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Abstract. In this paper, we give some estimates for the essential norm of weighted composition operators
from the Bloch space and the Zygmund space to the Bloch space.

1. Introduction

Let D be the open unit disk in the complex plane C and H(D) be the space of analytic functions on D.
An f ∈ H(D) is said to belong to the Bloch space, denoted by B, if

‖ f ‖β = sup
z∈D

(1 − |z|2)| f ′(z)| < ∞.

B is a Banach space under the norm ‖ f ‖B = | f (0)| + ‖ f ‖β. See [29] for the theory of the Bloch space.
The Zygmund space, denoted byZ, is the space consisting of all f ∈ H(D) such that

‖ f ‖Z = | f (0)| + | f ′(0)| + sup
z∈D

(1 − |z|2)| f ′′(z)| < ∞.

It is easy to see thatZ is a Banach space with the above norm ‖ · ‖Z. See [1, 4, 5, 8, 11, 13, 14, 24, 25] for some
results of the Zygmund space and related operators on the Zygmund space.

Let S(D) denote the set of all analytic self-maps of D. Let ϕ ∈ S(D) and u ∈ H(D). The weighted
composition operator, denoted by uCϕ, is defined as follows

(uCϕ f )(z) = u(z) f (ϕ(z)), f ∈ H(D).

When u = 1, we get the composition operator, denoted by Cϕ. When ϕ(z) = z, we get the multiplication
operator, denoted by Mu.

By Schwarz-Pick lemma, it is easy to see that Cϕ is bounded on the Bloch space for any ϕ ∈ S(D). The
compactness of Cϕ on B was studied, for example, in [17, 19, 26–28]. Tjani in [26] proved that Cϕ : B → B
is compact if and only if

lim
|a|→1
‖Cϕσa‖B = 0.
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Here σa(z) = a−z
1−āz . In [27], Wulan, Zheng and Zhu proved that Cϕ : B → B is compact if and only if

limn→∞ ‖ϕn
‖B = 0. In [28], Zhao obtained the exact value for the essential norm of Cϕ : B → B as follows.

‖Cϕ‖e,B→B =
( e
2

)
lim sup

n→∞
‖ϕn
‖B.

Recall that the essential norm of a bounded linear operator T : X → Y is its distance to the set of compact
operators K mapping X into Y, that is,

‖T‖e,X→Y = inf{‖T − K‖X→Y : K is compact },

where X,Y are Banach spaces and ‖ · ‖X→Y is the operator norm.
In [23], Ohno and Zhao studied the boundedness and compactness of the operator uCϕ : B → B (see

also [22]). In [2], Colonna provided a new characterization of the boundedness and compactness of the
operator uCϕ : B → B by using ‖uϕn

‖B. The essential norm of the operator uCϕ : B → B was studied in
[7, 18, 20]. In [18], the authors proved that

‖uCϕ‖e,B→B ≈ max
(

lim sup
|ϕ(z)|→1

|u(z)ϕ′(z)|(1 − |z|2)
1 − |ϕ(z)|2

, lim sup
|ϕ(z)|→1

log
e

1 − |ϕ(z)|2
|u′(z)|(1 − |z|2)

)
.

In [7], the authors obtained a new estimate for the essential norm of uCϕ : B → B, i.e., they showed that

‖uCϕ‖e,B→B ≈ max
(

lim sup
j→∞

‖Iu(ϕ j)‖B, lim sup
j→∞

log j‖Ju(ϕ j)‖B
)
,

where

Iu f (z) =

∫ z

0
f ′(ζ)u(ζ)dζ, Ju f (z) =

∫ z

0
f (ζ)u′(ζ)dζ.

Various properties of composition operator, as well as weighted composition operators mapping into the
Bloch space were studied, for example, in [3, 9, 10, 12–20, 22–28, 30, 31].

In [14], Stević and the second author of this paper studied the boundedness and compactness of the
operator uCϕ : Z→ B. Among others, we proved that uCϕ : Z→ B is compact if and only if uCϕ : Z→ B
is bounded and

lim
|ϕ(z)|→1

(1 − |z|2)|u(z)ϕ′(z)| log
e

1 − |ϕ(z)|2
= 0.

