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Abstract. In this paper we study a stochastic model for tumor-immune interaction with delay. More
precisely, we extend the deterministic delay tumor-immune interaction model by introducing random
perturbations and obtain stochastic model. For this model, we first prove existence and uniqueness of the
global positive solution, and then, by using suitable Lyapunov functionals, we obtain stability conditions
for the equilibrium state when tumor cells and resting cells approach their carrying capacities. We also
carry numerical simulation with reliable data to illustrate our theoretical findings.

1. Introduction

Cancer is one of the greatest killer diseases in human population. It is well known that millions of
people die from cancer every year, and although the great progress has been achieved in fields of cancer
prevention and surgery and many novel drugs are available for medical therapies, the worldwide trends
indicate that millions more will die from this disease in the future. Cancer is a group of diseases that
manifests itself through rapid growth with the potential to expand and involve other organs in the body. It
is important to highlight that not all tumors are cancerous. There exists benign tumors that do not spread
to other parts of the body. Nowadays, over 100 types of cancers that affect humans are known.

In most cases of cancers (90-95%), genetic mutations from environmental factors are responsible for the
disease, and the remaining 5-10% are due to inherited genetics [1]. Environmental factors does not include
just pollution, but all causes that are not inherited genetically, such as lifestyle, economic and behavioral
factors, tobacco (25-30%), diet and obesity (30-35%), infections (15-20%), radiation (up to 10%), stress, lack
of physical activity etc.

Due to the fact that this is a very widespread and dangerous disease, many methods of cancer treatment
have developed over time. The primary ones include surgery, chemotherapy, radiation therapy, hormonal
therapy, targeted therapy and palliative care. Which treatments are used depends on the type, location
and grade of the cancer as well as the patient’s health and preferences. Surgery and chemotherapy play an
important role in treating cancer, but they do not represent a cure. In order to control spread of the disease,
we need a successful treatment strategies. One of these strategies is investigated through immunotherapy
which represents the interaction between effector cells and tumor cells, and it is used since 1997. This idea
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of immunotherapy is promising, but controversial from the point of view of the results obtained in medical
investigations.

Immunotherapies can be categorized as active, passive or hybrid (active and passive). These approaches
exploit the fact that cancer cells often have molecules on their surface that can be detected by the immune
system, known as tumor-associated antigens (TAAs). Active immunotherapy directs the immune system
to attack tumor cells by targeting TAAs. Passive immunotherapies enhance existing anti-tumor responses
and include the use of monoclonal antibodies, lymphocytes and cytokines.

One form of passive immunization is by the transfusion of T-cells (adoptive T-cell therapy). These cells
are found in blood and tissue and usually activate when they find foreign pathogens. Specifically they
activate when the T-cell’s surface receptors encounter cells that display parts of foreign proteins on their
surface antigens. These can be either infected cells, or antigen presenting cells (APCs). They are found in
normal tissue and in tumor tissue, where they are known as tumor infiltrating lymphocytes (TILs). They
are activated by the presence of APCs such as dendritic cells that present tumor antigens.

Multiple ways of producing and obtaining tumor targeted T-cells have been developed. T-cells specific
to a tumor antigen can be removed from a tumor sample (TILs) or filtered from blood. Subsequent activation
and culturing is performed ex vivo, with the results reinfused. Activation can take place through gene
therapy, or by exposing the T-cells to tumor antigens.

The theoretical study of tumor–immune interaction has a long history. There are many papers in the
literature in which this interaction is regarded as competitive model between tumor cells and immune
system, or as a predator–prey like relationship (see [2, 5, 14] and references cited therein). In all this papers
tumor–immune interaction is described by defining a model of differential equations that represents the
interaction between effector cells and tumor cells.

