ALPHA-SPIRAL FUNCTIONS IN AN ELLIPTICAL DOMAIN

Nicolae N. Pascu, Dorina Răducanu, Radu N. Pascu and Mihai N. Pascu

Abstract

Let $E=\left\{z=x+i y: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1<0\right\}$, where $a>b>0$. In this paper ${ }^{1}$ we introduce the class of alpha-spiral functions in E. We obtain sufficient conditions for analytic functions in the elliptical domain E, to be alpha-spiral.

1 Introduction

Let g be a complex function in the unit disk $U=\{z \in \mathbf{C}:|\mathbf{z}|<\mathbf{1}\}$. For $z=x+i y \in U$ we put $u(x, y)=\operatorname{Re} z$ and $v(x, y)=\operatorname{Im} z$. The function g belongs to the class $C^{1}(U)$ if the functions $u=u(x, y)$ and $v=v(x, y)$ are continuous and have continuous first order partial derivatives in U. If $g \in C^{1}(U)$ we denote

$$
D g=z \frac{\partial g}{\partial z}-\bar{z} \frac{\partial g}{\partial \bar{z}} \quad \text { and } \quad J g=\left|\frac{\partial g}{\partial z}\right|^{2}-\left|\frac{\partial g}{\partial \bar{z}}\right|^{2}
$$

where

$$
\frac{\partial g}{\partial z}=\frac{1}{2}\left(\frac{\partial g}{\partial x}-i \frac{\partial g}{\partial y}\right) \quad \text { and } \quad \frac{\partial g}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial g}{\partial x}+i \frac{\partial g}{\partial y}\right) .
$$

Let $\alpha \in \mathbf{R}$ with $|\alpha|<\frac{\pi}{2}$ and let $z_{0} \in \mathbf{C} \backslash\{\mathbf{0}\}$. The equality

$$
z(t)=z_{0} e^{-(\cos \alpha+i \sin \alpha) t} \quad, \quad t \in \mathbf{R}
$$

defines an α-spiral curve in the complex plane.
Let D be a domain in \mathbf{C} such that $0 \in D$. If for any $z_{0} \in D \backslash\{0\}$, the arc of α-spiral curve which joins the points z_{0} and 0 , is contained in D, then D is an α-spiral domain with respect to 0 .

[^0]In 1981, H. S. Al-Amiri and P. T. Mocanu [1], introduced the class of nonanalytic α-spiral functions in U and obtained sufficient conditions for complex nonanalytic functions in U to be α-spiral.

Let $g \in C^{1}(U), g(0)=0$ and let $\alpha \in \mathbf{R},|\alpha|<\frac{\pi}{2}$. The function g is an α-spiral function in U if g is injective and maps U into an α-spiral domain with respect to 0 .

Theorem 1.1 [1] Let $\alpha \in \mathbf{R}$, with $|\alpha|<\frac{\pi}{2}$. If the function g belongs to the class $\mathbf{C}^{\mathbf{1}}(\mathbf{U})$ and satisfies the following conditions:
(i) $g(0)=0$ and $g(z) \neq 0$, for all $z \in U \backslash\{0\}$,
(ii) $\mathrm{Jg}(z)>0$, for all $z \in U$,
(iii) $\operatorname{Re}\left[e^{i \alpha} \frac{D g(z)}{g(z)}\right]>0$, for all $z \in U \backslash\{0\}$,
then g is an α-spiral function in U.

2 Alpha-spirallikeness conditions

Let $\alpha \in \mathbf{R},|\alpha|<\frac{\pi}{2}$. An analytic function $f: E \rightarrow \mathbf{C}, \mathbf{f}(\mathbf{0})=\mathbf{0}$ is called α-spiral in E if it is univalent in E and $f(E)$ is an α-spiral domain with respect to the origin.

The following theorems provide sufficient conditions of α-spirallikeness.

Theorem 2.1 Let f be an analytic function from E into \mathbf{C} and $\alpha \in \mathbf{R},|\alpha|<$ $<\frac{\pi}{2}$. If f satisfies the conditions:
(i) $f(0)=0, f(z) \neq 0$, for all $z \in E \backslash\{0\}$ and $f^{\prime}(z) \neq 0$, for all $z \in E$,
(ii) For each $z \in E$, the inequality

$$
\begin{equation*}
\left(a^{2}+b^{2}\right) \operatorname{Re}\left[e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right]-\left(a^{2}-b^{2}\right) \operatorname{Re}\left[e^{i \alpha} \frac{\bar{z} f^{\prime}(z)}{f(z)}\right]>0 \tag{1}
\end{equation*}
$$

holds, then f is an α-spiral function in E.
Proof. Let h be the function from U into E given by

$$
\begin{equation*}
h(z)=\frac{a+b}{2} z+\frac{a-b}{2} \bar{z} . \tag{2}
\end{equation*}
$$

Then $h \in C^{1}(U), h$ is injective in U and $h(U)=E$. We consider the function $g: U \rightarrow \mathbf{C}, \mathbf{g}=\mathbf{f} \circ \mathbf{h}$ and we shall prove that g satisfies the conditions of Theorem 1, when f satisfies the conditions $(i)-(i i)$ of Theorem 2. Hence g is an α-spiral function in U and since $f(E)=g(U)$ we obtain that f is α-spiral in E.