Motivated by the work of [2, 14, 27], the aim of this article is to give a new estimate for the essential
norm of the operator uCϕ : B → B and some estimates for the essential norm of the operator uCϕ : Z→ B.
As corollaries, we obtain a new characterization for the compactness of the operator uCϕ : B → B and a
new characterization for the compactness of the operator uCϕ : Z→ B.

Throughout this paper, we say that P . Q if there exists a constant C such that P ≤ CQ. The symbol
P ≈ Q means that P . Q . P.

2. Essential norm of uCϕ : Z → B

In this section, we give some estimates for the essential norm of the operator uCϕ : Z → B. For this
purpose, we first state some lemmas which will be used in the proofs of the main results in this section.

Lemma 2.1. [26] Let X,Y be two Banach spaces of analytic functions onD. Suppose that

(1) The point evaluation functionals on Y are continuous.
(2) The closed unit ball of X is a compact subset of X in the topology of uniform convergence on compact sets.
(3) T : X→ Y is continuous when X and Y are given the topology of uniform convergence on compact sets.
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Then, T is a compact operator if and only if given a bounded sequence { fn} in X such that fn → 0 uniformly on
compact sets, then the sequence {T fn} converges to zero in the norm of Y.

Lemma 2.2. [11] If f ∈ Z, then the following statements hold.

(i) | f (z)| ≤ ‖ f ‖Z, for every z ∈ D.
(ii) | f ′(z)| . ‖ f ‖Z log e

1−|z| , for every z ∈ D.

Lemma 2.3. [5] Let { fn} be a bounded sequence in Z which converges to zero uniformly on compact subsets of D.
Then limn→∞ supz∈D | fn(z)| = 0.

Theorem 2.1. Let u ∈ H(D) and ϕ ∈ S(D) such that uCϕ : Z→ B is bounded. Then

‖uCϕ‖e,Z→B ≈ lim sup
|a|→1

∥∥∥uCϕ(λa)
∥∥∥
B
≈ E,

where

E := lim sup
|ϕ(z)|→1

(1 − |z|2)|u(z)ϕ′(z)| log
e

1 − |ϕ(z)|2
, λa(z) :=

(
log

e
1 − |a|2

)−1 ∫ z

0

(
log

e
1 − āw

)2
dw.

Proof. When ‖ϕ‖∞ < 1. It is easy to see that uCϕ : Z → B is compact by using Lemma 2.1. In this case, the
asymptotic relations vacuously holds.

Now we consider the case ‖ϕ‖∞ = 1. First we prove that

lim sup
|a|→1

∥∥∥uCϕ(λa)
∥∥∥
B
. ‖uCϕ‖e,Z→B.

Let a ∈ D. It is easy to check that λa ∈ Z and ‖λa‖Z < ∞ for all a ∈ D and λa converges to zero uniformly
on compact subsets of D as |a| → 1. Thus, for any compact operator K : Z → B, by Lemma 2.1 we have
lim|a|→1 ‖Kλa‖B = 0. Hence

‖uCϕ − K‖Z→B & ‖(uCϕ − K)λa‖B ≥ ‖uCϕ(λa)‖B − ‖K(λa)‖B.

Taking lim sup
|a|→1 to the last inequality on both sides, we obtain

‖uCϕ − K‖Z→B & lim sup
|a|→1

∥∥∥uCϕ(λa)
∥∥∥
B
.

Therefore, from the definition of the essential norm, we get

‖uCϕ‖e,Z→B = inf
K
‖uCϕ − K‖Z→B & lim sup

|a|→1

∥∥∥uCϕ(λa)
∥∥∥
B
.

Let {z j} j∈N be a sequence inD such that |ϕ(z j)| → 1 as j→∞. Define

h j(z) =

(
log

e
1 − |ϕ(z j)|2

)−1 ∫ z

0

log
e

1 − ϕ(z j)w


2

dw.

