$, then $O_{6}$ adds a path $P_{5}=a b c d e$ and an edge $x d$ to obtain $T_{i+1}$ (see Fig. 1 (e));

Operation $O_{7}:$ If $x \in V\left(T_{i}\right)$, then $O_{7}$ adds an extended spider headed at $a$ with $k \geq 2$ feet and joins $x$ to $a$ for obtaining $T_{i+1}$ (see Fig. 1 (f));

Operation $O_{8}:$ If $x \in W_{T_{i}}^{2}$, then $O_{8}$ adds a pendant path $x d c b a$ to obtain $T_{i+1}$ (see Fig. $1(\mathrm{~g})$ ).

Operation $O_{9}$ : If $x \in W_{T_{i}}^{1}$ and $x$ is a strong support vertex, then $O_{9}$ adds a pendant path $x a b$ to obtain $T_{i+1}$ (see Fig. 1 (h)).

Operation $O_{10}$ : If $x \in T_{i}$ is a support vertex and there is a pendant path $x x_{3} x_{2} x_{1}$, then $O_{10}$ adds a pendant path $x a b c$ to obtain $T_{i+1}$ (see Fig. 1 (i)).


The proof of the first lemma is trivial.
Lemma 2.4. If $T_{i}$ is a tree with $\gamma_{t}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and $T_{i+1}$ is a tree obtained from $T_{i}$ by Operation $\boldsymbol{O}_{1}$, then $\gamma_{t}\left(T_{i+1}\right)=$ $\gamma_{r 2}\left(T_{i+1}\right)$.

Lemma 2.5. If $T_{i}$ is a tree with $\gamma_{t}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and $T_{i+1}$ is a tree obtained from $T_{i}$ by Operation $O_{2}$, then $\gamma_{t}\left(T_{i+1}\right)=$ $\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. Let $f$ be a $\gamma_{r 2}$-function of $T_{i}$, we can obtain a 2 RDF $f^{\prime}$ of $T_{i+1}$ by letting $f^{\prime}(t)=f(t)$ for $t \in V\left(T_{i}\right)$, $f^{\prime}(v)=\{1,2\}, f^{\prime}(u)=\emptyset$ for $u \in N(v)$. Hence $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+2$. On the other hand, let $S$ be a $\gamma_{t}\left(T_{i+1}\right)$-set containing no leaves and let $v$ be the central vertex of the star added by Operation $O_{2}$. Then we have $v, c \in S$ and clearly $S-\{c, v\}$ is a subset of vertices such that each vertex $w \in V\left(T_{i}\right)-\{x\}$ has a neighbor in $S-\{v, c\}$. Since $x \in W_{T_{i}}^{1}$, we have $|S-\{v, c\}| \geq \gamma_{t}\left(T_{i}\right)$ and so $\gamma_{t}\left(T_{i+1}\right) \geq \gamma_{t}\left(T_{i}\right)+2$. Now the result follows from Observation 1.2.

Lemma 2.6. If $T_{i}$ is a tree with $\gamma_{t}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and $T_{i+1}$ is a tree obtained from $T_{i}$ by Operation $O_{3}$, then $\gamma_{t}\left(T_{i+1}\right)=$ $\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. By Observation 1.1, there exists a $\gamma_{r 2}$-function $f$ of $T_{i}$ such that $f(z)=\{1\}$ and $2 \in f(x)$, now we can extend $f$ to a 2RDF $f^{\prime}$ of $T_{i+1}$ by letting $f^{\prime}(a)=\{1\}$ and $f^{\prime}(b)=\emptyset$. Hence we have $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+1$. On the other hand, if $S$ is a $\gamma_{t}\left(T_{i+1}\right)$-set containing no leaves, then $y, x, b \in S$ and it follows that $S-\{b\}$ is a TDS of $T_{i}$ yielding $\gamma_{t}\left(T_{i+1}\right) \geq \gamma_{t}\left(T_{i}\right)+1$. By Observation 1.2, we have $\gamma_{t}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$ as desired.

Lemma 2.7. If $T_{i}$ is a tree with $\gamma_{t}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and $T_{i+1}$ is a tree obtained from $T_{i}$ by Operation $\boldsymbol{O}_{4}$, then $\gamma_{t}\left(T_{i+1}\right)=$ $\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. By observation 1.2, it is enough to show that $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+2$ and $\gamma_{t}\left(T_{i+1}\right) \geq \gamma_{t}\left(T_{i}\right)+2$. Clearly any $\gamma_{r 2}\left(T_{i}\right)$-function $f$ can be extended to a 2RDF of $T_{i+1}$ by assigning $\{1\}$ to $a, \emptyset$ to $b$ and $\{2\}$ to $c$ and this implies that $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+2$. Now let $S$ be a $\gamma_{t}\left(T_{i+1}\right)$-set containing no leaves. Then we have $b, c, x, y \in S$ where $y$ is the center of the star $K_{1, s}$. Then obviously $S-\{b, c\}$ is a TDS of $T_{i}$ of size $\gamma_{t}\left(T_{i+1}\right)-2$ and so $\gamma_{t}\left(T_{i+1}\right) \geq \gamma_{t}\left(T_{i}\right)+2$. This completes the proof.

Lemma 2.8. If $T_{i}$ is a tree with $\gamma_{t}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and $T_{i+1}$ is a tree obtained from $T_{i}$ by Operation $\boldsymbol{O}_{5}$, then $\gamma_{t}\left(T_{i+1}\right)=$ $\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. By observation 1.2, we need only to show that $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+1$ and $\gamma_{t}\left(T_{i+1}\right) \geq \gamma_{t}\left(T_{i}\right)+1$. By Observation 1.1, there exists a $\gamma_{r 2}\left(T_{i}\right)$-function $f$ such that $f(x)=\{1\}$. Then the function $g: V\left(T_{i+1}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g(a)=\{1\}$ and $g(z)=f(z)$ for $z \in V\left(T_{i+1}\right)-\{a\}$ is a 2 RDF of $T_{i+1}$ of weight $\gamma_{r 2}\left(T_{i}\right)+1$ and so $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+1$.

