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Abstract. We introduce new generalized classes of exponential distribution, called T-exponential{Y} class
using the quantile functions of well-known distributions. We derive some general mathematical properties
of this class including explicit expressions for the quantile function, Shannon entropy, moments and mean
deviations. Some generalized exponential families are investigated. The shapes of the models in these
families can be symmetric, left-skewed, right-skewed and reversed-J, and the hazard rate can be increasing,
decreasing, bathtub, upside-down bathtub, J and reverse-J shaped. Two real data sets are used to illustrate
the applicability of the new models.

1. Introduction

The exponential distribution is one of the first lifetime models for which statistical methods were
extensively developed. Here, it is worthwhile to quote [13] “the most important one parameter family
of lifetime distributions is the family of exponential distributions”. This importance is partly due to the
fact that several of the most commonly used families of lifetime distributions are two- or three-parameter
extensions of the exponential distribution. Although, one parameter exponential distribution has several
interesting properties such as lack of memory property, one of the major disadvantages of the exponential
distribution is that it has a constant hazard rate function. Moreover, the density function of the exponential
distribution is always a decreasing function. In many practical situations, one might observe non-monotone
hazard functions, and in such cases, the exponential distribution can not be used. Due to this reason several
generalizations of the exponential distribution have been suggested in the literature. For example, [9]
introduced generalized exponential distribution and [12] proposed beta exponential distribution by using
the beta-family proposed by [8].

The beta-generated family was extended by [3] to the T-R{W} family. The cumulative distribution

function (cdf) of the T-R{W}distribution is G(x) =
∫ W(F(x))

a r(t)dt, where r(t) is the probability density function
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(pdf) of a random variable T with support (a,b) for −∞ ≤ a < b ≤ ∞. The link function W : [0, 1] → R
is monotonic and absolutely continuous with W(0) → a and W(1) → b. [2] considered a special case
of the T-R{W} family by taking W(.) to be the quantile function of a random variable Y and defined the
T-R{Y}family.

2. The T-R{Y} family

The T-R{Y} framework defined in [2] (see also [4]) is given as follows. Let T, R and Y be random variables
with cdfs FT(x) = P(T ≤ x), FR(x) = P(R ≤ x) and FY(x) = P(Y ≤ x), respectively. The corresponding quantile
functions (qfs) are QT(p), QR(p) and QY(p), where the qf is defined as QZ(p) = inf{z : FZ(z) ≥ p}, 0 < p < 1. If
the densities exist, we denote them by fT(x), fR(x) and fY(x). Further, we assume that the random variables
T, Y ∈ (a, b) for −∞ ≤ a < b ≤ ∞. The cdf of the T-R{Y} class of distributions is given by

FX(x) =

∫ QY(FR(x))

a
fT(t) dt = P

[
T ≤ QY

(
FR (x)

)]
= FT

(
QY

(
FR(x)

))
. (1)

The pdf and hazard rate function corresponding to (1) are given by

fX(x) = fR(x)
fT
(
QY

(
FR(x)

))
fY
(
QY

(
FR(x)

)) (2)

and

hX(x) = hR(x)
hT

(
QY

(
FR(x)

))
hY

(
QY

(
FR(x)

)) . (3)

Table 1: Quantile functions for some choices of the random variable Y.

S.No. Y QY(p)
(a) Uniform p
(b) Exponential −b log(1 − p), b > 0
(c) Log-logistic a ( p

1−p )1/b, a, b > 0
(d) Logistic a + b log( p

1−p ), b > 0
(e) Extreme value a + b log(− log(1 − p)), b > 0
(f) Weibull (− 1

θ log(1 − p))1/γ, γ, c > 0

Table 2: CDFs or PDFs for some choices of the random variable T.

