ON A TYPE OF SEMI-SYMMETRIC METRIC CONNECTION ON AN ALMOST CONTACT METRIC MANIFOLD

U.C. De and Joydeep Sengupta

(Dedicated to Exp. Mileva Prvanović)

Abstract

We find¹ the expression for the curvature tensor of an almost contact metric manifold that admits a type of semi-symmetric metric connection. Also, we study the properties of the curvature tensor, the Weyl conformal curvature tensor and the projective curvature tensor.

1 Introduction

Let (M^n, g) be an *n*-dimensional Riemannian manifold of class C^{∞} with metric tensor g and let ∇ be the Levi-Civita connection on M^n . A linear connection $\overline{\nabla}$ on (M^n, g) is said to be semi-symmetric [1] if the torsion tensor T of the connection $\overline{\nabla}$ satisfies

(1)
$$T(X,Y) = \pi(Y)X - \pi(X)Y$$

where π is a 1-form on M^n with ρ as associated vector-field, i.e.,

(2)
$$\pi(X) = g(X, \rho)$$

for any differentiable vector field X on M^n .

A semi-symmetric connection $\overline{\nabla}$ is called semi-symmetric metric connection [2] if it further satisfies

(3)
$$\overline{\nabla}_q = 0.$$

Let M^n be an *n*-dimensional C^{∞} manifold and let there exists in M^n a vector valued linear function ϕ , a vector field ξ and an 1-form η such that

(4)
$$\phi^2 X = -X + \eta(X)\xi,$$

¹Received August 23, 2000

²⁰⁰⁰ Mathematics Subject Classification: 53B15

Key words and phrases: Semi-symmetric connection, almost contact manifold

(5)
$$\bar{X} \stackrel{\text{defn}}{=} \phi X$$

for any vector field X. Then M^n is called an almost contact manifold. From (4) the following relations hold [3],

(6)
$$\phi\xi = 0,$$

(7)
$$\eta(\phi X) = 0$$

and

(8)
$$\eta(\xi) = 1.$$

In addition, if in M^n , there exists a metric tensor g satisfying

(9)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

and

(10)
$$g(X,\xi) = \eta(X),$$

then M^n is called an almost contact metric manifold.

In [4], Sharfuddin and Hussain defined a semi-symmetric metric connection in an almost contact manifold by identifying the 1-form π of (1) with the contact 1-form η , i.e. by setting

(11)
$$T(X,Y) = \eta(Y)X - \eta(X)Y.$$

In 1995, Mileva Prvanović [5] studied a semi-symmetric metric connection in a locally decomposable Riemannian space whose torsion tensor Tsatisfies the condition

(12)
$$(\overline{\nabla}_X T)(Y,Z) = A(X)T(Y,Z) + A(FX)F(T(Y,Z)),$$

where A is a 1-form and F is a tensor field of type(1,1).

In this paper we study a semi-symmetric metric connection on an almost contact metric manifold satisfying the condition (11) and

(13)
$$(\nabla_X T)(Y,Z) = A(X)T(Y,Z) + A(\phi X)\phi(T(Y,Z)),$$

where ϕ is the tensor field of type (1,1) of the almost contact metric manifold. In Section 3, we find the expression for curvature tensor of $\bar{\nabla}$ and deduce some properties of the curvature tensor. It is proved that if the curvature tensor of $\bar{\nabla}$ vanishes then the manifold is of quasi-constant curvature [6]. Next we prove that if the Ricci tensor of $\bar{\nabla}$ vanishes, then the manifold becomes an η -Einstein manifold. In section 4, we prove that the Weyl conformal curvature tensor of $\bar{\nabla}$ is equal to the Weyl conformal curvature tensor of the manifold. In the last section , we obtain a necessary condition under which the projective curvature tensor of $\bar{\nabla}$ becomes equal to the projective curvature tensor of the manifold. On a type of semi-symmetric metric connection ...

2 Preliminaries

The relation between the semi-symmetric metric connection $\overline{\nabla}$ and the Levi-Civita connection ∇ of (M^n, g) has been obtained by K.Yano [7], which is given by

(14)
$$\bar{\nabla}_X Y = \nabla_X Y + \pi(Y) X - g(X, Y) \rho.$$

Further, a relation between the curvature tensors R and \bar{R} of type (1,3) of the connections ∇ and $\bar{\nabla}$ respectively are given by [7],

$$(\bar{\mathcal{I}} \otimes X, Y)Z = R(X, Y)Z + \alpha(X, Z)Y - \alpha(Y, Z)X - g(Y, Z)LX + g(X, Z)LY + \alpha(X, Z)Y - \alpha(Y, Z)X - g(Y, Z)LX + g(X, Z)LY + \alpha(X, Z)Y - \alpha(Y, Z)X - g(Y, Z)LX + g(X, Z)LY + \alpha(X, Z)Y - \alpha(Y, Z)X - g(Y, Z)LX + g(X, Z)LY + g(X,$$

where

(16)
$$\alpha(Y,Z) = g(LY,Z) = (\nabla_Y \pi)(Z) - \pi(Y)\pi(Z) + \frac{1}{2}\pi(\rho)g(Y,Z).$$

The Weyl conformal curvature tensor of type (1,3) of the manifold is defined by

$$(\mathfrak{Cr}(X,Y)Z = R(X,Y)Z + \lambda(Y,Z)X - \lambda(X,Z)Y + g(Y,Z)QX - g(X,Z)QY,$$

where

(18)
$$\lambda(Y,Z) = g(QY,Z) = -\frac{1}{n-2}S(Y,Z) + \frac{r}{2(n-1)(n-2)}g(Y,Z),$$

S and r denote respectively the (0,2) Ricci tensor and scalar curvature of the manifold.