Now let $S$ be a $\gamma_{t}\left(T_{i+1}\right)$-set which contains no leaf. Then we must have $x, y, z \in S$ and clearly $S-\{x\}$ is a TDS of $T_{i}$. Therefore $\gamma_{t}\left(T_{i+1}\right) \geq \gamma_{t}\left(T_{i}\right)+1$ and the proof is complete.

Lemma 2.9. If $T_{i}$ is a tree with $\gamma_{t}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and $T_{i+1}$ is a tree obtained from $T_{i}$ by Operation $\boldsymbol{O}_{6}$, then $\gamma_{t}\left(T_{i+1}\right)=$ $\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. We show that $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+3$ and $\gamma_{t}\left(T_{i+1}\right) \geq \gamma_{t}\left(T_{i}\right)+3$. Let $f$ be an arbitrary $\gamma_{r 2}$-function of $T_{i}$ and define $g: V\left(T_{i+1}\right) \rightarrow \mathcal{P}\left(\{1,2\}\right.$ by $g(a)=g(e)=\{1\}, g(c)=\{2\}, g(b)=g(d)=\emptyset$ and $g(z)=f(z)$ for $z \in V\left(T_{i}\right)$. Clearly $g$ is a 2RDF of $T_{i+1}$ of weight $\gamma_{r 2}\left(T_{i}\right)+3$ and hence $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+3$.

Now let $S$ be a $\gamma_{t}\left(T_{i+1}\right)$-set which contains no leaf. Then we have $b, c, d \in S$. It is not hard to see that $S^{\prime}=S-\{b, c, d\}$ is a set of vertices of $T_{i}$ such that any vertex $w \neq x$ has a neighbor in $S^{\prime}$. Since $x \in W_{T_{i}^{\prime}}^{1}$, we have $\left|S^{\prime}\right| \geq \gamma_{t}\left(T_{i}\right)$ and this implies that $\gamma_{t}\left(T_{i+1}\right) \geq \gamma_{t}\left(T_{i}\right)+3$. Now the result follows by Observation 1.2.

Lemma 2.10. If $T_{i}$ is a tree with $\gamma_{t}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and $T_{i+1}$ is a tree obtained from $T_{i}$ by Operation $O_{7}$, then $\gamma_{t}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. Let $k \geq 2$ and $T_{1}$ be the extended spider with $k$ feet added by Operation $O_{7}$. Assume $T_{1}$ headed at $a$ and its feet are $a_{i 1} a_{i 2} a_{i 3}$ with $a_{i 3} a \in E\left(T_{1}\right)$ for $1 \leq i \leq k$. Let $f$ be a $\gamma_{r 2}$-function of $T_{i}$, we can obtain a 2RDF $f^{\prime}$ of $T_{i+1}$ by letting $f^{\prime}(a)=\emptyset, f^{\prime}\left(a_{i 1}\right)=\{2\}, f^{\prime}\left(a_{i 2}\right)=\emptyset$ and $f^{\prime}\left(a_{i 3}\right)=\{1\}$ for $i=1,2, \ldots, k$. Hence $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+2 k$. Now we show that $\gamma_{t}\left(T_{i}\right) \leq \gamma_{t}\left(T_{i+1}\right)-2 k$. Let $S$ be a $\gamma_{t}\left(T_{i+1}\right)$-set containing no leaves. Then we must have $a_{i 2}, a_{i 3} \in S$ for $i=1,2, \ldots, k$. If $a \notin S$, then $S^{\prime}=S-\left\{a_{i 2}, a_{i 3} \mid i=1, \ldots, k\right\}$ is a TDS of $T_{i}$ of weight at most $\gamma_{t}\left(T_{i+1}\right)-2 k$ yielding $\gamma_{t}\left(T_{i}\right) \leq \gamma_{t}\left(T_{i+1}\right)-2 k$. Suppose that $a \in S$. This implies that $u \notin S$ for each $u \in N(x) \backslash\{a\}$. Then $S^{\prime}=\left(S-\left\{a, a_{i 2}, a_{i 3} \mid i=1, \ldots, k\right\}\right) \cup\{u\}$ for each $u \in N(x) \backslash\{a\}$ is clearly a TDS of $T_{i}$ of size at most $\gamma_{r 2}\left(T_{i+1}\right)-2 k$. Thus $\gamma_{t}\left(T_{i}\right) \leq \gamma_{t}\left(T_{i+1}\right)-2 k$. We now deduce from Observation 1.2 that $\gamma_{r 2}\left(T_{i+1}\right)=\gamma_{t}\left(T_{i+1}\right)$ and the proof is complete.

Lemma 2.11. If $T_{i}$ is a tree with $\gamma_{t}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and $T_{i+1}$ is a tree obtained from $T_{i}$ by Operation $\mathcal{O}_{8}$, then $\gamma_{t}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$.
Proof. Let $f$ be a $\gamma_{r 2}$-function of $T_{i}$ such that $f(x) \neq \emptyset$ (since $x \in W_{T}^{2}$, so such a function exists). Assume without loss of generality that $1 \in f(x)$. Then $f$ can be extended to a 2 RDF $f^{\prime}$ of $T_{i+1}$ by letting $f^{\prime}(a)=\{1\}$, $f^{\prime}(b)=f^{\prime}(d)=\emptyset$ and $f^{\prime}(c)=\{2\}$. Then we have $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+2$.