S.No. T FT(x) or fT(x)
1. EE FT(x) = [1 − e−λ x]α

2. Weibull FT(x) = 1 − e−θ xγ

3. Logistic FT(x) = 1 − [1 + e−(x−a)/b]−1

4. Log-logistic FT(x) = 1 − [1 + (x/a)b]−1

5. Pareto FT(x) = 1 − (x/α)β

6. Cauchy fT(x) = {πβ[1 + x−α
β ]2
}
−1

7. Pascal fT(x) = 0.5λ e−λ|x|

8. Gamma fT(x) = 1
βα Γ(α) xα−1 e−x/β

Next we mention some existing generalized families of distributions that fall into the T-R{Y} framework.

1. Gamma-G family. This family (introduced by [18]) can be generated by taking T as gamma random
variable and QY is the quantile function of the exponential distribution.
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2. Weibull-X family. This family (proposed by [3]; [5]) is obtained by taking T as Weibull random variable
and QY is the quantile function of the exponential distribution.

3. Libby and Novick’s generalized beta family. This family [7] can be obtained by taking T as Libby and
Novick’s generalized beta distribution and QY is the quantile function of the uniform distribution.

Our motivation in this paper is related to the flexibility of the new generalized family of exponential
distribution to model complex positive real data sets, that is, its sub-models can present increasing, decreas-
ing, upside-down bathtub and bathtub shaped hazard rate functions. Due to great flexibility of its hazard
rate functions, it thus provides a good alternative to many existing lifetime distributions. In this article, we
propose a family of generalized exponential distributions, the T-exponential{Y} family, and study some its
properties and applications. A member of the T-exponential{Y} family, namely, T-exponential{loglogistic}
distribution is studied in detail. The paper is unfolded as follows. In Section 2, we consider the T-
exponential{Y} class of distributions and define some new generalized exponential families. In Section 3, we
investigate some structural properties of this class. In Section 4, we define some new extended exponential
distributions and study some of their properties. In Section 5, we explore the usefulness of three generalized
exponential family models by means of two applications to real data sets. Finally, Section 6 offers some
concluding remarks.

3. The T-exponential{Y} class

If R follows the exponential random variable with pdf fR(x) = β−1 e−x/β and cdf FR(x) = 1 − e−x/β, the
T-exponential{Y} (or T-E{Y} for short) class of distributions is defined from Eq. (1) as

FX(x) =

∫ QY(1−e−x/β)

a
fT(x) dt = FT

(
QY

[
1 − e−x/β

])
. (4)

The pdf corresponding to Eq. (4) can be expressed as

fX(x) =
1
β

e−x/β
×

fT
(
QY

(
1 − e−x/β

))
fY

(
QY

(
1 − e−x/β)) . (5)

The hazard rate function of the T-E{Y} class becomes

hX(x) =
1
β

hT

(
QY

(
1 − e−x/β

))
hY

(
QY

(
1 − e−x/β)) . (6)

Remark 1. If X follows the T-E{Y} class of distributions given by Eq. (4), we have the following:

(i) X d
= − β log {1 − FY(T)},

(ii) QX(p) = − β log
{
1 − FY

(
QT(p)

)}
,

(iii) if T d
= Y, then X d

= Exponential (β), and

(iv) if Y d
= Exponential (β), then X d

= T.
The T-E{Y} class in Eq. (5) can generate many different extended exponential families. In the following,

we define some generalized exponential families using some qfs listed in Table 1.

3.1. The T-E{log-logistic} family

Let the random variable T ∈ (0,∞). By using the qf (c) in Table 1, QY(p) = a
( p

1−p

)1/b
, a, b > 0, the cdf and

pdf follow from Eq. (4) and Eq. (5) as

FX(x) = FT

(
a
[
ex/β
− 1

]1/b)
(7)

and

fX(x) =
a ex/β

b β

(
ex/β
− 1

) 1
b−1

fT
(
a
[
ex/β
− 1

]1/b)
. (8)
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3.2. The T-E{logistic} family

