A THEOREM ON SUBDIRECT PRODUCT OF SEMIGROUPS WITH APARTNESSES

Daniel Abraham Romano

Abstract

In this paper¹ we present a constructive version of a Bogdanović and Ćirić's lemma ([2, Lemma 1]) on subdirect product of semigroups. This version of the paper differs in some extent from the original one.

1 Introduction

1. This investigation is in the constructive mathematics ([1], [4], [5]) in the sense of Bishop, van Dalen, Heyting, Richman and Troelstra. Let $\mathbf{S} = (S, = , \neq, \cdot, 1)$ be a semigroup with apartness (A. Heyting) such that the semigroup operation is strongly extensional. Then $R_{=} \subseteq R_{\neq}^{*}$. The apartness \neq is tight if $R_{\neq}^{*} \subseteq R_{=}$ (D. Scott). A relation q on S is a coequality relation if it is consistent, symmetric and cotransitive ([4]). This notion is a generalization of the notion of apartness. q is a cocongruence on S if it is compatible with the semigroup operation on S, i.e. if

$$(\forall a, b, x \in S)((ax, bx) \in q \Rightarrow (a, b) \in q \& (xa, xb) \in q \Rightarrow (a, b) \in q).$$

Let e and q be compatible congruence and cocongruence on S. Then the relation $\overline{q} = \{(x, y) \in S \times S : (x, y) \neq q\}$ is a congruence on S such that $e \subseteq \overline{q}$ and we can construct semigroups $S/(e, q), S/(\overline{q}, q)$ and S/q. For these semigroups there exists a strongly extensional and embedding epimorphism $S/(e, q) \to S/q$.

2. Let S, K and Q be semigroups. If there exists a strongly extensional, embedding and injective homomorphism $\psi: S \to K \times Q$ such that $\pi_K \psi(S) = Q$, we say that S is a subdirect product of semigroups K and Q.

3. A subsemigroup K of a semigroup S is a *retract* of S if there exists a strongly extensional epimorphism $\varphi : S \to K$ such that $\varphi(x) = x$ for all

¹Received June 6, 1998

²⁰⁰⁰ Mathematics Subject Classification: 03F55, 20M10

Key words and phrases: Semigroup with apartness, coequality relation, cocongruence, strongly extensional subset, consistent subset, subdirect product of semigroups

 $x \in K$. Such epimorphism is called a *retraction*. An ideal extension S of K is a *retract extension* of K by Q if K is a retract of S and there exists a strongly extensional and embedding isomorphism $S/K \cong Q$.

4. In the second part we give some statements on semigroups with apartnesses and congruences on them. Let S be a subdirect product of a semigroup K and a semigroup Q with zero. In [2, Lemma 1] Bogdanović and Ćirić gave the following result on the retract extension:

S is isomorphic to a semigroup which is a retract extension of K by some semigroup Q' with zero and, moreover, the semigroup Q is isomorphic to some factor-semigroup of Q'.

In this paper we shall give a constructive version of this lemma by use of cocongruences, in the sense of [4], instead of congruences. Let S be a subdirect product of a semigroup $\mathbf{K} = (K, =, \neq, \cdot, 1)$ and a semigroup $\mathbf{Q} =$ $(Q, =, \neq, \cdot, 1, 0)$ and tight apartness such that $K \times \{0\} \subseteq S$ and let $\psi: S \to 0$ $K \times Q$ be a strongly extensional, embedding and injective homomorphism such that $\pi_K \psi(S) = K$ and $\pi_Q \psi(S) = Q$. First, we shall give a proof (Lemma 4) that the set $T = \psi^{-1}(K \times Q^*)$ is a strongly extensional and consistent subset of S and a description of that subset (Corollary 4.2). We shall give also a construction of the cocongruence $\alpha(T)$ on S induced by T (Lemma 3, Corollary 4.1) and a description of that cocongruence (Corollary (4.3). Secondly, we have the following theorem: S is strongly extensional and embedding isomorphic to a semigroup which is a retract extension of Kby some semigroup Q'. Moreover, Q is strongly extensional and embedding isomorphic to the semigroup $(S/\alpha)/(\beta/\alpha)$, where β is a cocongruence defined by the projection π_Q , and there exists a strongly extensional and embedding epimorphism $g: Q' \to S/\alpha$.