On the other hand, let $S$ be a $\gamma_{t}\left(T_{i+1}\right)$-set containing no leaves. Then we have $b, c \in S$. We claim that there exists a TDS $S^{\prime}$ of $G$ of size at most $|S|$ such that $b, c \in S^{\prime}$ and $a, d \notin S^{\prime}$. If $d \notin S$, then let $S^{\prime}=S$. Assume that $d \in S$. This implies that $u \notin S$ for each $u \in N(x) \backslash\{d\}$. Now let $S^{\prime}=(S-\{d\}) \cup\{u\}$ for some $u \in N(x) \backslash\{d\}$. Clearly $S^{\prime}$ is a TDS of $T_{i+1}$ of size at most $|S|$ satisfying our claim. Then $S^{\prime}-\{b, c\}$ is a TDS of $T_{i}$ of size at most $\gamma_{r 2}\left(T_{i+1}\right)-2$. This yields $\gamma_{t}\left(T_{i}\right) \leq\left|S^{\prime}\right|-2 \leq|S|-2=\gamma_{t}\left(T_{i+1}\right)-2$. Therefore, $\gamma_{t}\left(T_{i+1}\right) \geq \gamma_{t}\left(T_{i}\right)+2$ and the result follows by Observation 1.2.

Lemma 2.12. If $T_{i}$ is a tree with $\gamma_{t}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and $T_{i+1}$ is a tree obtained from $T_{i}$ by Operation $O_{9}$, then $\gamma_{t}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. Let $f$ be a $\gamma_{r 2}$-function of $T_{i}$ that assigns $\{1,2\}$ to each strong support vertex. We can obtain a 2RDF $f^{\prime}$ of $T_{i+1}$ by letting $f^{\prime}(t)=f(t)$ for $t \in V\left(T_{i}\right), f^{\prime}(b)=\{1\}, f^{\prime}(a)=\emptyset$. Hence $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+1$. Now let $S$ be a $\gamma_{t}\left(T_{i+1}\right)$-set containing no leaves. Then we must have $x, a \in S$ and clearly $S-\{a\}$ is a set of vertices of $T_{i}$ such that each vertex $w \in V\left(T_{i}\right)-\{x\}$ has a neighbor in $S-\{a\}$. Since $x \in W_{T_{i}}^{1}$, we have $|S-\{a\}| \geq \gamma_{t}\left(T_{i}\right)$ and so $\gamma_{t}\left(T_{i+1}\right) \geq \gamma_{t}\left(T_{i}\right)+1$. Now the result follows from Observation 1.2.

Lemma 2.13. If $T_{i}$ is a tree with $\gamma_{t}\left(T_{i}\right)=\gamma_{r 2}\left(T_{i}\right)$ and $T_{i+1}$ is a tree obtained from $T_{i}$ by Operation $\mathcal{O}_{10}$, then $\gamma_{t}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$.

Proof. Assume $S$ is an arbitrary $\gamma_{t}\left(T_{i+1}\right)$-set containing no leaves. Then we have $a, b, x_{3}, x_{2}, x \in S$ and clearly $S-\{a, b\}$ is a TDS of $T_{i}$ yielding $\gamma_{t}\left(T_{i+1}\right) \geq \gamma_{t}\left(T_{i}\right)+2$. On the other hand, any $\gamma_{r 2}\left(T_{i}\right)$-function can be extended to a 2RDF of $T_{i+1}$ by assigning $\{1\}$ to $a,\{2\}$ to $c$ and $\emptyset$ to $b$, and hence $\gamma_{r 2}\left(T_{i+1}\right) \leq \gamma_{r 2}\left(T_{i}\right)+2$. Thus $\gamma_{t}\left(T_{i+1}\right)=\gamma_{r 2}\left(T_{i+1}\right)$ by Observation 1.2.
Theorem 2.14. If $T \in \mathcal{T}$, then $\gamma_{r 2}(T)=\gamma_{t}(T)$.
Proof. Obviously, if $T$ is $P_{2}$ or $P_{3}$, then $\gamma_{r 2}(T)=\gamma_{t}(T)$. Now assume that $T \in \mathcal{T}$, then there exists a sequence of trees $T_{1}, T_{2}, \ldots, T_{k}(k \geq 1)$ such that $T_{1}$ is $P_{2}$ or $P_{3}$, and if $k \geq 2$, then $T_{i+1}$ can be obtained recursively from $T_{i}$ by Operation $O_{1}, O_{2}, \ldots, O_{10}$ for $i=1,2, \ldots, k-1$. We apply induction on the number of operations performed to construct $T$. It can be seen that if $k=1$, the result holds. Suppose that the result holds for each tree $T \in \mathcal{T}$ which can be obtained from a sequence of operations of length $k-1$ and let $T^{\prime}=T_{k-1}$. By the induction hypothesis, we have $\gamma_{r 2}\left(T^{\prime}\right)=\gamma_{t}\left(T^{\prime}\right)$. Since $T=T_{k}$ is obtained by one of the Operations $O_{1}, O_{2}, \ldots, O_{10}$ from $T^{\prime}$, we conclude from above Lemmas that $\gamma_{r 2}(T)=\gamma_{t}(T)$.

Observation 2.15. If $T$ is a double star, then $\gamma_{r 2}(T) \neq \gamma_{t}(T)$.
Theorem 2.16. Let $T$ be a tree of order $n \geq 2$. Then $\gamma_{r 2}(T)=\gamma_{t}(T)$ if and only if $T \in \mathcal{T}$.
Proof. The sufficiency follows from Theorem 2.14. In order to prove the necessity we proceed by induction on $n$. If $n=2,3$, then the only trees $T$ of order 2,3 and $\gamma_{r 2}(T)=\gamma_{t}(T)$ are $P_{2}, P_{3} \in \mathcal{T}$. Let $n \geq 4$ and let the statement holds for all trees of order less than $n$. Assume that $T$ is a tree of order $n$ with $\gamma_{r 2}(T)=\gamma_{t}(T)$. If $\operatorname{diam}(T)=2$ then $T$ is a star and $T$ can be obtained from $P_{3}$ by applying Operation $O_{1}$ and so $T \in \mathcal{T}$. Let $\operatorname{diam}(T) \geq 3$. By Observation 2.15, we have $\operatorname{diam}(T) \geq 4$.