Let the random variable T ∈ (−∞,∞). By using the qf (d) in Table 1, QY(p) = a + b log
( p

1−p

)
, b > 0, the cdf

and pdf follow from Eq. (4) and Eq. (5) as

FX(x) = FT

(
a + b log

[
ex/β
− 1

])
(9)

and

fX(x) =
b

β
(
1 − e−x/β

) fT
(
a + b log

[
ex/β
− 1

])
. (10)

3.3. The T-E{extreme value} family

Let the random variable T ∈ (−∞,∞). By using the qf (e) in Table 1, QY(p) = a + b log
[
− log (1−p)

]
, b > 0,

the cdf and pdf follow from Eq. (4) and Eq. (5) as

FX(x) = FT

(
a + b log

(
x/β

))
(11)

and

fX(x) =
b
x

fT
(
a + b log

(
x/β

))
. (12)

4. Some general properties

In this section, some of general properties of the T-E{Y} class are investigated.

The following Lemma gives the relationships between the random variables X and T for some cases
which can be used to simulate the random variable X from the random variable T.

Lemma 1. Let T be a random variable with pdf fT(x).

(i) If T ∈ (0,∞), then the random variable X = β log
{
1 +

(
T
a

)b}
follows the T-E{log-logistic} family in Eq. (8).

(ii) If T ∈ (−∞,∞), then the random variable X = β log
{
1 + e

T−a
b

}
follows the T-E{logistic} family in Eq. (10).

(iii) If T ∈ (−∞,∞), then the random variable X = β e
T−a

b follows the T-E{extreme value} family in Eq. (12).

Remark 2. From Lemma 1, the qfs for the (i) T-E{log-logistic}, (ii) T-E{logistic}, and (iii) T-E{extreme value}
families are, respectively, given by:

(i) QX(p) = β log
{
1 +

(QT(p)
a

)b}
,

(ii) QX(p) = β log
{
1 + e

QT (p)−a
b

}
,

(iii) QX(p) = β e
QT (p)−a

b .

Theorem 1. The modes of the T-E{Y} class are the solutions of the equation:

x = β log

Q′′Y
(
1 − e−x/β

)
Q′Y

(
1 − e−x/β) +

f ′T
(
QY

(
1 − e−x/β

))
fT

(
QY

(
1 − e−x/β)) × Q′Y

(
1 − e−x/β

) . (13)

Corollary 1. The modes of the (i) T-E{log-logistic}, (ii) T-E{logistic}, and (iii) T-E{extreme value} families
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can be determined as the solutions of the equations:

(i) x = β log

 1
b β


a ex/β

(
ex/β
− 1

)1/b−1
× f ′T

(
a
(
ex/β
− 1

)1/b
)

fT
(
a
(
ex/β − 1

)1/b
) + 1


 ,

(ii) x = β log

 1
β

(
ex/β − 1

) b f ′T
(
a + b log

(
ex/β
− 1

))
fT

(
a + b log

(
ex/β − 1

)) − 1


 ,

(iii) x = β log
[

1
x

{
b f ′T

(
a + b log

(
x/β

))
fT

(
a + b log

(
x/β

)) − 1
}]
,

respectively. Note that the result in Theorem 1 does not imply that the mode is unique. It is possible that
there is more than one mode for some families in the T-E{Y} class.

The entropy of a random variable X is a measure of variation of uncertainty ([15]). The Shannon’s
entropy ([17]) of the random variable X with pdf 1(x) is defined by ηX = E

{
− log

[
1(X)

]}
. It has been used

in many applications in fields of engineering, physics and economics.
Theorem 2. The Shannon’s entropy of the T-E{Y} class can be expressed as

ηX = ηT + E
[
log fY(T)

]
+ log(β) +

1
β
E(X). (14)

Proof. Since X d
= QR (FY (T)), we have T d

= QY (FR (X)). Hence, based on equation (2), we can write

fX(x) =
fT(t)
fY(t)

fR(x).