We have $g(z)=f\left(\frac{a+b}{2} z+\frac{a-b}{2} \bar{z}\right) \in C^{1}(U), g(0)=f(0)$ and $g(z) \neq 0$, for all $z \in U \backslash\{0\}$. We also have

$$
J g(z)=\left|\frac{\partial g}{\partial z}\right|^{2}-\left|\frac{\partial g}{\partial \bar{z}}\right|^{2}=a b\left|f^{\prime}(u)\right|^{2}>0
$$

where $u=h(z) \in E$.
By using the definition of the operator D, we obtain

$$
\begin{equation*}
\frac{D g(z)}{g(z)}=\frac{\left(\frac{a+b}{2} z-\frac{a-b}{2} \bar{z}\right) f^{\prime}(u)}{f(u)} \tag{3}
\end{equation*}
$$

From $u=h(z)=\frac{a+b}{2} z+\frac{a-b}{2} \bar{z}$ and $\bar{u}=\frac{a-b}{2} z+\frac{a+b}{2} \bar{z}$ it results

$$
\begin{equation*}
z=\frac{1}{2 a b}[(a+b) u-(a-b) \bar{u}] \tag{4}
\end{equation*}
$$

By replacing (4) in (3), we obtain that the inequality

$$
\operatorname{Re}\left[e^{i \alpha} \frac{D g(z)}{g(z)}\right]>0, \quad z \in U \backslash\{0\}
$$

holds, when the following inequality

$$
\left(a^{2}+b^{2}\right) \operatorname{Re}\left[e^{i \alpha} \frac{u f^{\prime}(u)}{f(u)}\right]-\left(a^{2}-b^{2}\right) \operatorname{Re}\left[e^{i \alpha} \frac{\bar{u} f^{\prime}(u)}{f(u)}\right]>0, \quad u \in E
$$

is true.
Remark. For $a=b$, we have $E=U$ and we obtain the well known condition of α-spiralikeness for analytic functions in U.

Theorem 2.2 Let $\alpha \in \mathbf{R}$, with $|\alpha|<\frac{\pi}{2}$. If the function $f: E \rightarrow \mathbf{C}$ is analytic in E and satisfies the following conditions:
(i) $f(0)=0, f(z) \neq 0$, for all $z \in E \backslash\{0\}$ and $f^{\prime}(z) \neq 0$, for all $z \in E$,
(ii) For each $z \in E$

$$
\begin{equation*}
\left|\alpha+\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\arccos \frac{a^{2}-b^{2}}{a^{2}+b^{2}} \tag{5}
\end{equation*}
$$

then f is an α-spiral function in E.

Proof. In order to prove that f is an α-spiral function in E, we shall show that the inequality is (1) true. Since

$$
-\left(a^{2}-b^{2}\right) \operatorname{Re}\left[e^{i \alpha} \frac{\bar{z} f^{\prime}(z)}{f(z)}\right] \geq-\left(a^{2}-b^{2}\right)\left|e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right|, \quad z \in E
$$

we obtain

$$
\begin{aligned}
& \left(a^{2}+b^{2}\right) \operatorname{Re}\left[e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right]-\left(a^{2}-b^{2}\right) \operatorname{Re}\left[e^{i \alpha} \frac{\overline{z f^{\prime}}(z)}{f(z)}\right] \geq \\
& \geq\left(a^{2}+b^{2}\right) \operatorname{Re}\left[e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right]-\left(a^{2}-b^{2}\right)\left|e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right|= \\
& =\left(a^{2}+b^{2}\right)\left|e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right|\left\{\frac{\operatorname{xRe}\left[e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right]}{\left|e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right|}-\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right\}= \\
& \left(a^{2}+b^{2}\right)\left|e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right|\left\{\cos \left[\arg e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right]-\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right\}>0 .
\end{aligned}
$$

Hence, f is an α-spiral function in E.
Remark 2.1 If $\alpha=0$ the results concerning starlike functions in an elliptical domain are obtained [2].

References

[1] H.S. Al-Amiri and P.T. Mocanu, Spirallike nonanalytic functions, Proc. Amer. Math. Soc. 82:1 (1981), 61-65.
[2] N. Pascu, D. Răducanu, R. Pascu and M. Pascu, Starlike functions in an elliptical domain (to appear).

Department of Mathematics
Faculty of Sciences, Transilvania University
Iuliu Maniu, 50
Braşov 2200
România
E-mail: pascu@info.unitbv.ro

[^0]: ${ }^{1}$ Received April 3, 2000
 2000 Mathematics Subject Classification: 30C99
 Key words and phrases: α-spiral function, α-spiral curve, α-spiral domain