As we have already mentioned, environmental factors affect spread of cancer, and that is why it is
important to consider stochastic models. There are so many methods to introduce stochastic perturbations
in the system. From biological perspective, random effects can be expressed in Itô or Stratonovich stochastic
integrals. The Stratonovich integral lacks the important property of the Itô integral, which does not ”look
into the future”. In many real-world applications, one only has information about past events, and hence
the Itô interpretation is more natural. In [14] the authors consider stochastic model for tumor–immune
interaction. However, since activation process and conversion from resting T-cells into hunting T-cells
are not instantaneous, but followed by some time lag, in this paper we consider delay stochastic model
of tumor-immune interaction. We construct our model on the basis of models considered in [2] and
[14] by assuming that environmental changes affect conversion rate of resting into hunting T-cells. For
our model, we investigate stability properties of the equilibrium states by using well known method
based on construction of appropriate Lyapunov functionals. The general method of Lyapunov functionals
construction was proposed and developed by Kolmanovskii and Shaikhet [8] and Shaikhet (see [15–18], for
instance) for different types of stochastic differential equations. This method is used in many papers for
stability investigation of the equilibrium states of stochastic population and epidemiological delay models
(see [3, 4, 9, 12], among the others).

The paper is organized in the following way: In Section 2, we outline the deterministic models presented
in [2] and [14] on the basis of which we construct the stochastic model. In Section 3 we verify that there
exists a unique nonnegative solution for our model. In Section 4 by using Lyapunov functionals, we
investigate stochastic asymptotic stability of the equilibrium state when tumor and resting cells approach
their carrying capacities, and establish some sufficient stability conditions regardless of incubation period.
Section 5 is devoted to the numerical simulation of the results obtained through the paper in order to show
that the stochastic model for dynamics of growth of highly malignant B Lymphoma/Leukemic cells (BCL1) in
the spleen of chimeric mice, with quantities which are reliable data, is compatible with our mathematical
findings. We close the paper with Section 6, where we combine the results obtained through the paper and
give some possible directions for the future research.
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2. The model

In this section, we briefly present the result by Banerjee et al. [2], who modify results from [14]
by introducing time delay into deterministic tumor-immune model. In order to model tumor-immune
interaction, the authors consider two cellular species, T-cells, which they classify into hunting and resting
cells, and the malignant tumor cells. Hunting cells attack tumor cells and destroy them, and resting cells
can not kill the tumor cells, but they release various cytokines which stimulate hunting cells so they can
hunt and destroy even more tumor cells. The authors regard the growth of tumor and resting cells as the
logistic growth. They denote M(t), N(t) and Z(t) to be number of tumor, hunting and resting cells at time
t, respectively. The assumptions of the model are the following: the tumor cells are destroyed at a rate
which is proportional to the densities of tumor and hunting cells according to the low of mass action, the
resting cells are converted to the hunting cells either by direct contact with them, or by contact of hunting
cells with cytokines which is produced by resting cells, conversion of resting cells into hunting ones is not
instantaneous but followed by some time lag and once a cell has been converted it will never return to
resting state.

Thus, the dynamics of T-cells and tumor cells is given by the system of ordinary differential equations:

dM(t)
dt

= r1M(t)
(
1 −

M(t)
k1

)
− α1M(t)N(t),

dN(t)
dt

= βN(t)Z(t − τ) − d1N(t) − α2M(t)N(t), (1)

dZ(t)
dt

= r2Z(t)
(
1 −

Z(t)
k2

)
− βN(t)Z(t − τ),

with initial conditions M(θ)=M0, N(θ)=N0, Z(θ)=Z0, θ ∈ [−τ, 0]. The parameters in model (1) are positive
constants which are described as follows:

r1 and r2 - the growth rate of tumor cells and resting cells, respectively,
k1 and k2 - the carrying capacity of tumor cells and resting cells, respectively,
d1 - the death rate of hunting cells,
α1 - the rate of annihilation of tumor cells in interaction with hunting cells,
α2 - the rate of annihilation of hunting cells in interaction with tumor cells,
β - the conversion rate of resting cells into hunting cells,
τ - time delay.

In [2], the authors consider model (1) in the set

Γ =
{
(M,N,Z) ∈ R3

+ : N + Z ≤ k2,M ≤ B
}
, (2)

where B is a positive constant defined by B=
(

k1
4r1

(r1+d1)2+ k2
4r2

(r2+d1)2
)
/d1.