For notions and notations undefined here, we refer the reader to the books [1], [3] and [5] and the papers [2] and [4].

2 Preliminaries

In the next considerations the following results will be used:

Lemma 0 Let q be a congruence on a semigroup S with apartness. Then the factor-sets $S/q = \{xq : x \in S\}$ and $S/(\overline{q},q) = \{x\overline{q} : x \in S\}$ are semigroups, where

$$\begin{array}{ll} x\overline{q} = y\overline{q} \Leftrightarrow (x,y) \# q, & x\overline{q} \neq y\overline{q} \Leftrightarrow (x,y) \in q, & x\overline{q} \cdot y\overline{q} = xy\overline{q}, \\ xq = yq \Leftrightarrow (x,y) \# q, & xq \neq yq \Leftrightarrow (x,y) \in q, & xq \cdot yq = xyq \end{array}$$

A theorem on subdirect product of semigroups ...

and the set xq is a strongly extensional subset of S for every x in S. Moreover, S/q is strongly extensional and embedding isomorphic to the semigroup $S/(\overline{q}, q)$.

Note. Let S be a semigroup with apartness and let e and q be compatible, where e is a congruence and q is a cocongruence on S. Then $e \subseteq \overline{q}$ and there are semigroups S/(e,q) and $S/\overline{q},q)$. Then there exists a strongly extensional embedding homomorphism $w : S/(e,q) \to S/(\overline{q},q)$ defined by $w(xe) = x\overline{q}$ which is not injective, in the general case. The homomorphism w is injective if and only if $e = \overline{q}$.

Lemma 1 Let $h : S \to R$ be a homomorphism of semigroups with apartnesses. Then the relation q(h) on S defined by $(x, y) \in q(h) \Leftrightarrow h(x) \neq h(y)$ is a cocongruence on S compatible with the congruence $e(h) = \{(x, y) \in S \times S : h(x) = h(y)\}$.

Corollary 1.1 Let e and q be compatible congruence and cocongruence, respectively, on a semigroup S with apartness. Then there exists a strongly extensional and embedding isomorphism $(S/(e,q))/(e(w),q(w)) \rightarrow S/(\overline{q},q)$, where $e(w) = \{(xe, ye) \in (S/(e,q))^2 : (x,y) \# q\}$ and $q(w) = \{(xe, ye) \in (S/(e,q))^2 : (x,y) \in q\}$.

The next lemma contains an important result on cocongruences of semigroups:

Lemma 2 Let α and β be cocongruences on a semigroup S with apartness such that $\beta \subseteq \alpha$. Then the relation β/α on S/α , defined by $\beta/\alpha = \{(x\alpha, y\alpha) \in S/\alpha \times S/\alpha : (x, y) \in \beta\}$ is a cocongruence and $(S/\alpha)/(\beta/\alpha) \cong S/\beta$ holds.

Proof. Let $h: S/\alpha \to S/\beta$ be the mapping defined by $h(x\alpha) = x\beta$.

(i) Let $x\alpha = y\alpha$ and let $u = x\beta$. Then $(u, x) \in \beta$ and $(u, y) \in \beta \& (y, x) \in \beta \subseteq \alpha$. Thus we have $u \in y\beta$ because $x \in y\alpha = x\alpha$ is impossible $(x \# x\alpha)$. So, $x\beta \subseteq y\beta$. Similarly, we have $y\beta \subseteq x\alpha$, therefore $x\beta = y\beta$ and h is a function.

(ii) Let $x\beta \neq y\beta$. Then $(x, y) \in \beta \subseteq \alpha$ and $x\alpha \neq y\alpha$. So, the function h is strongly extensional.

(iii) Let $x\beta$ be an element of S/β . Then $x\alpha$ is an element of S/α such that $h(x\alpha) = x\beta$ so that the function h is surjective.