Similarly to the above proof we see that h j belongs to Z and converges to zero uniformly on compact
subsets ofD . Moreover, h′j(ϕ(z j)) = log e

1−|ϕ(z j)|2
. Then for any compact operator K : Z→ B, we obtain

‖uCϕ − K‖Z→B & lim sup
j→∞

‖uCϕh j‖B − lim sup
j→∞

‖Kh j‖B

≥ lim sup
j→∞

(1 − |z j|
2)|u(z j)||ϕ′(z j)||h′j(ϕ(z j))| − lim sup

j→∞
(1 − |z j|

2)|u′(z j)||h j(ϕ(z j))|

= lim sup
j→∞

(1 − |z j|
2)|u(z j)||ϕ′(z j)| log

e
1 − |ϕ(z j)|2

− lim sup
j→∞

(1 − |z j|
2)|u′(z j)||h j(ϕ(z j))|.
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Since uCϕ : Z → B is bounded, applying the operator uCϕ to 1 and z, we easily get that uCϕ(1) = u ∈ B.
Using the boundedness of ϕ, we also get

K̃ := sup
z∈D

(1 − |z|2)|ϕ′(z)||u(z)| < ∞.

By Lemma 2.3 and the fact that u ∈ Bwe get

lim sup
j→∞

(1 − |z j|
2)|u′(z j)||h j(ϕ(z j))| = 0.

Thus, by the definition of the essential norm, we obtain

‖uCϕ‖e,Z→B = inf
K
‖uCϕ − K‖Z→B & lim sup

j→∞
(1 − |z j|

2)|u(z j)||ϕ′(z j)| log
e

1 − |ϕ(z j)|2

= lim sup
|ϕ(z)|→1

(1 − |z|2)|u(z)||ϕ′(z)| log
e

1 − |ϕ(z)|2
= E.

Next, we prove that

‖uCϕ‖e,Z→B . lim sup
|a|→1

∥∥∥uCϕ(λa)
∥∥∥
B

and ‖uCϕ‖e,Z→B . E.

For r ∈ [0, 1), set Kr : H(D) → H(D) by (Kr f )(z) = fr(z) = f (rz), f ∈ H(D). It is obvious that fr → f
uniformly on compact subsets ofD as r→ 1. Moreover, the operator Kr is compact onZ and ‖Kr‖Z→Z ≤ 1.
Let {r j} ⊂ (0, 1) be a sequence such that r j → 1 as j → ∞. Then for all positive integer j, the operator
uCϕKr j : Z→ B is compact. By the definition of the essential norm we have

‖uCϕ‖e,Z→B ≤ lim sup
j→∞

‖uCϕ − uCϕKr j‖Z→B. (1)

Thus, we only need to show that

lim sup
j→∞

‖uCϕ − uCϕKr j‖Z→B . lim sup
|a|→1

∥∥∥uCϕ(λa)
∥∥∥
B
, lim sup

j→∞
‖uCϕ − uCϕKr j‖Z→B . E.

For any f ∈ Z such that ‖ f ‖Z ≤ 1, we consider

‖(uCϕ − uCϕKr j ) f ‖B = |u(0) f (ϕ(0)) − u(0) f (r jϕ(0))| + ‖u · ( f − fr j ) ◦ ϕ‖β. (2)

It is obvious that

lim
j→∞
|u(0) f (ϕ(0)) − u(0) f (r jϕ(0))| = 0. (3)

Now we consider

lim sup
j→∞

‖u · ( f − fr j ) ◦ ϕ‖β

≤ lim sup
j→∞

sup
|ϕ(z)|≤rN

(1 − |z|2)|( f − fr j )
′(ϕ(z))||ϕ′(z)||u(z)| + lim sup

j→∞
sup
|ϕ(z)|>rN

(1 − |z|2)|( f − fr j )
′(ϕ(z))||ϕ′(z)||u(z)|

+ lim sup
j→∞

sup
z∈D

(1 − |z|2)|( f − fr j )(ϕ(z))||u′(z)|

= T1 + T2 + lim sup
j→∞

sup
z∈D

(1 − |z|2)|( f − fr j )(ϕ(z))||u′(z)|, (4)

where N ∈N is large enough such that r j ≥
1
2 for all j ≥ N,

T1 := lim sup
j→∞

sup
|ϕ(z)|≤rN

(1 − |z|2)|( f − fr j )
′(ϕ(z))||ϕ′(z)||u(z)|
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and
T2 := lim sup

j→∞
sup
|ϕ(z)|>rN

(1 − |z|2)|( f − fr j )
′(ϕ(z))||ϕ′(z)||u(z)|.