This result implies that

ηX = ηT + E
[
log fY(T)

]
− E

[
log fR(X)

]
. (15)

For the T-E{Y} class, we have

log[ fR(x)] = − log(β) −
x
β
. (16)

Eq. (14) follows from Eq. (15) and Eq. (16).

Corollary 2. The Shannon’s entropies for the (i) T-E{log-logistic}, (ii) T-E{logistic}, and (iii) T-E{extreme
value} families, respectively, are given by

(i) ηX = ηT + log
(
b β a−b

)
+ (b − 1)E(log T) − 2E

{
log

[
1 + (T/a)b

]}
+ β−1E(X),

(ii) ηX = ηT + log
(
βλ

)
− λµT − 2E

{
log

[
1 + e−λT

]}
+ β−1E(X),

(iii) ηX = ηT + log
(
β/b

)
− (a/b) + µT − e

−a
b MT(1/b) + β−1E(X),

where MT(s) = E
(
es T

)
is the moment generating function of T.

Proof. The results in (i)-(iii) can be easily proved using Eq. (14) and the facts that:

fY(T) = (b/a) (T/a)b−1
[
1 + (T/α)β

]−2
, fY(T) = λ e−λT

(
1 + e−λT

)−2
,

fY(T) = 1
b e( T−a

b ) e−e( T−a
b )

, for the log-logistic, logistic and extreme value families, respectively.

Some key features of a distribution such as skewness and kurtosis can be studied through its moments.
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Corollary 3. The ordinary moments of the T-E{extreme value} family can be expressed as E(Xr) =

βr e−r a b−1 MT(rb−1).

Proof. Follows from Lemma 1(iii).

The central moments (µs) and cumulants (κs) of X can be determined from the ordinary moments as
follows:

µs =

p∑
k=0

(
s
k

)
(−1)k µ′s1 µ

′

s−k and κs = µ′s −
s−1∑
k=1

(
s − 1
k − 1

)
κk µ

′

s−k,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2−µ
′2
1 , κ3 = µ′3−3µ′2µ

′

1 +2µ′31 , κ4 = µ′4−4µ′3µ
′

1−3µ′22 +12µ′2µ
′2
1 −6µ′41 ,

etc. The skewness γ1 = κ3/κ
3/2
2 and kurtosis γ2 = κ4/κ2

2 of X immediately follow from the third and fourth
standardized cumulants.

The nth descending factorial moment of X is

µ′(n) = E(X(r)) = E [X(X − 1) × · · · × (X − r + 1)] =

r∑
k=0

s(r, k)µ′k,

where

s(r, k) = (k!)−1

[
dk

dxk
x(r)

]
x=0

is the Stirling number of the first kind which counts the number of ways to permute a list of r items into k
cycles. So, we can obtain the factorial moments from the ordinary moments given before.

Lemma 2 (Upper bound for the moments of the T-E{Y} family). For the T-R{Y} family in Eq. (2), if R is a

non-negative random variable and E
[(

1 − FY(T)
)−1]

< ∞, we obtain

E (Xn) ≤ E (Rn) E
[

(1 − FY(T))−1
]
.

Proof. The result follows from Theorem 1 in [2].

Theorem 3. If X follows the T-E{Y} family of distributions in (5), then E (Xn) ≤ n! βn E
[(

1 − FY(T)
)−1]

.

Proof. The result follows from Lemma 2.

Corollary 4. Assuming that the moments exist, we have:
(a) If X ∼ T-E{log-logistic}, then E (Xn) ≤ n! βn

[
1 + a−bE

(
Tb

)]
.

(b) If X ∼ T-E{logistic}, then E (Xn) ≤ n! βn
[
1 + e−a/b MT (1/b)

]
.

(c) If X ∼ T-E{extreme value}, then E (Xn) < n! βn
[
1 + e−a/b MT (1/b)

]
.