(iv) We have $h(x\alpha) \neq h(y\alpha) \Leftrightarrow x\beta \neq y\beta \Leftrightarrow (x,y) \in \beta$. Thus, it follows, by Lemma 1, that the relation $\{(x\alpha, y\alpha) \in S/\alpha \times S/\alpha : (x,y) \in \beta\}$ is a cocongruence on the semigroup S/α and the mapping $\pi : S/\alpha \to (S/\alpha)/(\beta/\alpha)$ is an epimorphism. Therefore, there exists a strongly extensional, embedding homomorphism $f : (S/\alpha)/(\beta/\alpha) \to S/\beta$ such that $f \cdot \pi = h$. Let $f((x\alpha)(\beta/\alpha)) = f((y\alpha)(\beta/\alpha))$, i.e. $h(x\alpha) = h(y\alpha)$, so $x\beta = y\beta$. Assume $u\alpha \in (x\alpha)(\beta/\alpha)$. Then $(x\alpha, u\alpha) \in \beta/\alpha$. Thus $(x\alpha, y\alpha) \in \beta/\alpha$ or $(y\alpha, u\alpha) \in \beta/\alpha$, i.e. $(x, y) \in \beta$ or $(y, u) \in \beta$. Thus it follows $u\alpha \in (y\alpha)(\beta/\alpha)$ because $y \in x\beta = y\beta$ is impossible. So, $(x\alpha)(\beta/\alpha) \subseteq (y\alpha)(\beta/\alpha)$. In a similar way we have the opposite inclusion. Therefore, the function f is injective. Finally, the homomorphism f is a strongly extensional and embedding isomorphism of semigroups.

It is well known the construction of the Rees congruence on a semigroup S induced by an ideal of S ([3]). In the next lemma we give a symmetrical construction of a cocongruence on a semigroup S with apartness induced by a strongly extensional and consistent subset of S.

Lemma 3 Let T be a strongly extensional and consistent subset of a semigroup S with apartness. Then the relation $q(T) = \{(x, y) \in S \times S : x \neq y \& (x \in T \lor y \in T)\}$ is a cocongruence on S such that

$$x \in T \Rightarrow xq(T) = \{y \in S : y \neq x\}, \ x \# T \Rightarrow xq(T) = T.$$

Proof. (i) Let (u, v) be an arbitrary element of q(T) and let z be an element of S. Then $u \neq v$ and $u \in T \lor y \in T$. Thus, the first, we have $u \neq z \lor z \neq v$, i.e. we have $(u, v) \neq (z, z)$ which means that q(T) is a consistent relation. Secondly, we have, for example,

$$u \neq z \& v \in T \Rightarrow (u \neq z \& v \in T \& v \neq z) \lor (u \neq z \& v \in T \& z \in T)$$
$$\Rightarrow (u, z) \in q(T) \lor (z, v) \in q(T).$$

In the case $u \neq z \& u \in T$ we simply have $(u, z) \in q(T)$. Analogously, we have the implications:

$$v \neq z \& u \in T \Rightarrow (z,v) \in q(T) \lor (u,z) \in q(T): \ z \neq v \& v \in T \Rightarrow (z,v) \in q(T).$$

So the relation q(T) is cotransitive. It is clear that q(T) is a symmetric relation.

(ii) The implication $x \in T \Rightarrow xq(T) = \{y \in S : y \neq x\}$ is clear. Let us show the second implication $x\#T \Rightarrow xq(T) = T$. Let x#T and let y be in xq(T). Then $x \neq y \& y \in T$. So, $xq(T) \subset T$. Beside that, for $y \in T$ we have $x \neq y$. Therefore $(x, y) \in q(T)$ and $y \in xq(T)$. Thus xq(T) = T.

(iii) Let $(xu, yv) \in q(T)$, i.e. let $xu \neq yv$ and $xu \in T \lor yv \in T$. Then $x \neq y \lor u \neq v$ and $x, u \in T \lor y, v \in T$. Therefore, $(x, y) \in q(T) \lor (u, v) \in q(T)$.