Since r j f ′r j
→ f ′ uniformly on compact subsets ofD as j→∞, we have

T1 ≤ K̃ lim sup
j→∞

sup
|w|≤rN

| f ′(w) − r j f ′(r jw)| = 0. (5)

Similarly, from the fact that u ∈ B , fr j → f uniformly on compact subsets of D as j → ∞ and by Lemma
2.3, we have

lim sup
j→∞

sup
z∈D

(1 − |z|2)|( f − fr j )(ϕ(z))||u′(z)| ≤ ‖u‖B lim sup
j→∞

sup
w∈D
| f (w) − f (r jw)| = 0. (6)

We consider T2. We have T2 ≤ lim sup j→∞(J1 + J2), where

J1 := sup
|ϕ(z)|>rN

(1 − |z|2)| f ′(ϕ(z))||ϕ′(z)||u(z)|, J2 := sup
|ϕ(z)|>rN

(1 − |z|2)r j| f ′(r jϕ(z))||ϕ′(z)||u(z)|.

First we estimate J1. Using the fact that | f ′(z)| . ‖ f ‖Z log e
1−|z|2 (by Lemma 2.2) and ‖ f ‖Z ≤ 1, we have

J1 = sup
|ϕ(z)|>rN

(1 − |z|2)| f ′(ϕ(z))||ϕ′(z)||u(z)|

. sup
|ϕ(z)|>rN

(1 − |z|2)‖ f ‖Z log
e

1 − |ϕ(z)|2
|ϕ′(z)||u(z)|

. sup
|ϕ(z)|>rN

(1 − |z|2)|ϕ′(z)||u(z)| log
e

1 − |ϕ(z)|2
.

It is easy to check that λa → 0 uniformly on compact subsets of D as |a| → 1. From Lemma 2.3 we know
that lim|a|→1 |λa(a)| ≤ lim|a|→1 supz∈D |λa(z)| = 0. Then by the fact that u ∈ B and letting N→∞, we obtain

lim sup
|ϕ(z)|→1

(1 − |z|2)|u′(z)||λϕ(z)(ϕ(z))| = 0.

Since

sup
|a|>rN

‖uCϕλa‖β ≥ sup
|ϕ(z)|>rN

(1 − |z|2)|u′(z)(λϕ(z)(ϕ(z))) + u(z)ϕ′(z) log
e

1 − |ϕ(z)|2
|

≥ sup
|ϕ(z)|>rN

(1 − |z|2)|u(z)ϕ′(z)| log
e

1 − |ϕ(z)|2
− sup
|ϕ(z)|>rN

(1 − |z|2)|u′(z)(λϕ(z)(ϕ(z)))|,

we get

lim sup
j→∞

J1 . lim sup
|ϕ(z)|→1

(1 − |z|2)|ϕ′(z)||u(z)| log
e

1 − |ϕ(z)|2
= E

. lim sup
|a|→1

‖uCϕ(λa)‖β + lim sup
|ϕ(z)|→1

(1 − |z|2)|u′(z)||λϕ(z)(ϕ(z))|

. lim sup
|a|→1

∥∥∥uCϕ(λa)
∥∥∥
B
.