On the basis of model (1) we construct the stochastic delay model by perturbing the conversion rate β
with β→ β + σẇ(t), where ẇ(t) is a white noise with the intensity σ2. Hence, we obtain system

dM(t)=

[
r1M(t)

(
1−

M(t)
k1

)
−α1M(t)N(t)

]
dt,

dN(t)=
[
βN(t)Z(t − τ)−d1N(t)−α2M(t)N(t)

]
dt+σN(t)Z(t − τ)dw(t), (3)

dZ(t)=

[
r2Z(t)

(
1−

Z(t)
k2

)
−βN(t)Z(t − τ)

]
dt−σN(t)Z(t − τ)dw(t),

with initial value

M(θ)=M0, N(θ)=N0, Z(θ)=Z0, θ ∈ [−τ, 0], (4)
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where w(t) represents a standard Brownian motion defined on a complete probability space {Ω,F , {Ft}t≥0,P}
with a filtration {Ft}t≥0, satisfying the usual conditions (it is right continuous and increasing, while F0
contains all P-null sets) and σ is a real constant.

Let us note here that stochastic model (3) has four equilibrium states: trivial equilibrium state E0(0, 0, 0),
EM(k1, 0, 0), EZ(0, 0, k2), EM,Z(k1, 0, k2). In comparison with system (1), it has two equilibrium states less than
deterministic system. Our goal is to investigate stability properties of equilibrium state EM,Z.

Through the paper, unless otherwise specified, we will consider model (3) with initial data (4) in the set
Γ defined in (2).

3. Positive and global solution

As M(t), N(t) and Z(t) in system (3) represent cell numbers at the moment t, we are only interested in
the positive solutions. Moreover, in order for a stochastic differential equation to have a unique global
solution (i.e. solution that does not explode in finite time) for any given initial data, the coefficients
of stochastic differential equation are generally required to satisfy the linear growth condition and local
Lipschitz condition [13]. By the following theorem we establish some conditions under which the solution
of system (3) is positive and global.

Theorem 3.1. For any initial value (4), there exists a unique positive global solution (M(t),N(t),Z(t)) to system (3)
on t ≥ −τ.

Proof. Since the coefficients of system (3) are locally Lipschitz continuous, then, for any initial value there
exists a unique local solution (M(t),N(t),Z(t)) on t ∈ [−τ, τe), where τe represents explosion time. To show
that this solution is global, we need to prove that τe = ∞ a.s. Let k0 > 0 be sufficiently large such that M(θ),
N(θ) and Z(θ) all lie within the interval

[
1
k0
, k0

]
for θ ∈ [−τ, 0]. For each integer k ≥ k0 define the stopping

time
τk = inf

{
t ∈ [−τ, τe) : M(t) <

(1
k
, k

)
∨N(t) <

(1
k
, k

)
∨ Z(t) <

(1
k
, k

)}
,

where throughout this paper we set inf ∅ = ∞ (as usual ∅ represents the empty set). Clearly, τk is increasing
as k → ∞. Set τ∞ = limk→∞ τk. If we can show that τ∞ = ∞ a.s., then τe = ∞ a.s. and (M(t),N(t),Z(t)) is a
positive global solution of system (3). Thus, we only need to show that τ∞ = ∞ a.s. If this is not true, then
there exists a constant T > 0 such that P {τk ≤ T} → ∞when k→∞.

Let us define a C2 functional V1 : R3
+ → R+ by

V1(M,N,Z)=M−ln M+N2
−2 ln N+Z−ln Z.

Nonnegativity of this functional can be seen from inequality u− ln u ≥ 0 far any u > 0. Let k ≥ k0 and T > 0
be arbitrary. For 0 ≤ t ≤ τk ∧ T we apply the Itô formula to V1(M,N,Z) and obtain

dV1(M(t),N(t),Z(t)) = LV1(M(t),N(t),Z(t),Z(t − τ))dt + σZ(t − τ)
(
2(N2(t) − 1) −

Z(t) − 1
Z(t)

)
dw(t),

where

LV1(M,N,Z,Z1)= (M−1)
(
r1

(
1−

M
k1

)
−α1N

)
+2(N2

−1)
(
βZ1−d1−α2M

)
+σ2Z2

1

+(Z−1)
(
r2

(
1−

Z
k2

)
−β

NZ1

Z

)
+
σ2

2
(NZ1)2

Z2 .