Let $v_{1} v_{2} \ldots v_{k}(k \geq 5)$ be a diametral path in $T$ such that $\left|L_{v_{2}}\right|$ is as large as possible and root $T$ at $v_{k}$. Also suppose among paths with this property we choose a path such that $\left|L_{v_{3}}\right|$ is as large as possible. We consider two cases.
Case 1. $\operatorname{deg}\left(v_{2}\right) \geq 3$.
We claim that $\operatorname{deg}\left(v_{3}\right)=2$. Assume, to the contrary, that $\operatorname{deg}\left(v_{3}\right) \geq 3$. We distinguish four subcases.
Subcase 1.1. $v_{3}$ is a strong support vertex or is adjacent to a strong support vertex other than $v_{2}, v_{4}$.
Let $T^{\prime}=T-T_{v_{2}}$. Then any $\gamma_{t}\left(T^{\prime}\right)$-set containing no leaves contains $v_{3}$ and such a $\gamma_{t}\left(T^{\prime}\right)$-set can be extended to a TDS of $T$ by adding $v_{2}$ and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+1$. Suppose now $f$ is a $\gamma_{r 2}(T)$-function. We may assume that $f$ assigns $\{1,2\}$ to each strong support vertex. Hence the function $f$, restricted to $T^{\prime}$ is a 2RDF and so $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+2$. Thus $\gamma_{t}\left(T^{\prime}\right)+2 \leq \gamma_{r 2}\left(T^{\prime}\right)+2 \leq \gamma_{r 2}(T)=\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+1$ which is a contradiction.

Subcase 1.2. $v_{3}$ is adjacent to a support vertex of degree 2 other than $v_{4}$.
Let $T^{\prime}=T-T_{v_{2}}$. As above we have $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+1$. Let $f$ be a $\gamma_{r 2}(T)$-function that assigns $\{1,2\}$ to each strong support vertex. By Observation 1.1, we may assume that $f\left(v_{3}\right) \neq \emptyset$. Then the function $f$, restricted to $T^{\prime}$ is a $2 R D F$ and so $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+2$. Now we get a contradiction as above.

Subcase 1.3. $\operatorname{deg}\left(v_{3}\right)=3$ and $v_{3}$ is adjacent to a leaf $u$.
Let $T^{\prime}=T-T_{v_{3}}$. Then any $\gamma_{t}\left(T^{\prime}\right)$-set can be extended to a TDS of $T$ by adding $v_{3}, v_{2}$ and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$. Let $f$ be a $\gamma_{r 2}(T)$-function that assigns $\{1,2\}$ to each strong support vertex. Clearly $\left|f\left(v_{3}\right)\right|+|f(u)| \geq 1$. If $\left|f\left(v_{3}\right)\right|+|f(u)| \geq 2$, then the function $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g\left(v_{4}\right)=\{1\} \cup f\left(v_{4}\right)$ and $g(z)=f(z)$ for $z \in V\left(T^{\prime}\right)-\left\{v_{4}\right\}$ is a $2 R D F$ of $T^{\prime}$ of weight $\omega(f)-3$ and so $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+3$. If $\left|f\left(v_{3}\right)\right|+|f(u)|=1$, then clearly $f\left(v_{3}\right)=\emptyset$ and the function $f$, restricted to $T^{\prime}$ is a 2 RDF of $T^{\prime}$ of weight $\omega(f)-3$ and so $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+3$. Thus $\gamma_{t}\left(T^{\prime}\right)+3 \leq \gamma_{r 2}\left(T^{\prime}\right)+3 \leq \gamma_{r 2}(T)=\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$ which is a contradiction.

Thus $\operatorname{deg}\left(v_{3}\right)=2$. Assume that $T^{\prime}=T-T_{v_{3}}$. Let $f$ be a $\gamma_{r 2}(T)$-function that assigns $\{1,2\}$ to each strong support vertex. Then the function $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g\left(v_{4}\right)=f\left(v_{3}\right) \cup f\left(v_{4}\right)$ and $g(z)=f(z)$ for $z \in V\left(T^{\prime}\right)-\left\{v_{4}\right\}$ is a 2 RDF of $T^{\prime}$ of weight $\omega(f)-2$ and so $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+2$. On the other hand, any $\gamma_{t}\left(T^{\prime}\right)$-set can be extended to a TDS of $T$ by adding $v_{3}, v_{2}$ and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$. It follows from Observation 1.3 that $\gamma_{r 2}\left(T^{\prime}\right)=\gamma_{t}\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. Now we show that $v_{4} \in W_{T^{\prime}}^{1}$. Assume, to
the contrary, that $\gamma_{t}\left(T^{\prime}, v_{4}\right)<\gamma_{t}\left(T^{\prime}\right)$. Let $S \subseteq V\left(T^{\prime}\right)$ be a set of vertices of size $\gamma_{t}\left(T^{\prime}, v_{4}\right)$ such that each vertex $w \in V\left(T^{\prime}\right)-\left\{v_{4}\right\}$ has a neighbor in $S$. Then $S \cup\left\{v_{2}, v_{3}\right\}$ is a total dominating set of $T$ of size less than $\gamma_{t}(T)$ which is a contradiction. Thus $v_{4} \in W_{T^{\prime}}^{1}$ and so $T \in \mathcal{T}$ since it can be obtained from $T^{\prime}$ by Operation $O_{2}$.
Case 2. $\operatorname{deg}\left(v_{2}\right)=2$.
By the choice of diametral path, we may assume that every end-support vertex on a diametral path has degree 2. In particular, $\operatorname{deg}\left(v_{k-1}\right)=2$. We consider the following subcases.