Similarly, we have

lim sup
j→∞

J2 . lim sup
|ϕ(z)|→1

(1 − |z|2)|ϕ′(z)||u(z)| log
e

1 − |ϕ(z)|2
= E . lim sup

|a|→1

∥∥∥uCϕ(λa)
∥∥∥
B
,

i.e., we get

T2 . E . lim sup
|a|→1

∥∥∥uCϕ(λa)
∥∥∥
B
. (7)



Q. Hu, S. Li / Filomat 32:2 (2018), 681–691 686

Hence, by (2)-(7) we get

lim sup
j→∞

‖uCϕ − uCϕKr j‖Z→B = lim sup
j→∞

sup
‖ f ‖Z≤1

‖(uCϕ − uCϕKr j ) f ‖B

= lim sup
j→∞

sup
‖ f ‖Z≤1

‖u · ( f − fr j ) ◦ ϕ‖β

. E . lim sup
|a|→1

∥∥∥uCϕ(λa)
∥∥∥
B
. (8)

Therefore, by (1) and (8) we obtain

‖uCϕ‖e,Z→B . E and ‖uCϕ‖e,Z→B . lim sup
|a|→1

∥∥∥uCϕ(λa)
∥∥∥
B
.

The proof of this theorem is complete.

From Theorem 2.1, we immediately get the following new characterization of the compactness of the
operator uCϕ : Z→ B.

Corollary 2.1. Let u ∈ H(D) and ϕ ∈ S(D) such that uCϕ : Z → B is bounded. Then uCϕ : Z → B is compact if
and only if lim sup

|a|→1

∥∥∥uCϕ(λa)
∥∥∥
B

= 0.

3. A new characterization of uCϕ : Z → B

In this section, we give another new characterization for the boundedness, compactness and essential
norm of the operator uCϕ : Z → B. For this purpose, we state some definitions and some lemmas which
will be used.

Let v : D → R+ be a continuous, strictly positive and bounded function. The weighted space, denoted
by H∞v , consists of all f ∈ H(D) such that

‖ f ‖v = sup
z∈D

v(z)| f (z)| < ∞.

H∞v is a Banach space under the norm ‖ · ‖v. If v(z) = v(|z|) for all z ∈ D, the weighted v is called radial. The
associated weight ṽ of v is defined by

ṽ = (sup{| f (z)| : f ∈ H∞v , ‖ f ‖v ≤ 1})−1, z ∈ D.

When v = vlog(z) = (log e
1−|z|2 )−1, then ṽlog(z) = vlog(z) (see [7]). When v = vα(z) = (1 − |z|2)α(0 < α < ∞), it is

easy to check that ṽα(z) = vα(z). In this case, we denote H∞v by H∞vα , where,

H∞vα = { f ∈ H(D) : ‖ f ‖vα = sup
z∈D
| f (z)|(1 − |z|2)α < ∞}.

Lemma 3.1. [7] For α > 0, we have

lim
k→∞

kα‖zk−1
‖vα = (

2α
e

)α and lim
k→∞

(log k)‖zk
‖vlog = 1.

Lemma 3.2. [21] Let v and w be radial, non-increasing weights tending to zero at the boundary of D. Then the
following statements hold.

(a) The weighted composition operator uCϕ : H∞v → H∞w is bounded if and only if supz∈D
w(z)

ṽ(ϕ(z)) |u(z)| < ∞.
Moreover, the following holds

‖uCϕ‖H∞v →H∞w = sup
z∈D

w(z)
ṽ(ϕ(z))

|u(z)|.
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(b) Suppose uCϕ : H∞v → H∞w is bounded. Then

‖uCϕ‖e,H∞v →H∞w = lim
s→1−

sup
|ϕ(z)|>s

w(z)
ṽ(ϕ(z))

|u(z)|.

Lemma 3.3. [6] Let v and w be radial, non-increasing weights tending to zero at the boundary of D. Then the
following statements hold.

(a) uCϕ : H∞v → H∞w is bounded if and only if supk≥0
‖uϕk

‖w

‖zk‖v
< ∞, with the norm comparable to the above

supermum.
(b) Suppose uCϕ : H∞v → H∞w is bounded. Then

‖uCϕ‖e,H∞v →H∞w = lim sup
k→∞

‖uϕk
‖w

‖zk‖v
.