Lemma 4 Let S be a subdirect product of a semigroup $\mathbf{K} = (K, =, \neq, \cdot, 1)$ and a semigroup $\mathbf{Q} = (Q, =, \neq, \cdot, 1, 0)$. Let $\psi : S \to K \times Q$ be a strictly A theorem on subdirect product of semigroups ...

extensional, injective and embedding homomorphism of semigroups. Then the set $\psi^{-1}(K \times Q^*)$ is a strongly extensional and consistent subset of S. If Q has not zero-divisors, then $\psi^{-1}(K \times Q^*)$ is a filter of S.

Proof. (i) It is easily seen that the set $\psi^{-1}(K \times Q^*) = \{(a, x) \in K \times Q, x \neq A\}$ 0 is a consistent subset of S:

$$\begin{split} \psi(s' \cdot s'') &\in K \times Q^* \Leftrightarrow \psi(s') \cdot \psi(s'') \in K \times Q^* \Leftrightarrow \\ (\exists a', a'' \in K) (\exists x', x'' \in Q^*) (\psi(s') = (a', x') \& \psi(s'') = \\ (a'', x'') \& \psi(s' \cdot s'') = (a' \cdot a'', x' \cdot x'') \& x' \cdot x'' \neq 0 \\ \Rightarrow (\exists a', a'' \in K) (\exists x', x'' \in Q^*) (\psi(s') = (a', x') \& \psi(s'') = (a'', x'') \\ \Rightarrow \psi(s') \in K \times Q^* \& \psi(s'') \in K \times Q^*. \end{split}$$

(ii) Let $t \in \psi^{-1}(K \times Q^*)$ and let s be an element of S. Then there exist $a \in K$ and $x \in Q$, $x \neq 0$, and there exist elements $b \in K$ and $y \in Q$ such that $(a, x) \in \psi(t)$ and $(b, y) \in \psi(s)$. Thus $y \neq 0 \lor y \neq x$ and $(a, x) \neq (b, y)$ or $(b, y) \in K \times Q^*$. So, the set $K \times Q^*$ is a strongly extensional subset of S. (iii) Let Q has not zero-divisors. Then

$$\psi(s') \in K \times Q^* \& \psi(s'') \in K \times Q^* \Leftrightarrow$$
$$(\exists a', a'' \in K) (\exists x', x'' \in Q^*) (\psi(s') = (a', x') \& \psi(s'') = (a'', x'') \Rightarrow$$
$$(\exists a' \cdot a'' \in K) (\exists x' \cdot x'' \in Q^*) (\psi(s' \cdot s'') = (a' \cdot a'', x' \cdot x''))$$
$$\Rightarrow (\psi(s' \cdot s'') \in K \times Q^*.$$

So, the consistent subset $\psi^{-1}(K \times Q^*)$ of S is a filter of S.

Corollary 4.1 The relation α on S defined by the strongly extensional subset $T = \psi^{-1}(K \times Q^*)$ is a cocongruence on S compatible with the Rees congruence τ on S determined by the ideal $J = \psi^{-1}(K \times \{0\})$.

Proof. Let $(x, y) \in \tau$ & $(y, z) \in \alpha$, i.e. let $(x = y \lor (\psi(x) \in K \times \{0\} \& \psi(y) \in W))$ $K \times \{0\})$ and $(y \neq z \& (\psi(y) \in K \times Q^* \lor \psi(z) \in K \times Q^*))$. We have:

(i) $x = y \& \psi(y) \neq \psi(z) \& (\psi(y) = (b, j) \in K \times Q^* \lor \psi(z) = (c, p) \in$ $K \times Q^*) \Rightarrow \psi(x) \neq \psi(z) \& (\psi(x) = \psi(y) \in K \times Q^* \lor \psi(z) \in K \times Q^*).$ (ii) $\psi(x) = (a, 0) \in K \times \{0\} \& \psi(y) = (b, 0) \in K \times \{0\} \& y \neq z \& \psi(z) =$ $(c,p) \in K \times Q^* \Rightarrow$ $\psi(x) = (a,0) \in K \times \{0\} \& \psi(z) = (c,p) \in K \times Q^* \& \psi(x) \neq \psi(z) \Rightarrow$ $\psi(x) \neq \psi(z) \& \psi(z) \in K \times Q^* \Rightarrow$ $(x,z) \in \alpha$.