Subcase 2.1. $\operatorname{deg}\left(v_{3}\right) \geq 3$ and there is a pendant path $v_{3} z_{2} z_{1}$ in $T$ where $z_{2} \notin\left\{v_{2}, v_{4}\right\}$.
Then $\operatorname{deg}\left(z_{2}\right)=2$ and $\operatorname{deg}\left(z_{1}\right)=1$. Let $T^{\prime}=T-T_{v_{2}}$. Clearly any $\gamma_{t}\left(T^{\prime}\right)$-set containing no leaf can be extended to a TDS of $T$ by adding $v_{2}$ and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+1$. Applying Observation 1.1, it is easy to see that $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+1$ and so $\gamma_{t}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$ by Observation 1.3. It follows from the induction hypothesis that $T^{\prime} \in \mathcal{T}$. Now since $T$ can be obtained from $T^{\prime}$ by Operation $O_{3}$, we deduce that $T \in \mathcal{T}$.

Subcase 2.2. $\operatorname{deg}\left(v_{3}\right) \geq 4$ and all neighbors of $v_{3}$ with exception $v_{2}, v_{4}$, are leaves.
Let $T^{\prime}=T-T_{v_{2}}$. Suppose $f$ is a $\gamma_{r 2}(T)$-function that assigns $\{1,2\}$ to each strong support vertex. By Observation 1.1, we may assume that $f\left(v_{1}\right)=\{1\}$. Then the function $f$, restricted to $T^{\prime}$ is a 2 RDF of $T^{\prime}$ of weight at most $\omega(f)-1$ and so $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+1$. On the other hand, any $\gamma_{t}\left(T^{\prime}\right)$-set can be extended to a TDS of $T$ by adding $v_{2}$ and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+1$. By Observation 1.3, we obtain $\gamma_{t}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$. It follows from the induction hypothesis that $T^{\prime} \in \mathcal{T}$. Next we show that $v_{3} \in W_{T^{\prime}}^{1}$. Assume, to the contrary, that $\gamma_{t}\left(T^{\prime}, v_{3}\right)<\gamma_{t}\left(T^{\prime}\right)$ and let $S \subseteq V\left(T^{\prime}\right)$ be a set of vertices of $T^{\prime}$ of size $\gamma_{t}\left(T^{\prime}, v_{3}\right)$ such that each vertex $w \in V\left(T^{\prime}\right)-\left\{v_{3}\right\}$ has a neighbor in $S$. We note that $v_{3} \in S$. Then $S \cup\left\{v_{2}\right\}$ is a total dominating set of $T$ of size less than $\gamma_{t}(T)$ which is a contradiction. Thus $v_{3} \in W_{T^{\prime}}^{1}$ and so $T$ can be obtained from $T^{\prime}$ by Operation $O_{9}$. Therefore, $T \in \mathcal{T}$.

Subcase 2.3. $\operatorname{deg}\left(v_{3}\right)=3$ and $v_{3}$ is adjacent to a leaf $u$.
Since $\operatorname{deg}\left(v_{k-1}\right)=2$, we have $\operatorname{diam}(T) \geq 5$. We show that this case is impossible. Consider the following.

- $\operatorname{deg}\left(v_{4}\right)=2$.

Let $T^{\prime}=T-T_{v_{4}}$. Clearly, any $\gamma_{t}\left(T^{\prime}\right)$-set can be extended to a TDS of $T$ by adding $v_{2}, v_{3}$ and hence $\gamma_{t}(T) \leq$ $\gamma_{t}\left(T^{\prime}\right)+2$. On the other hand, if $f$ is a $\gamma_{r 2}(T)$-function, then obviously $|f(u)|+\left|f\left(v_{3}\right)\right|+\left|f\left(v_{2}\right)\right|+\left|f\left(v_{1}\right)\right| \geq 3$ and the function $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g\left(v_{5}\right)=f\left(v_{5}\right) \cup f\left(v_{4}\right)$ and $g(z)=f(z)$ for $z \in V\left(T^{\prime}\right)-\left\{v_{5}\right\}$, is a 2 RDF of $T^{\prime}$ of weight at most $\gamma_{r 2}(T)-3$. Therefore

$$
\gamma_{t}(T)=\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+3>\gamma_{t}\left(T^{\prime}\right)+2 \geq \gamma_{t}(T)
$$

which is a contradiction.

- $v_{4}$ is a strong support vertex.

Let $T^{\prime}=T-T_{v_{3}}$. Clearly, any $\gamma_{t}\left(T^{\prime}\right)$-set can be extended to a TDS of $T$ by adding $v_{2}, v_{3}$ and the restriction of any $\gamma_{r 2}(T)$-function assigning $\{1,2\}$ to each strong support vertex to $T^{\prime}$, is a 2 RDF of $T^{\prime}$ of weight at most $\gamma_{r 2}(T)-3$. Therefore $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$ and $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+3$ and we get a contradiction as above.

- $v_{4}$ is adjacent to an end support vertex.

Let $T^{\prime}=T-T_{v_{3}}$. It is not hard to see that $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$ and $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+3$ and this leads to a contradiction.

- $v_{4}$ has a neighbor $z_{3}$ other than $v_{3}, v_{5}$ such that $T_{z_{3}}=T_{v_{3}}$.

Let $T^{\prime}=T-T_{v_{3}}$. As above we have $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$. Now let $f$ be a $\gamma_{r 2}(T)$-function. Then obviously $\sum_{z \in V\left(T_{v_{3}}\right)}|f(z)| \geq 3$ and $\sum_{z \in V\left(T_{z_{3}}\right)}|f(z)| \geq 3$. Define $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ by $g\left(v_{1}\right)=\{1\}, g\left(v_{3}\right)=$ $\{1,2\}, g\left(v_{2}\right)=g(u)=\emptyset$ and $g(z)=f(z)$ for $z \in V\left(T^{\prime}\right)$. It is easy to see that $g$ is a $\gamma_{r 2}(T)$-function and the restriction of $g$ to $T^{\prime}$ is a 2RDF of $T^{\prime}$ of weight at most $\gamma_{r 2}(T)-3$. Thus $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+3$ and we obtain a contradiction as above.

- $\operatorname{deg}\left(v_{4}\right)=3$ and $v_{4}$ is adjacent to a leaf $w$ where $w \neq v_{5}$.