Bearing in mind that we are working on the set Γ defined by (2), we calculate

LV1(M,N,Z,Z1)≤−
r1

k1
M2+

(
r1

(
1+

1
k1

)
+2α2

)
M−r1+2d1− r2

−2d1N2+α1N−
r2

k2
Z2+r2

(
1+

1
k2

)
Z+2βk2

2Z1+σ2k2
2+σ2 k4

2

2Z2 .



M. Krstić / Filomat 32:4 (2018), 1273–1283 1277

In order to eliminate the terms with delay, we introduce the nonnegative functional

V2(Z(t))=2βk2
2

∫ t

t−τ
Z(s)ds.

Thus, for V =V1+V2, we obtain that LV≤K, where K is a positive constant. Therefore,

dV(M,N,Z)≤Kdt + σZ(t − τ)
(
2(N2(t) − 1) −

Z(t) − 1
Z(t)

)
dw(t).

The rest of the proof is rather standard for this type of theorems, and, hence, is omitted.

4. Stability analysis

As we have already mentioned, our main goal is to investigate the stability conditions of the equilibrium
state EM,Z(k1, 0, k2) of system (3). For that purpose, we use the well known general method of Lyapunov
functionals construction. Let us first center system (3) around the mentioned equilibrium state. Hence, we
make change of variables x(t)=M(t)−k1, y(t)=Z(t)−k2 and obtain

dx(t)=−

[
r1(x(t)+k1)

x(t)
k1

+α1(x(t)+k1)N(t)
]
dt,

dN(t)=
[
βN(t)(y(t − τ)+k2)−d1N(t)−α2(x(t)+k1)N(t)

]
dt+σN(t)(y(t − τ)+k2)dw(t), (5)

dy(t)=−

[
r2(y(t)+k2)

y(t)
k2

+βN(t)(y(t − τ)+k2)
]
dt−σN(t)(y(t − τ)+k2)dw(t),

It is obvious that stability in probability of equilibrium state EM,Z of system (3) is equivalent to stability in
probability of the trivial equilibrium state of system (5).

Before we proceed, we establish some definitions and statements for the stability of stochastic functional
differential equations (see [7], for instance).

Let (Ω,F , {Ft}t≥0,P) be a given complete probability space with the filtration {Ft}t≥0 satisfying the usual
conditions, and let w(t) be an m-dimensional Brownian motion defined on the space. Denote that C =
C([−τ, 0];Rd) is the family of continuous functions ϕ : [−τ, 0] → Rd with the norm ||ϕ|| = sup

−τ≤θ≤0 |ϕ(θ)|
andD the space of F0-adapted function ϕ ∈ C.

Consider the d-dimensional stochastic functional differential equation

dy(t) = f (t, yt)dt + 1(t, yt)dw(t), ≥ 0, (6)
y0 = ϕ = {ϕ(θ) : −τ ≤ θ ≤ 0},

where yt = {y(t +θ) : −τ ≤ θ ≤ 0} is a C-valuated stochastic process and y0 ∈ D, such that E||ϕ||2 < ∞, while
f (t, ϕ) is d-dimensional vector and 1(t, ϕ) is d × m-dimensional matrix, both defined for t ≥ 0. We assume
that Eq. (6) has a unique global solution y(t;ϕ), as well as that f (t, 0) = 1(t, 0) ≡ 0. So, Eq. (6) has the trivial
solution y(t) ≡ 0 corresponding to the initial condition y0 = 0.

Definition 4.1. The trivial solution of Eq. (6) is said to be stochastically stable if for every ε ∈ (0, 1) and r > 0, there
exists a δ = δ(ε, r, 0) > 0 such that

P{|y(t;ϕ)| > r, t ≥ 0} ≤ ε,

for any initial condition ϕ ∈ D satisfying P{||ϕ|| ≤ δ} = 1.

Definition 4.2. The trivial solution of Eq. (6) is said to be mean square stable if for every ε > 0, there exists a δ > 0
such that E|y(t;ϕ)|2 < ε for any t ≥ 0 provided that sup

−τ≤θ≤0 E|ϕ(θ)|2 < δ.