Corollary 4.2 $J \subseteq \{y \in S : x \# T\}$ and $T = \{y \in S : y \# J\}.$

Proof. (i) Let x be an element of J. Then there exists an element $a \in K$ such that $\psi(x) = (a, 0) \# K \times Q$. Let y be an arbitrary element of T. Then there exist elements $b \in K$ and $j \in Q$ such that $j \neq 0$ and $(a, 0) = \psi(x) \neq \psi(y) = (b, j)$. So, x # T. This means $J \subseteq \{x \in S : x \# T\}$.

(ii) Let y be an arbitrary element of T. Then there exist elements $b \in K$ and $j \in Q$ such that $\psi(y) = (b, j)$ and $j \neq 0$. If x is any element of J, then there is an element $a \in K$ such that $\psi(x) = (a, 0)$. Therefore, $\psi(x) =$ $(a, 0) \neq (b, j) = \psi(y)$. So, y # J. This means that $T \subseteq \{y \in S : y \# J\}$. In opposite, let y # J, i.e. let $(b, j) = \psi(y) \neq \psi(x) = (a, 0)$ for every $a \in K$. Thus $j \neq 0$, i.e. $y \in T$.

Let S be a subdirect product of semigroups $\mathbf{K} = (K, =, \neq, \cdot, 1)$ and $\mathbf{Q} = (Q, =, \neq, \cdot, 1, 0)$ and let $\psi : S \to K \times Q$ be a strictly extensional, injective and embedding homomorphism such that $\pi_K(\psi(S)) = K$ and $\pi_Q(\psi(S)) = Q$. Then, by Lemma 4, the set $T = \psi^{-1}(K \times Q^*)$ is a strongly extensional consistent subset of S and we can construct, by Lemma 1 and Lemma 3, congruences $\alpha(T) = \{(x, y) \in S \times S : \psi(x) \neq \psi(y) \& (x \in T \lor y \in T)\}, \beta(\pi_Q) = \{(x, y) \in S \times S : \pi_Q(\psi(x)) \neq \pi_Q(\psi(y))\}$ on S. We have some descriptions of these relations in the following assertion.

Corollary 4.3 Let x be an element of S. Then:

$$\begin{aligned} x \in T \Rightarrow x\alpha &= \{y \in S : \psi(y) \neq \psi(x)\}, \quad x \# T \Rightarrow x\alpha = T; \\ x \in J \Rightarrow x\beta = T, \ x \in T \Rightarrow J \subseteq x\beta. \end{aligned}$$

3 The main result

The following theorem is the main result of this paper.

Theorem 5 Let S be a subdirect product of a semigroup K and a semigroup Q with zero and tight apartness, let $\psi : S \to K \times Q$ be a strongly extensional, injective and embedding homomorphism of semuigroups such that $K \times \{0\} \subseteq S$. Then S is strongly extensional and embedding isomorphic to a semigroup which is a retract extension of K by some semigroup Q'. Moreover, Q is a strongly extensional and embedding isomorphic to the semigroup $(S/\alpha)/(\beta/\alpha)$ and there exists a strongly extensional and embedding epimorphism $g : Q' \to S/\alpha$.

Proof. Let $s \in S$. Then there exist elements $a \in K$ and $i \in Q$ such that $\psi(s) = (a, i)$. Then, by Lemma 4, the set $T = \psi^{-1}(K \times Q^*)$ is a strongly extensional consistent subset of S. Let $\pi_Q : K \times Q \to Q$ and $\pi_K : K \times Q \to K$ be projections, $\alpha(T) = \{(x, y) \in S \times S : \psi(x) \neq \psi(y) \& (x \in T \lor y \in T)\}$ the cocongruence on S induced by the set T, $\beta(\pi_Q) = \{(x, y) \in S \times S : \pi_Q(\psi(x)) \neq \pi_Q(\psi(y))\}$ the cocongruence on S induced by the projection π_Q