Theorem 3.1. Let u ∈ H(D) and ϕ ∈ S(D). Then the operator uCϕ : Z → B is bounded if and only if
u ∈ B, supz∈D(1 − |z|2)|u(z)||ϕ′(z)| < ∞ and

sup
j≥2

log( j − 1)
j

‖Iu(ϕ j)‖B < ∞. (9)

Proof. By Theorem 1 of [14], uCϕ : Z→ B is bounded if and only if u ∈ B and

sup
z∈D

(1 − |z|2)|u(z)||ϕ′(z)| log
e

1 − |ϕ(z)|2
< ∞. (10)

By Lemma 3.2, (10) is equivalent to the weighted composition operator uϕ′Cϕ : H∞vlog
→ H∞v1

is bounded. By
Lemma 3.3, this is equivalent to

sup
j≥1

‖uϕ′ϕ j−1
‖v1

‖z j−1‖vlog

< ∞.

Since Iu(ϕ j)(0) = 0,
(
Iu(ϕ j)(z)

)′
= ju(z)ϕ′(z)ϕ j−1(z), by Lemma 3.1, we see that uCϕ : Z → B is bounded if

and only if u ∈ B and

∞ > sup
j≥1

‖uϕ′ϕ j−1
‖v1

‖z j−1‖vlog

= sup
j≥1

j−1
‖Iu(ϕ j)‖B
‖z j−1‖vlog

≈ max
{

sup
z∈D

(1 − |z|2)|u(z)||ϕ′(z)|, sup
j≥2

log( j − 1)
j

‖Iu(ϕ j)‖B
}
.

The proof is complete.

Theorem 3.2. Let u ∈ H(D) and ϕ ∈ S(D) such that the operator uCϕ : Z→ B is bounded. Then

‖uCϕ‖e,Z→B ≈ lim sup
j→∞

log( j − 1)
j

‖Iu(ϕ j)‖B.

Proof. From Theorem 2.1, Lemmas 3.1 and 3.2, we have

‖uCϕ‖e,Z→B ≈ E = ‖uϕ′Cϕ‖e,H∞vlog
→H∞v1

= lim sup
j→∞

‖uϕ′ϕ j−1
‖v1

‖z j−1‖vlog

≈ lim sup
j→∞

log( j − 1)‖uϕ′ϕ j−1
‖v1 = lim sup

j→∞

log( j − 1)
j

‖Iu(ϕ j)‖B,

as desired. The proof is complete.
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From Theorem 3.2, we immediately get the following new characterization of the compactness of the
operator uCϕ : Z→ B.

Corollary 3.1. Let u ∈ H(D) and ϕ ∈ S(D) such that the operator uCϕ : Z → B is bounded. Then uCϕ : Z → B
is compact if and only if

lim sup
j→∞

log( j − 1)
j

‖Iu(ϕ j)‖B = 0.

4. Essential norm of uCϕ : B → B

In this section, we give a new estimate of the essential norm for the operator uCϕ : B → B.

Theorem 4.1. Let u ∈ H(D) and ϕ be an analytic self-map ofD such that uCϕ : B → B is bounded. Then

‖uCϕ‖e,B→B ≈ max
{

lim sup
|a|→1

∥∥∥uCϕ(xa)
∥∥∥
B
, lim sup
|a|→1

∥∥∥uCϕ(ya)
∥∥∥
B

}
,

where

xa(z) :=

(
log e

1−āz

)2

log e
1−|a|2

, ya(z) :=

(
log e

1−āz

)3(
log e

1−|a|2

)2 .

Proof. When ‖ϕ‖∞ < 1. It is easy to see that uCϕ : B → B is compact by using Lemma 2.1. In this case, the
asymptotic relations vacuously holds.

Now we consider the case ‖ϕ‖∞ = 1. For the simplicity of the proof, we denote

A := lim sup
|a|→1

∥∥∥uCϕ(xa)
∥∥∥
B
, B := lim sup

|a|→1

∥∥∥uCϕ(ya)
∥∥∥
B
.

Let a ∈ D.