Let $T^{\prime}=T-T_{v_{4}}$. Clearly any $\gamma_{t}\left(T^{\prime}\right)$-set can be extended to a TDS of $T$ by adding $v_{2}, v_{3}, v_{4}$ and hence
$\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+3$. Now let $f$ be a $\gamma_{r 2}(T)$-function. It is easy to verify that $\sum_{z \in V\left(T_{v_{4}}\right)}|f(z)| \geq 5$ when $f\left(v_{4}\right) \neq \emptyset$. Define $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ by $g=f$ when $f\left(v_{4}\right)=\emptyset$ and by $g\left(v_{5}\right)=f\left(v_{5}\right) \cup\{1\}$ and $g(z)=f(z)$ for $z \in V\left(T^{\prime}\right)-\left\{v_{5}\right\}$. It is easy to see that $g$ is a 2 RDF of $T^{\prime}$ of weight at most $\gamma_{r 2}(T)-4$ and this implies that $\gamma_{12}(T) \geq \gamma_{12}\left(T^{\prime}\right)+4$. This leads to a contradiction as above.

- $\operatorname{deg}\left(v_{4}\right)=3$ and there is a pendant path $v_{4} z_{3} z_{2} z_{1}$ where $z_{3} \neq v_{5}$.

Let $T^{\prime}=T-T_{v_{4}}$. Clearly any $\gamma_{t}\left(T^{\prime}\right)$-set can be extended to a TDS of $T$ by adding $v_{2}, v_{3}, z_{3}, z_{2}$ and hence $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+4$. Now let $f$ be a $\gamma_{12}(T)$-function. It is easy to see that $\sum_{z \in V\left(T_{r_{3}}\right)}|f(z)| \geq 3$ and $\sum_{z \in V\left(T_{z_{3}}\right.}|f(z)| \geq 2$. Define $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ by $g\left(v_{5}\right)=f\left(v_{5}\right) \cup f\left(v_{4}\right)$ and $g(z)=f(z)$ for $z \in V\left(T^{\prime}\right)-\left\{v_{5}\right\}$. It is easy to see that $g$ is a 2 RDF of $T^{\prime}$ of weight at most $\gamma_{12}(T)-5$ and so $\gamma_{12}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+5$. Again we get a contradiction.

- There are two pendant paths $v_{4} z_{3} z_{2} z_{1}$ and $v_{4} y_{3} y_{2} y_{1}$ where $v_{5} \notin\left\{y_{3}, z_{3}\right\}$.

Let $T^{\prime}=T-T_{v_{3}}$. Clearly $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$. Now let $f$ be a $\gamma_{12}(T)$-function. It is easy to see that $\sum_{z \in V\left(T_{z_{3}}\right)}|f(z)| \geq 3, \sum_{z \in V\left(T_{y_{3}}\right.}|f(z)| \geq 2$ and $\sum_{z \in V\left(T_{z_{3}}\right.}|f(z)| \geq 2$. Define $g: V(T) \rightarrow \mathcal{P}(\{1,2\})$ by $g\left(y_{1}\right)=\{1\}, g\left(y_{3}\right)=\{2\}, g\left(z_{1}\right)=\{2\}, g\left(z_{3}\right)=\{1\}, g\left(y_{2}\right)=g\left(z_{2}\right)=\emptyset$ and $g(z)=f(z)$ otherwise. It is easy to see that $g$ is a $\gamma_{r 2}(T)$-function and the function $g$ restricted to $T^{\prime}$ is a 2 RDF of $T^{\prime}$ of weight at most $\gamma_{r 2}(T)-3$. Hence $\gamma_{12}(T) \geq \gamma_{12}\left(T^{\prime}\right)+3$ and we get a contradiction again.

Considering Subcases 2.1, 2.2 and 2.3 , we may assume that $\operatorname{deg}\left(v_{3}\right)=2$. If there exists a path $v_{4} z_{3} z_{2} z_{1}$ where $z_{4} \notin\left\{v_{3}, v_{5}\right\}$ in $T$, then by the choice of diametral path, we have $\operatorname{deg}\left(z_{3}\right)=\operatorname{deg}\left(z_{2}\right)=2$. If $\operatorname{diam}(T)=4$, then $T=P_{5}$ and $T \in \mathcal{T}$ since it can be obtained from $P_{3}$ by Operation $O_{3}$. Hence, we assume that $\operatorname{diam}(T) \geq 5$. We proceed with more cases.

Subcase 2.4. $\operatorname{deg}\left(v_{4}\right)=2$.
Let $T^{\prime}=T-T_{v_{4}}$. Clearly, every $\gamma_{t}\left(T^{\prime}\right)$-set can be extended to a TDS of $T$ by adding the vertices $v_{2}, v_{3}$ and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$. Next we show that $\gamma_{r 2}(T) \geq \gamma_{t 2}\left(T^{\prime}\right)+2$. Let $f$ be a $\gamma_{r 2}(T)$-function. By Observation 1.1, we may assume that $f\left(v_{1}\right)=\{1\}$ and $2 \in f\left(v_{3}\right)$. If $f\left(v_{3}\right)=\{1,2\}$, then define $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ by $g\left(v_{5}\right)=f\left(v_{5}\right) \cup\{1\}$ and $g(z)=f(z)$ for $z \in V\left(T^{\prime}\right)-\left\{v_{5}\right\}$, and if $f\left(v_{3}\right)=\{2\}$, then define $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ by $g\left(v_{5}\right)=f\left(v_{5}\right) \cup f\left(v_{4}\right)$ and $g(z)=f(z)$ for $z \in V\left(T^{\prime}\right)-\left\{v_{5}\right\}$. Obviously, $g$ is a 2RDF of $T^{\prime}$ of weight $\omega(f)-2$ and so $\gamma_{12}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+2$. It follows from Observation 1.3 that $\gamma_{r 2}\left(T^{\prime}\right)=\gamma_{t}\left(T^{\prime}\right)$ and hence $T^{\prime} \in \mathcal{T}$. Now, we show that $v_{5} \in W_{T}^{2}$. Let $f$ be a $\gamma_{r 2}(T)$-function and assume that $f\left(v_{1}\right)=\{1\}$ and $2 \in f\left(v_{3}\right)$. If $\sum_{i=1}^{4}\left|f\left(v_{i}\right)\right| \geq 3$, then the function $g$ defined above, is a $\gamma_{12}\left(T^{\prime}\right)$-function with $g\left(v_{5}\right) \neq \emptyset$. If $\sum_{i=1}^{4}\left|f\left(v_{i}\right)\right|=2$, then we must have $f\left(v_{1}\right)=\{1\}, f\left(v_{3}\right)=\{2\}, f\left(v_{2}\right)=f\left(v_{4}\right)=\emptyset$ and to rainbowly dominate $v_{4}$, we must have $f\left(v_{5}\right)=\{1\}$. Thus the function $f$, restricted to $T^{\prime}$ is a $\gamma_{12}\left(T^{\prime}\right)$-function with $f\left(v_{5}\right) \neq \emptyset$. Thus $v_{5} \in W_{T}^{2}$, and since $T$ can be obtained from $T^{\prime}$ by Operation $O_{8}$, we obtain that $T \in \mathcal{T}$.