Proof. For (a) and (b), the results follow immediately from Theorem 3. Now, if X follows the T-E{extreme

value} in Eq. (12) then
[(

1 − FY(T)
)−1]

=
[
1 − e−e−(T−a)/b

]−1
. By using the inequality 1 − e−x > x/(1 + x) for all

x > −1 [1], we obtain
[(

1 − FY(T)
)−1]

< 1 + e(T−a)/b. Hence, the result follows from Theorem 3.

The deviations from the mean and from the median, say D(µ) and D(M), measure the dispersion and
the spread in a population from the center of the distribution.
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Theorem 4. The quantities D(µ) and D(M) for the (i) T-E{log-logistic}, (ii) T-E{logistic}, and (iii) T-E{extreme
value} families, respectively, are obtained below.

(i) For w = a
(
ex/β
− 1

)1/b
,

D(µ) = 2µFX(µ) − 2β
∞∑
j=1

(−1) j+1

j abj
Sw(µ), (17)

D(M) = µ − 2β
∞∑
j=1

(−1) j+1

j abj
Sw(M), (18)

where Sw(c) =
∫ QY(FT(c))

0 wbj fT(w) dw and QY (FT(c)) = a
(
ec/β
− 1

)1/b
.

(ii) For w = a + b log
(
ex/β
− 1

)
,

D(µ) = 2µFX(µ) − 2β
∞∑

j=1,k=0

(−1) j+1( j/b)k e−
ja
b

k!
Sw(µ),

D(M) = µ − 2β
∞∑

j=1,k=0

(−1) j+1( j/b)k e−
ja
b

k!
Sw(M),

where Sw(c) =
∫ QY(FT(c))

−∞
wk fT(w) dw and QY (FT(c)) = a + b log

(
ec/β
− 1

)
.

(iii) For w = a + b log
(
x/β

)
,

D(µ) = 2µFX(µ) − 2β
∞∑

k=0

e−a/b

k! bk
Sw(µ),

D(M) = µ − 2β
∞∑

k=0

e−a/b

k! bk
Sw(M),

where Sw(c) =
∫ QY(FT(c))

−∞
wk fT(w) dw and QY (FT(c)) = a + b log

(
c/β

)
.

Proof. By definitions of D(µ) and D(M), we can write:

D(µ) = 2µFX(µ) − 2
∫ µ

0
x fX(x) dx and D(M) = µ − 2

∫ M

0
x fX(x) dx. (19)

First, we prove Eq. (17) and Eq. (18) for the T-E{log-logistic} family. Consider the first incomplete moment
of X defined by

Ic =

∫ c

0
x fX(x) dx =

∫ c

0
x

a ex/β

b β

(
ex/β
− 1

) 1
b−1

fT
(
a
[
ex/β
− 1

]1/b)
dx.

For empirical purposes, the quantity Ic plays an important role for measuring inequality, for example,
Lorenz and Bonferroni curves.

Setting w = a
(
ex/β
− 1

)1/b
, we can write

Ic = β
∞∑
j=1

(−1) j+1

j abj
Sw(c), (20)
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where Sw(c) =
∫ QY(FT(c))

0 wbj fT(w) dw and QY (FT(c)) = a
(
ec/β
− 1

)1/b
.

Equations (17) and (18) follow by inserting Eq. (20) in Eq. (19). Similarly, we can prove the results in (ii)
and (iii).

For a given probability π, the Bonferroni and Lorenz curves of X are defined by B(π) = Iq/(πµ′1) and
L(π) = I(q)/µ′1, respectively, where q = QX(π) can be obtained from Lemma 2 and Iq from Theorem 4. These
curves can be readily determined and have applications in economics to study income and poverty, and
also in other fields like reliability, demography, insurance and medicine. In economics, if π = FX(q) is the
proportion of units whose income is lower than or equal to q, L(π) gives the proportion of total income
volume accumulated by the set of units with an income lower than or equal to q. The Lorenz curve is
increasing and convex and given the mean income, the density function of T can be obtained from the
curvature of L(π). In a similar manner, the Bonferroni curve B(π) gives the ratio between the mean income
of this group and the mean income of the population. In summary, L(π) yields fractions of the total income,
while the values of B(π) refer to relative income levels.