‖xa‖B = sup
z∈D

(1 − |z|2)
2|a|
e

∣∣∣∣∣∣ 1
1 − āz

log e
1−āz

log e
1−|a|2

∣∣∣∣∣∣
. sup

z∈D

∣∣∣∣∣∣ log e
1−āz

log e
1−|a|2

∣∣∣∣∣∣ =

(
log

e
1 − |a|2

)−1

sup
z∈D

∣∣∣∣log
e

1 − āz

∣∣∣∣ .
Since ∣∣∣∣log

e
1 − āz

∣∣∣∣ . log
∣∣∣∣ e
1 − āz

∣∣∣∣ = log

∣∣∣∣∣∣ e
1−āz

e
1−|a|2

·
e

1 − |a|2

∣∣∣∣∣∣ ≤ log
∣∣∣∣∣2 · e

1 − |a|2

∣∣∣∣∣ = log 2 + log
e

1 − |a|2
,

we get ‖xa‖B < ∞ for all a ∈ D. Similarly we have ‖ya‖B < ∞ for all a ∈ D. Clearly xa, ya converge to zero
uniformly on compact subsets ofD as |a| → 1. Thus, for any compact operator K : B → B, we have

lim
|a|→1
‖K(xa)‖B = 0, lim

|a|→1
‖K(ya)‖B = 0.

Similarly to the proof of Theorem 2.1, we get

‖uCϕ‖e,B→B = inf
K
‖uCϕ − K‖B→B & max

{
A,B

}
.

Next, we prove that
‖uCϕ‖e,B→B . max

{
A,B

}
.
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For r ∈ [0, 1), it is easy to check that the operator Kr is also compact on B and ‖Kr‖B→B ≤ 1 (see also [18]).
Let {r j} ⊂ (0, 1) be a sequence such that r j → 1 as j → ∞. Then for all positive integer j, the operator
uCϕKr j : B → B is compact. By the definition of the essential norm, we get

‖uCϕ‖e,B→B ≤ lim sup
j→∞

‖uCϕ − uCϕKr j‖B→B. (11)

Therefore, we only need to prove that

lim sup
j→∞

‖uCϕ − uCϕKr j‖B→B . max
{
A,B

}
.

For any f ∈ B such that ‖ f ‖B ≤ 1, we consider

‖(uCϕ − uCϕKr j ) f ‖B = |u(0) f (ϕ(0)) − u(0) f (r jϕ(0))| + ‖u · ( f − fr j ) ◦ ϕ‖β. (12)

It is clear that

lim
j→∞
|u(0) f (ϕ(0)) − u(0) f (r jϕ(0))| = 0. (13)

Now we estimate

lim sup
j→∞

‖u · ( f − fr j ) ◦ ϕ‖β ≤ P1 + P2 + P3 + P4, (14)

where
P1 := lim sup

j→∞
sup
|ϕ(z)|≤rN

(1 − |z|2)|( f − fr j )
′(ϕ(z))||ϕ′(z)||u(z)|,

P2 := lim sup
j→∞

sup
|ϕ(z)|>rN

(1 − |z|2)|( f − fr j )
′(ϕ(z))||ϕ′(z)||u(z)|,

P3 := lim sup
j→∞

sup
|ϕ(z)|≤rN

(1 − |z|2)|( f − fr j )(ϕ(z))||u′(z)|,

P4 := lim sup
j→∞

sup
|ϕ(z)|>rN

(1 − |z|2)|( f − fr j )(ϕ(z))||u′(z)|

and N ∈N is large enough such that r j ≥
1
2 for all j ≥ N. Similarly to the proof of Theorem 2.1 we have

P1 ≤ K̃ lim sup
j→∞

sup
|w|≤rN

| f ′(w) − r j f ′(r jw)| = 0 (15)

and

P3 ≤ ‖u‖B lim sup
j→∞

sup
|w|≤rN

| f (w) − f (r jw)| = 0. (16)

We consider P2. We have P2 ≤ lim sup j→∞(I1 + I2), where

I1 := sup
|ϕ(z)|>rN

(1 − |z|2)| f ′(ϕ(z))||ϕ′(z)||u(z)|, I2 := sup
|ϕ(z)|>rN

(1 − |z|2)r j| f ′(r jϕ(z))||ϕ′(z)||u(z)|.