Definition 4.3. The trivial solution of Eq. (6) is said to be asymptotically mean square stable if it is mean square
stable and limt→∞ E|y(t;ϕ)|2 = 0.
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The differential operator associated to Eq. (6) is defined by the formula

LV(t, ϕ) = lim sup
∆→0

Et,ϕV(t + ∆, yt+∆) − V(t, ϕ)
∆

,

where y(s), s ≥ t is the solution of Eq. (6) satisfying the initial condition yt = ϕ, and V(t, ϕ) is a functional
defined for t ≥ 0 and for functions ϕ ∈ D.

Let us reduce a class of functionals V(t, ϕ) so that the operator L can be calculated. First, for t ≥ 0 and
function ϕ ∈ D, let V(t, ϕ) = V(t, ϕ(0), ϕ(θ))), −τ ≤ θ ≤ 0. Then, we define the function

Vϕ(t, y) = V(t, ϕ) = V(t, yt) = V(t, y, y(t + θ)), −τ ≤ θ ≤ 0,

where ϕ = yt, y = ϕ(0) = y(t).
Let us denote that C1,2 is a class of functionals V(t, ϕ) so that, for almost all t ≥ 0, the first and second

derivatives with respect to y of Vϕ(t, y) are continuous, and the first derivative with respect to t is continuous
and bounded. Then, the application of the generating operator L of Eq. (6) yields

LV(t, yt)=
∂Vϕ(t, y)

∂t
+ f T(t, yt)

∂Vϕ(t, y)
∂y

+
1
2

trace
[
1T(t, yt)

∂2Vϕ(t, y)
∂y2 1(t, yt)

]
.

The following theorems [7] contain conditions under which the trivial solution of Eq. (6) is asymptoti-
cally mean square stable and stochastically stable.

Theorem 4.4. Let there exist a functional V(t, ϕ) ∈ C1,2 such that

c1E|y(t)|2 ≤ EV(t, yt) ≤ c2 sup
−τ≤θ≤0

E|y(t + θ)|2,

ELV(t, yt) ≤ −c3E|y(t)|2,

for ci > 0, i = 1, 2, 3. Then, the trivial solution of Eq. (6) is asymptotically mean square stable.

Theorem 4.5. Let there exist a functional V(t, ϕ) ∈ C1,2 such that

c1|y(t)|2 ≤ V(t, yt) ≤ c2 sup
−τ≤θ≤0

|y(t + θ)|2 and LV(t, yt) ≤ 0,

for ci > 0, i = 1, 2 and for any ϕ ∈ D such that P{||ϕ|| ≤ δ} = 1, where δ > 0 is sufficiently small. Then, the trivial
solution of Eq. (6) is stochastically stable.

Now, we can proceed with our results.
The corresponding linearized system of system (5) is

dx̃(t)=−
[
r1x̃(t)+α1k1Ñ(t)

]
dt,

dÑ(t)=−
[
d1+α2k1−βk2

]
Ñ(t)dt+σk2Ñ(t)dwt, (7)

dỹ(t)=−
[
r2 ỹ(t)+βk2Ñ(t)

]
dt−σk2Ñ(t)dwt.

Theorem 4.6. Let, for an arbitrary numbers ã, b̃ and c̃ such that

b̃ >
ãα1k1 + c̃βk2

2(d1 + α2k1 − βk2)
, (8)

the model parameters of system (5) satisfy the conditions

α1k1 < 2r1, (9)
βk2 < min {d1+α2k1, 2r2} (10)

0 ≤ σ2 <
2b̃(d1+α2k1−βk2)−ãα1k1−c̃βk2

(b̃+c̃)k2
2

. (11)

Then the trivial solution of system (7) is asymptotically mean square stable.
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Proof. Let us construct Lyapunov functional V

V =ax̃2(t)+bÑ2(t)+cỹ2(t),

where a, b and c are non-negative constants to be selected in the sequel. Application of the generating
operator L on system (7) and some basic calculations yield

LV =−2ar1x̃2(t)−2aα1k1x̃(t)Ñ(t)−2b
(
d1+α2k1−βk2

)
Ñ2(t)−2cr2 ỹ2(t)−2cβk2Ñ(t)ỹ(t)+(b+c)k2

2σ
2Ñ2(t).