5. Some special models in the T-E{Y} class

We choose some T and Y random variables to generate four new T-E{Y} distributions, namely: the
Weibull-E{log-logistic}, gamma-E{log-logistic}, normal-E{logistic} and logistic-E{extreme value} distribu-
tions. For illustrative purposes, we study some properties of the Weibull-E{log-logistic} distribution. To
save space, some mathematical properties of the other distributions are not given here. One can follow
similar algebra to study some properties of them.

5.1. The Weibull-E{log-logistic} distribution
If T ∼ Weibull(θ, γ), then fT(t) = θγ tγ−1 e−θ tγ and FT(t) = 1 − e−θ tγ . Using Eq. (7), the cdf of the

Weibull-E{log-logistic} distribution is given by

FX(x) = 1 − e
−θ

[
a(ex/β

−1)1/b
]γ
.

To reduce the redundancy of the scale and shape parameters, we set a = θ = 1 and c = γ/b. Therefore, the
cdf and pdf of the Weibull-E{log-logistic} distribution, respectively, are

FX(x) = 1 − e−(ex/β
−1)c

and

fX(x) =
c
β

ex/β
[
ex/β
− 1

]c−1
e−(ex/β

−1)c

.

Next, some properties of the Weibull-E{log-logistic} distribution are obtained using the general proper-
ties discussed in Section 3.

(1) Quantile function. By using Lemma 2, the qf of the Weibull-E{LL} distribution is given by

QX(p) = β log
{
1 +

(
− log(1 − p)

)c
}
.

(2) Mode. By using Corollary 1, the modes of the Weibull-E{log-logistic} distribution are the solutions of
the following equation:

x = log
[

1(
1 − e−x/β) {

c − c
(
ex/β
− 1

)c
− e−x/β

}]
.
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(3) Moments. The following Lemma shows that the moments of the Weibull-E{log-logistic} exist.
Lemma 3. The nth moment of the Weibull-E{log-logistic} distribution exists for all n and satisfies the
following inequality E (Xn) ≤ n! βn

[
1 + Γ

(
1 + 1/c

)]
.

Proof. The results follow from Corollary 4.

(4) Shannon entropy. By using Corollary 2 and the fact that ηT = 1− log(γ) +ξ(1−γ−1), the Shannon entropy
of the Weibull-E{log-logistic} distribution follows as

ηx = 1 − log
(
β/c

)
+ ξ (1 − 1/c) + β−1E (X),

where ξ is an Euler constant.

5.2. The gamma-E{log-logistic} distribution
If T ∼Gamma(α, 1), then fT(t) = 1

Γ(α) tα−1 e−t and FT(t) = γ(α, t)/Γ(α), where γ(p, x) =
∫
∞

0 xp−1 e−xdx is the
incomplete gamma function. Using Eq. (7) and Eq. (8), the cdf of the gamma-E{log-logistic} distribution is
given by

FX(x) = γ
(
α, a

[
ex/β
− 1

]1/b
)
/Γ(α).

Setting a = 1, the corresponding pdf is

fX(x) =
1

b βΓ(α)
ex/β

(
ex/β
− 1

) α
b −1

e−
(

ex/β
−1

) 1
b

.

5.3. The normal-E{logistic} distribution
If T ∼Normal(µ, σ), then fT(t) = σ−1 φ

( x−µ
σ

)
and FT(t) = Φ

( x−µ
σ

)
. Using Eq. (9) and Eq. (10), the cdf and

pdf of the Normal-E{logistic} distribution are, respectively, given by

FX(x) = Φ
(
a + b log

(
ex/β
− 1

))
and

fX(x) =
b

β
(
1 − e−x/β) φ (

a + b log
(
ex/β
− 1

))
,

where x ∈ R, µ ∈ R is a location parameter and σ > 0 is a scale parameter.