Subcase 2.5. $v_{4}$ is a strong support vertex.
Let $T^{\prime}=T-v_{1}$. Then any $\gamma_{t}\left(T^{\prime}\right)$-set containing no leaves can be extended to a TDS of $T$ by adding $v_{2}$ and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+1$. Now we show that $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+1$. Let $f$ be a $\gamma_{r 2}(T)$-function that assigns $\{1,2\}$ to each strong support vertex. By Observation 1.1, we may assume that $f\left(v_{1}\right)=1$ and $2 \in f\left(v_{3}\right)$. Then the function $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g\left(v_{2}\right)=\{1\}, g\left(v_{3}\right)=\emptyset$ and $g(z)=f(z)$ for $z \in V\left(T^{\prime}\right)-\left\{v_{2}, v_{3}\right\}$ is a 2RDF of $T^{\prime}$ of weight $\omega(f)-1$ and so $\gamma_{12}(T) \geq \gamma_{12}\left(T^{\prime}\right)+1$. By Observation 1.3, $\gamma_{t}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$ and by the induction hypothesis on $T^{\prime}$ we have $T^{\prime} \in \mathcal{T}$. Therefore $T \in \mathcal{T}$, since it is obtained from $T^{\prime}$ by Operation $O_{5}$.

Subcase 2.6. $v_{4}$ is adjacent to a support vertex $y$.
Then clearly the depth of $y$ is 1 . Let $T^{\prime}=T-T_{v_{3}}$. It is not hard to see that $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2$ and $\gamma_{r 2}(T)=\gamma_{r 2}\left(T^{\prime}\right)+2$. This yields $\gamma_{r 2}\left(T^{\prime}\right)=\gamma_{t}\left(T^{\prime}\right)$ and hence $T^{\prime} \in \mathcal{T}$. Now $T$ can be obtained from $T^{\prime}$ by Operation $\mathrm{O}_{4}$.

Subcase 2.7. $\operatorname{deg}\left(v_{4}\right) \geq 4$ and $v_{4}$ is a support vertex.
By Cases 6,7 and 4 , we may assume that $v_{4}$ is adjacent to exactly one leaf, say $u$, and that there exists a pendant path $v_{4} z_{3} z_{2} z_{1}$ in $T$ where $z_{3} \notin\left\{v_{3}, v_{5}\right\}$. Let $T^{\prime}=T-T_{v_{3}}$. Clearly any $\gamma_{t}\left(T^{\prime}\right)$-set containing no leaves can be extended to a TDS of $T$ by adding $v_{2}, v_{3}$ and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$. Now we show that $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+2$. Let $f$ be a $\gamma_{r 2}(T)$-function. By Observation 1.1, we may assume that $f\left(v_{1}\right)=f\left(z_{1}\right)=\{1\}, 2 \in f\left(v_{2}\right)$ and
$2 \in f\left(z_{2}\right)$. If $f\left(v_{4}\right) \neq \emptyset$, then the function $f$, restricted to $T^{\prime}$ is a $2 R D F$ of $T$ of weight $\omega(f)-2$. Assume that $f\left(v_{4}\right)=\emptyset$. Then we may assume without loss of generality that $f(u)=\{1\}$. Again the function $f$, restricted to $T^{\prime}$ is a 2 RDF of $T$ of weight $\omega(f)-2$. Thus $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+2$, and we deduce from Observation 1.3 that $\gamma_{r 2}\left(T^{\prime}\right)=\gamma_{t}\left(T^{\prime}\right)$. By the induction hypothesis on $T^{\prime}$, we have $T^{\prime} \in \mathcal{T}$. Therefore $T \in \mathcal{T}$, since it is obtained from $T^{\prime}$ by Operation $O_{10}$.

Subcase 2.8. $\operatorname{deg}\left(v_{4}\right) \geq 3$ and $v_{4}$ is not a support vertex.
Considering Case 6, we may assume that $T_{v_{4}}$ is an extended spider where $v_{4}$ is the head of spider. Let $T^{\prime}=T-T_{v_{4}}$ and let $\operatorname{deg}\left(v_{4}\right)=t+1$. Clearly any $\gamma_{t}\left(T^{\prime}\right)$-set can be extended to a TDS of $T$ by adding all support vertices of $T_{v_{4}}$ and all neighbors of $v_{4}$ with exception $v_{5}$ implying that $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2 t$. Now we show that $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+2 t$. Let $f$ be a $\gamma_{r 2}(T)$-function. By Observation 1.1, we may assume that $f$ assigns $\{1\}$ to all leaves of $T_{v_{4}}$ and $\{2\}$ to all neighbors of $v_{4}$ in $T_{v_{4}}$. Then the function $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g\left(v_{5}\right)=f\left(v_{5}\right) \cup f\left(v_{4}\right)$ and $g(z)=f(z)$ for $z \in V\left(T^{\prime}\right)-\left\{v_{5}\right\}$ is a 2RDF of $T$ of weight at most $\omega(f)-2 t$ and this implies that $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+2 t$. It follows from Observation 1.3 that $\gamma_{r 2}\left(T^{\prime}\right)=\gamma_{t}\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. Now $T \in \mathcal{T}$, since it can be obtained from $T^{\prime}$ by Operation $O_{7}$.