By using the elementary inequality ± 2uv ≤ u2+v2, we deduce

LV≤−a [2r1−α1k1] x̃2(t)

−

[
2b

(
d1+α2k1−βk2

)
−aα1k1−cβk2−(b+c)k2

2σ
2
]

Ñ2(t) (12)

−c
[
2r2−βk2

]
ỹ2(s)ds.

For an arbitrary positive constants ã and c̃ we can choose constant b̃ as defined in (8). Such a choice of
constants in addition to conditions (9)-(11), guaranties positivity of the quantities in the brackets of the last
inequality, which completes the proof.

Let us note that system (5) has the order of nonlinearity more than one. From [16, 17] it follows that if
the order of nonlinearity of the system under consideration is more than one then the conditions, which are
sufficient for asymptotic mean square stability of the trivial solution of the linear part of this system, are
sufficient for stochastic stability of the trivial solution of the whole system. Thus, if conditions (9)-(11) hold
then the trivial solution of the system (5) is stochastically stable, which is formulated in the next statement.

Corollary 4.7. Let all conditions of Theorem 4.6 hold. Then, the trivial solution of system (5) is stochastically stable.

From Corollary 4.7 it is obvious that tumor cells and hunting cells will reach their maximum value
M(t)=k1 and Z(t)=k2 if annihilation rate of tumor cells multiplied by their carrying capacity is smaller than
their growth rate, and conversion rate of resting cells into the hunting ones multiplied by their carrying
capacity is smaller than their growth rate. In other words, if growth rates of tumor and resting cells are large
enough, than their number reach carrying capacities, in the absence of hunting cells. From the biological
point of view, from condition (10) we can conclude that if the conversion rate from resting to hunting stage
of T-cells (β) does not exceed certain value, the malignant cell density tends to the maximum level and we
obtain stability of hunting cell-free equilibrium state. However, for applications, it is important to control
malignant cell density. Thus, if we enhance the conversion rate, we can reduce number of malignant tumor
cells, which will be shown in Figures 3 and 5 in Section 5.

At the end of this section, let us highlight that in Theorem 4.6 and Corollary 4.7 we obtained stability
conditions for equilibrium state EM,Z regardless of the length of time delay, i.e. this conditions is valid for
every τ.

5. Numerical simulation

In order to get some conclusions about biological significance of the stability of equilibrium state EM,Z
of model (3), let us consider dynamics of growth of highly malignant B Lymphoma/Leukemic cells (BCL1) in
the spleen of chimeric mice. All the parameters used in order to carry numerical simulation are reliable
data which can be found in [2] and references cited therein. For numerical simulation, we use the Euler-
Maruyama approximate method (see [6]) to simulate the solutions of the considered equations1).

1)All simulations are made by using MATHEMATICA programme.



M. Krstić / Filomat 32:4 (2018), 1273–1283 1280

From [2, 14] we can take model parameters in the following form

k1 =3.3 · 106 cells, k2 =6.5 · 106 cells, (13)
α1 =1.101 · 10−7 cells/day, α2 =6.422 · 10−10 cells/day, d1 =0.0412 cells/day,
r1 =0.185 cells/day, r2 =0.0245 cells/day, β=6.2 · 10−9 cells/day.

With such choice of parameters, and, for ã = 10−20 and c̃ = 10−10 we can choose b̃ = 106. We can easily
verify that these constants with parameters (13) satisfy condition (8), as well as (9) and (10). From the
condition (11) we can calculate σ2. For this model we choose small intensity of noise σ2 = 1.429 · 10−16

which is reasonable for our model (3), because of the fact that σ2 represents intensity of noise which affects
parameter β, and from (13) we can see that it is very small. Now, let us highlight once more that Theorem 4.6
gives us stability conditions which are independent of the length of time delay. Thus, we choose τ=40 days.
This is realistic choice because of the fact that for acute lymphobastic leukaemia, the cancer in which too
many white cells form and it develops in the chest, procedure is to start with aggressive chemotherapy,
and after that the blood stem cells from donor’s bone marrow are injected. The recommended time frame
for doing that is up to two months after achievement of remission. Since time delay affects resting cells,
we suppose that initial values for tumor cells and hunting T-cells are constant, and initial data for resting
T-cells is decreasing function of θ. Thus, we have initial data