5.4. The logistic-E{extreme value} distribution
If T ∼logistic(λ) and λ ∈ R+, then fT(t) = λ e−λ t (1 + e−λ t)−2 and FT(t) = (1 + e−λ t)−1. Using Eq. (11) and

Eq1. (12), the cdf of the logistic-E{extreme value} distribution is given by

FX(x) =
{
1 + e−λ[a+b log(x/β)]

}−1
.

Setting b = 1, the pdf of the logistic-E{extreme value} distribution is

fX(x) =
λ
x

e−λ[a+log(x/β)]
{
1 + e−λ[a+log(x/β)]

}−2
.

Figures 1 and 2 display some plots of the pdf and hrf of the Weibull-E{log-logistic} (W-E{LL}), gamma-
E{log-logistic} (Ga-E{LL}), normal-E{logistic} (N-E{L}) and logistic-E{extreme value} (L-E{EV}) distributions
for selected parameter values. Figure 1 indicates that the T-E{Y} class generates distributions with various
shapes such as symmetric, left-skewed, right-skewed and reversed-J. Further, Figure 2 reveals that this class
produces flexible hazard rate shapes such as increasing, decreasing, bathtub, upside-down bathtub, J and
reversed-J. In fact, the T-E{Y} class is very useful for fitting data sets with various shapes.
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Figure 1: Density plots: (a) W-E{LL} (b) Ga-E{LL} (c) N-E{L} and (d) L-E{EV}models.
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Figure 2: Hazard rate plots: (a) W-E{LL} (b) Ga-E{LL} (c) N-E{L} and (d) L-E{EV}models.
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6. Applications

In this section, three sub-model of the T-E{Y} class are fitted to two real data set, namely the W-E{LL},
Ga-E{LL} and N-E{L} distributions. For comparison purposes, gamma exponentiated-exponential (GEE)
([16]), beta-exponential (BE) ([12]) and exponentiated exponential (EE) ([9]) distributions are fitted to the
real data sets. The first data set represents the failure time of 20 components ([11]). The data set are: 0.072,
4.763, 8.663, 12.089, 0.477, 5.284, 9.511, 13.036, 1.592, 7.709, 10.636, 13.949, 2.475, 7.867, 10.729, 16.169, 3.597,
8.661, 11.501, 19.809. The second data set represents the breaking stress of carbon fibres ([14]). The data set
are: 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90,
3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15,
2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57,
0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68,
2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65.

The maximum likelihood method is used to estimate the model parameters. The goodness of fit statis-
tics including the maximum log-likelihood ( ˆ̀max), Akaike information criterion (AIC), consistent Akaike
information criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion
(HQIC), Anderson-Darling (A∗), Cramér–von Mises (W∗) and Kolmogrov-Smirnov (K-S) statistics are com-
puted to compare the fitted models. The statistics A∗ and W∗ are described in details in [6]. In general, the
smaller the values of these statistics, the better the fit to the data.

The required computations are carried out in the R-language. Tables 3 and 4 list the MLEs and their
corresponding standard errors (in parentheses) of the model parameters. The numerical values of the
model selection statistics ˆ̀max, AIC, CAIC, BIC, HQIC, A∗, W∗ and K-S are listed in Tables 5 and 6.

Table 3: MLEs and their standard errors (in parentheses) for the first data set.