Subcase 2.9. $\operatorname{deg}\left(v_{4}\right)=3$ and $v_{4}$ is adjacent to a leaf, say $w$.
Let $T^{\prime}=T-T_{v_{4}}$. First we show that $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+3$. Let $f$ be a $\gamma_{r 2}(T)$-function. By Observation 1.1, we may assume that $f\left(v_{1}\right)=\{1\}$ and $2 \in f\left(v_{3}\right)$. If $f\left(v_{4}\right)=\emptyset$, then $|f(w)| \geq 1$ and the function $f$, restricted to $T^{\prime}$ is a 2RDF of $T^{\prime}$ of weight $\omega(f)-3$. Assume that $f\left(v_{4}\right) \neq \emptyset$. Then we have $\left|f\left(v_{4}\right)\right|+|f(w)| \geq 2$ and the function $g: V\left(T^{\prime}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by $g\left(v_{5}\right)=f\left(v_{5}\right) \cup\{1\}$ and $g(z)=f(z)$ for $z \in V\left(T^{\prime}\right)-\left\{v_{5}\right\}$ is a 2RDF of $T^{\prime}$ of weight at most $\omega(f)-3$. This implies that $\gamma_{r 2}(T) \geq \gamma_{r 2}\left(T^{\prime}\right)+3$. On the other hand, any $\gamma_{t}\left(T^{\prime}\right)$-set can be extended to a TDS of $T$ by adding $v_{2}, v_{3}, v_{4}$ and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+3$. It follows from Observation 1.3 that $\gamma_{t}\left(T^{\prime}\right)=\gamma_{r 2}\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. Next we show that $v_{5} \in W_{T^{\prime}}^{1}$. Assume, to the contrary, that $\gamma_{t}\left(T^{\prime}, v_{5}\right)<\gamma_{t}\left(T^{\prime}\right)$. Let $S \subseteq V\left(T^{\prime}\right)$ be a set of vertices of $T^{\prime}$ of size $\gamma_{t}\left(T^{\prime}, v_{5}\right)$ such that each vertex $w \in V\left(T^{\prime}\right)-\left\{v_{5}\right\}$ has a neighbor in $S$. Then $S \cup\left\{v_{2}, v_{3}, v_{4}\right\}$ is a total dominating set of $T$ of weight less than $\gamma_{t}(T)$ which is a contradiction. Thus $v_{5} \in W_{T^{\prime}}^{1}$ and so $T \in \mathcal{T}$, since it can be obtained from $T^{\prime}$ by Operation $O_{6}$. This completes the proof.

## Acknowledgment

This work is supported by the National Key Research and Development Program under grant 2017YFB0802300, the National Natural Science Foundation of China under the grant 11361008, and Applied Basic Research (Key Project) of Sichuan Province under grant 2017JY0095, the National Natural Science Foundation of China under grant 61572115, and Key Foundamental Leading Project of Sichuan Province under grant 2016JY0007.

## References

[1] B. Brešar, and T. K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007), 2394-2400.
[2] R.C. Brigham and R.D. Dutton, Factor domination in graphs, Discrete Math. 86 (1990), 127-136.
[3] G.J. Chang, J. Wu and X. Zhu, Rainbow domination on trees, Discrete Appl. Math. 158 (2010), 8-12.
[4] M. Chellali, T.W. Haynes, S.T. Hedetniemi, Bounds on weak Roman and 2-rainbow domination numbers, Discrete Appl. Math. 178 (2014), 27-32.
[5] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980), 211-219.
[6] N. Dehgardi, S.M. Sheikholeslami and L. Volkmann, The rainbow domination subdivision number of a graph, Mat. Vesnik 67 (2015), 102-114.
[7] M. Furuya, A note on total domination and 2-rainbow domination in graphs, Discrete Appl. Math. 184 (2015), 229-230.
[8] M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness, W. H. Freeman and Co., San Francisco, Calif., 1979.
[9] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, NewYork (1998).
[10] M.A. Henning and A. Yeo, Total Domination in Graphs, Springer Monographs in Mathematics, 2013.
[11] D. Meierling, S. M. Sheikholeslami and L. Volkmann, Nordhaus-Gaddum bounds on the $k$-rainbow domatic number of a graph, Appl. Math. Lett. 24 (2011), 1758-1761.
[12] O. Ore, Theory of Graphs, American Mathematical Society, Providence, R.I., 1967.
[13] S.M. Sheikholeslami and L. Volkmann, The $k$-rainbow domatic number of a graph, Discuss. Math. Graph Theory 32 (2012), $129-140$.
[14] C. Tong, X. Lin, Y. Yang and M. Luo, 2-rainbow domination of generalized Petersen graphs P( $n, 2$ ), Discrete Appl. Math. 157 (2009), 1932-1937.


[^0]:    2010 Mathematics Subject Classification. 05C69.
    Keywords. Total domination, 2-rainbow domination, Tree
    Received: 07 February 2017; Revised: 16 November 2017; Accepted: 18 November 2017
    Communicated by Francesco Belardo
    Email addresses: zshao@gzhu.edu.cn (Zehui Shao), s.m.sheikholeslami@azaruniv.edu (Seyed Mahmoud Sheikholeslami), wangbo547520@163.com (Bo Wang), puwu1997@126.com (Pu Wu), johnsonzxs@uestc.edu.cn (Xiaosong Zhang)