A theorem on subdirect product of semigroups ...

and e(J) the Rees congruence on S induced by the ideal J. Beside that, we have $\beta(\pi_Q) \subset \alpha(T)$ and $\overline{\alpha(T)} \subset e(\pi_Q)$: (i) $(x, y) \in \beta \Leftrightarrow (\exists a, b \in K)(\exists i, j \in Q)(\psi(x) = (a, i)\&\psi(y) = (b, j)\&i \neq j)$

 $\Rightarrow (\exists a, b \in K)(\exists i, j \in Q)(\psi(x) = (a, i)\&\psi(y) = (b, j)\&i \neq j\&(i \neq 0 \lor 0 \neq j)) \\ \Rightarrow (\exists a, b \in K)(\exists i, j \in Q)((i \in Q^*)((a, i) \neq (b, j)) \lor (j \in Q^*)((a, i) \neq (b, j)) \\ \Rightarrow (\psi(x) \neq \psi(y) \& (\psi(x) \in T \lor \psi(y) \in T) \\ \Leftrightarrow (x, y) \in \alpha;$

(ii) Let $(x, y) \# \alpha(T)$. Then there exist elements $a, b \in K$ and $i, j \in Q$ such that $\psi(x) = (a, i)$ and $\psi(y) = (b, j)$. We prove that i = j. Suppose $i \neq j$. Then $i \neq 0 \lor 0 \neq j$ and $(x, y) \in \alpha(T)$, which is impossible. So, $\neg(i \neq j)$ and it follows that i = j because the apartness in Q is tight. Therefore $(x, y) \in e(\pi_Q)$.

It is clear that $f: K \to K \times \{0\}$ is a strongly extensional and embedding isomorphism and π_K is a strongly extensional epimorphism. So, the mapping $f \cdot \pi_K \cdot \psi$ is a retraction if $K \times \{0\} \subset S$. Therefore S is strongly extensional and embedding isomorphic to a semigroup which is a retractive extension of K by a semigroup $Q' \cong S/(e(J), \alpha(T))$. Besides, there exists a strongly extensional and embedding epimorphism $S/(e(J), \alpha(T)) \to S/(\overline{\alpha(T)}, \alpha(T)) \cong$ $S/\alpha(T)$. Moreover, since $S/\beta(\pi_Q) \cong S/(e(\pi_Q), \beta(\pi_Q)) \cong Q$, by Lemma 2 we obtain that $(S/\alpha)/(\beta/\alpha) \cong (S/(\overline{\alpha(T)}, \alpha(T))/(e(\pi_Q)/\overline{\alpha(T)}, \beta(\pi_Q)/\alpha(T)) \cong$ $S/(e(\pi_Q), \beta(\pi_Q)) \cong S/\beta(\pi_Q) \cong Q$ whence it follows that Q is strongly extensional and embedding isomorphic to some factor-semigroup of the semigroup $S/\alpha(T)$ and there is a strongly extensional and embedding epimorphism $g: Q' \to S/\alpha(T)$.

Corollary 5.1 There exists a strongly extensional and embedding isomorphism $Q'/(e(g), q(g)) \cong S/\alpha(T)$.

Proof. The proof of this corollary follows immediately from Corollary 1.1.

References

- A. Bishop, Foundation of Constructive Analysis, McGraw-Hill, New York, 1967.
- [2] S. Bogdanović and M. Ćirić, Retractive nil-extensions of regular semigroups, I, Proc. Japan Acad., Ser. A 68:5 (1992), 115–117.
- [3] S. Bogdanović and M. Ćirić, *Polugrupe*, Prosveta, Niš, 1993.
- [4] D.A. Romano, Coequality relations, a survey, Bull. Soc. Math. Banja Luka 3 (1996), 1–35.

[5] A.S. Troelstra and D. van Dalen, *Constructivism in Mathematics: An Introduction*, North-Holland, Amsterdam, 1988.

Faculty of Natural Sciences and Mathematics Mladena Stojanovica 2 78000 Banja Luka Republic Srpska, Bosnia and Herzegovina

8