First we estimate I1. Using the fact that ‖ f ‖B ≤ 1, we have

I1 = sup
|ϕ(z)|>rN

(1 − |z|2)| f ′(ϕ(z))||ϕ′(z)||u(z)|

.
1

rN
‖ f ‖B sup

|ϕ(z)|>rN

(1 − |z|2)|ϕ′(z)||u(z)|
|ϕ(z)|

1 − |ϕ(z)|2

. sup
|ϕ(z)|>rN

(1 − |z|2)|ϕ′(z)||u(z)||ϕ(z)|
1 − |ϕ(z)|2

. sup
|a|>rN

∥∥∥uCϕ(xa − ya)
∥∥∥
B
. sup
|a|>rN

∥∥∥uCϕ(xa)
∥∥∥
B

+ sup
|a|>rN

∥∥∥uCϕ(ya)
∥∥∥
B
.
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Taking the limit as N→∞we obtain

lim sup
j→∞

I1 . lim sup
|a|→1

∥∥∥uCϕ(xa)
∥∥∥
B

+ lim sup
|a|→1

∥∥∥uCϕ(ya)
∥∥∥
B

= A + B.

Similarly, we have lim sup j→∞ I2 . A + B, i.e., we get that

P2 . A + B . max
{
A,B

}
. (17)

We have P4 ≤ lim sup j→∞(I3 + I4), where

I3 := sup
|ϕ(z)|>rN

(1 − |z|2)| f (ϕ(z))||u′(z)|, I4 := sup
|ϕ(z)|>rN

(1 − |z|2)| f (r jϕ(z))||u′(z)|.

Since f ∈ B and ‖ f ‖B ≤ 1, we know that

| f (z)| ≤ ‖ f ‖B log
e

1 − |z|2
. log

e
1 − |z|2

.

After a calculation, we have

I3 = sup
|ϕ(z)|>rN

(1 − |z|2)| f (ϕ(z))||u′(z)|

. sup
|ϕ(z)|>rN

(1 − |z|2)|u′(z)|‖ f ‖B log
e

1 − |ϕ(z)|2

. sup
|ϕ(z)|>rN

1
3

(1 − |z|2)|u′(z)| log
e

1 − |ϕ(z)|

. sup
|a|>rN

∥∥∥uCϕ(xa −
2
3

ya)
∥∥∥
B
. sup
|a|>rN

∥∥∥uCϕ(xa)
∥∥∥
B

+
2
3

sup
|a|>rN

∥∥∥uCϕ(ya)
∥∥∥
B

≤ sup
|a|>rN

∥∥∥uCϕ(xa)
∥∥∥
B

+ sup
|a|>rN

∥∥∥uCϕ(ya)
∥∥∥
B
.

Taking limit as N→∞we obtain

lim sup
j→∞

I3 . lim sup
|a|→1

∥∥∥uCϕ(xa)
∥∥∥
B

+ lim sup
|a|→1

∥∥∥uCϕ(ya)
∥∥∥
B

= A + B.

Similarly, we have lim sup j→∞ I4 . A + B, i.e., we get that

P4 . A + B . max
{
A,B

}
. (18)

Hence, by (12)-(18) we get

lim sup
j→∞

‖uCϕ − uCϕKr j‖B→B = lim sup
j→∞

sup
‖ f ‖B≤1

‖(uCϕ − uCϕKr j ) f ‖B = lim sup
j→∞

sup
‖ f ‖B≤1

‖u · ( f − fr j ) ◦ ϕ‖β

. max
{
A,B

}
. (19)

Therefore, by (11) and (19), we obtain

‖uCϕ‖e,B→B . max
{
A,B

}
.

The proof is complete.

From Theorem 4.1, we immediately get the following new characterization of the compactness of the
operator uCϕ : B → B.

Corollary 4.1. Let u ∈ H(D) and ϕ ∈ S(D) such that uCϕ : B → B is bounded. Then uCϕ : B → B is compact if
and only if

lim sup
|a|→1

∥∥∥uCϕ(xa)
∥∥∥
B

= lim sup
|a|→1

∥∥∥uCϕ(ya)
∥∥∥
B

= 0.
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