M(θ)=2.7 · 106, N(θ)=2.04 · 105, Z(θ)=5.33 · 106e−
θ

10640 , −40 ≤ θ ≤ 0. (14)

For model parameters (13), σ2 =1.429 · 10−16, τ=40 days and initial data (14), we can observe stability of
equilibrium state EM,Z of system (3) in Figures 1 (for M(t)) and 2 (for N(t) and Z(t)).
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Figure 1: Deterministic and stochastic trajectories for tumor cells M(t) of models (1) and (3) for β=6.2·10−9.
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Figure 2: Deterministic and stochastic trajectories for T-cells: hunting cells N(t) (left) and resting cells Z(t) (right) of models (1) and (3)
for β=6.2·10−9.
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As we have already mentioned, if we enhance the conversion rate, we can reduce number of malignant
tumor cells. Thus, let us set β = 8 · 10−9, and the other model parameters be the same as in previous
simulation. For such a choice of model parameters, condition (10) does not hold, and we can observe in
Figures 3 and 4 that equilibrium state EM,Z of system (3) is not stable.
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Figure 3: Deterministic and stochastic trajectories for tumor cells M(t) of models (1) and (3) for β=8·10−9.
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Figure 4: Deterministic and stochastic trajectories for T-cells: hunting cells N(t) (left) and resting cells Z(t) (right) of models (1) and (3)
for β=8·10−9.

Since deterministic model (1) has two more equilibrium states than stochastic model (3), which is already
mentioned in Section 2, from Figures 3 and 4, we may conclude that stochastic model may approach the

interior equilibrium state E∗(M∗,N∗,Z∗) in some sense, where M∗ =
k1[r1k2β2

−α1r2(βk2−d1)]
β2k2r1−α1α2k1r2

, N∗ = r1
α1

(
1−M∗

k1

)
,

Z∗= α2M∗+d1
β .

10 20 30 40 50

500 000

1.0´ 10
6

1.5´ 10
6

2.0´ 10
6

2.5´ 10
6

stochastic
deterministic

Figure 5: Deterministic and stochastic trajectories for tumor cells M(t) of models (1) and (3) for β=6.2·10−8.
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Figure 6: Deterministic and stochastic trajectories for T-cells: hunting cells N(t) (left) and resting cells Z(t) (right) of models (1) and (3)
for β=6.2·10−8.

If we keep with enhancing the conversion rate, and set β=6.2·10−8, malignant tumor cells will become
extinct, as well as resting T-cells, in approximately 35 days, and this is presented in Figures 5 and 6.

In the end let us underline that conditions obtained from the Theorem 4.6 and Corollary 4.7 give sufficient
but not necessary conditions for equilibrium state EM,Z of system (3) to be stable in some sense.

6. Conclusion

This paper considers the effects and interactions of tumor cells and immune cells. More precisely, system
of nonlinear delay differential equations considered in [2] is used as a basis in order to obtain the stochastic
model for tumor-immune interaction with delay. For this model, we first prove existence and uniqueness
of the global positive solution for any initial conditions. In the tumor-immune dynamics we consider, key
role is played by by the activation rate β from the resting to hunting stage of immune cells. Namely, our
results reveal that there is a certain threshold for the activation rate, and when the value of β is below
it, and intensity of noise is small enough, the malignant cell density tends to the maximum level and we
obtain stability of hunting cell-free equilibrium state. Thus, if we want to control tumor cell density, we
may enhance the conversion (activation) rate.

In order to illustrate our theoretical results, we carry numerical simulation with reliable data which refer
to the dynamics of growth of highly malignant B Lymphoma/Leukemic cells (BCL1) in the spleen of chimeric
mice.

At the end, let us point out that in this paper we only considered the white noises. However, there are
some random perturbations which involve other types of environmental noise, especially, the telephone
noise. Recently, stochastic models with the telephone noise have been studied by many authors (for
example, see [10, 11]) and this can be interesting topics for some further investigations.
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