Distribution a b c β θ γ α λ

W-E{LL} 1.000 - 0.618 12.375 1.000 - - -
- - (0.141) (2.072) - - - -

Ga-E{LL} 1.000 4.334 - 2.242 - - 2.682 -
- (2.723) - (1.561) - - (0.513) -

GEE - - - 0.193 - - 1.087 0.677
- - - (0.258) - - (0.621) (0.974)

BE 1.274 4.905 - 0.030 - - - -
(0.363) (16.879) - (0.100) - - - -

EE - - - 0.135 - - 1.235 -
- - - (0.036) - - (0.361) -

W - - - - 1.351 0.110 - -
- - - - (0.261) (0.019) - -

Table 4: MLEs and their standard errors (in parentheses) for the second data set.

Distribution a b β µ σ α λ

N-E{L} 0.000 0.891 1.014 2.182 1.000 - -
- (0.355) (0.533) (0.506) - - -

Ga-E{LL} 1.000 0.862 2.740 - - 2.048 -
- (0.397) (1.255) - - (1.005) -

GEE - - 0.270 - - 8.067 6.138
- - (0.254) - - (2.171) (6.700)

BE 5.969 22.701 0.091 - - - -
(0.827) (51.134) 0.187 - - - -

EE - - 1.013 - - 7.788 -
- - (0.087) - - (1.497) -

N - - - 2.621 1.009 - -
- - - (0.101) (0.071) - -
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Table 5: The statistics ˆ̀max, AIC, CAIC, BIC, HQIC, A∗, W∗ and K-S for the first data set.

Distribution ˆ̀max AIC CAIC BIC HQIC A∗ W∗ K-S P-value (K-S)

W-E{LL} 57.168 118.335 119.041 120.327 118.724 0.451 0.079 0.175 0.514

Ga-E{LL} 58.399 122.799 124.299 125.786 123.382 0.143 0.022 0.106 0.961

GEE 62.345 130.690 132.190 133.677 131.273 0.883 0.152 0.233 0.193

BE 62.296 130.592 132.092 133.580 131.176 0.882 0.152 0.230 0.207

EE 62.384 128.769 129.475 130.761 129.158 0.896 0.154 0.233 0.194

Table 6: The statistics ˆ̀max, AIC, CAIC, BIC, HQIC, A∗, W∗ and K-S for the second data set.

Distribution ˆ̀max AIC CAIC BIC HQIC A∗ W∗ K-S P-value (K-S)

N-E{L} 141.360 288.719 288.969 296.535 291.882 0.409 0.067 0.061 0.853

Ga-E{LL} 142.239 290.480 290.730 298.295 293.643 0.497 0.066 0.068 0.744

GEE 143.741 293.482 293.732 301.297 296.645 0.833 0.162 0.096 0.311

BE 143.257 292.514 292.764 300.329 295.677 0.761 0.149 0.094 0.345

EE 146.182 296.365 296.488 301.575 298.473 1.186 0.227 0.108 0.197
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Figure 3: Plots of the estimated pdfs and cdfs for the W-E{LL}, Ga-E{LL}, GEE, BE and EE models.
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Figure 4: Plots of the estimated pdfs and cdfs for the N-E{L}, Ga-E{LL}, GEE, BE and EE models.

The results in Tables 5 and 6 show that the W-E{LL} and the Ga-E{LL}models provide the best fit for the
failure time data while the N-E{L} and the Ga-E{LL} models provide the best fit for the breaking stress of
carbon fibres data. The histograms of both data sets and the estimated pdfs and cdfs for the fitted models
are displayed in Figures 3 and 4. The figures support the results from Tables 5 and 6.



Zubair et al. / Filomat 32:4 (2018), 1259–1272 1272

7. Concluding remarks

Recently, there has been a great interest among statisticians and applied researchers in constructing flex-
ible distributions in order to facilitate better modeling for complex data sets. Consequently, a significant
progress has been made toward the generalization of some well-known lifetime models. In this context,
we define and study a new class of generalized exponential family, the T-exponential{Y} family. Some sub-
models of T-exponential{Y} family are studied in some detail. These models show the great flexibility of
T-exponential{Y} family in terms of the shapes of the density and hazard rate functions.
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