The projective curvature tensor of the manifold is defined by

(19)
$$P(X,Y)Z = R(X,Y)Z - \frac{1}{n-1}[S(Y,Z)X - S(X,Z)Y].$$

3 Curvature tensor of the semi-symmetric metric connection

We have

(20)
$$T(Y,Z) = \eta(Z)Y - \eta(Y)Z,$$

where

(21)
$$\eta(Z) = g(Z,\xi).$$

From (20) we get by contracting Y,

(22)
$$(C_1^1 T)(Z) = (n-1)\eta(Z).$$

Now,

(23)
$$(\overline{\nabla}_X C_1^1 T)(Z) = (n-1)(\overline{\nabla}_X \eta)(Z).$$

Let,

(24)
$$(\bar{\nabla}_X T)(Y,Z) = A(X)T(Y,Z) + A(\phi X)\phi(T(Y,Z))$$

where A is a 1-form and ϕ is a tensor field of type (1,1).

From (24) we get by contracting Y,

(25)
$$(\bar{\nabla}_X C_1^1 T)(Z) = (n-1)A(X)\eta(Z) + aA(\phi X)\eta(Z),$$

where

(26)
$$A = (C_1^1 \phi)(Y).$$

Combining (23) and (25) we get

(27)
$$(\bar{\nabla}_X \eta)(Z) = A(X)\eta(Z) + bA(\phi X)\eta(Z)$$

where

$$b = \frac{a}{n-1}.$$

Using (8) we get,

(29)
$$(\bar{\nabla}_X \eta)(Z) = (\nabla_X \eta)(Z) - \eta(X)\eta(Z) + g(X,Z).$$

Combining (27) and (29) we get

(30)
$$(\nabla_X \eta)(Z) = A(X)\eta(Z) + bA(\phi X)\eta(Z) + \eta(X)\eta(Z) - g(X,Z).$$

Then, from (16) and (30), it follows

(31)
$$\alpha(X,Z) = A(X)\eta(Z) + bA(\phi X)\eta(Z) - \frac{1}{2}g(X,Z).$$

From (16) and (31) we can say,

(32)
$$LX = A(X)\xi + bA(\phi X)\xi - \frac{1}{2}X.$$

Therefore, the curvature tensor \bar{R} of the manifold with respect to the semi-symmetric metric connection $\bar{\nabla}$ is given by

(33)

$$\bar{R}(X,Y)Z = R(X,Y)Z + \{g(Y,Z)X - g(X,Z)Y\} + \{A(X) + bA(\phi X)\}\{\eta(Z)Y - g(Y,Z)\xi\} - \{A(Y) + bA(\phi Y)\}\{\eta(Z)X - g(X,Z)\xi\},$$

where R denotes the curvature tensor of the manifold.

In view of the above, we can state the following :

Theorem 3.1 The curvature tensor with respect to $\overline{\nabla}$ of an almost contact metric manifold admitting a semi-symmetric metric connection $\overline{\nabla}$ is of the form (33).

From (33) it is obvious that

(34)
$$\bar{R}(Y,X)Z = -\bar{R}(X,Y)Z.$$

We now define a tensor \bar{R} of type (0,4) by

(35)
$${}^{\prime}\bar{R}(X,Y,Z,V) = g(\bar{R}(X,Y)Z,V).$$

From (33) and (35) it follows that

(36)
$$\bar{R}(X,Y,Z,V) = -\bar{R}(X,Y,V,Z).$$

Combining (36) and (34) one finds that

(37)
$$\bar{R}(X,Y,Z,V) = \bar{R}(Y,X,V,Z).$$

Again from (33) we get,

$$(38)$$
$$\overline{R}(X,Y)Z + \overline{R}(Y,Z)X + \overline{R}(Z,X)Y$$
$$= (A(X) + bA(\phi X))(\eta(Z)Y - \eta(Y)Z)$$
$$+ (A(Y) + bA(\phi Y))(\eta(X)Z - \eta(Z)X)$$
$$+ (A(Z) + bA(\phi Z))(\eta(Y)X - \eta(X)Y).$$

This is the first Bianchi identity with respect to $\overline{\nabla}$.

Let \bar{S} and S denote respectively the Ricci tensor of the manifold with respect to $\bar{\nabla}$ and ∇ . From (33) we get by contracting X.

$$\bar{S}(Y,Z) = S(Y,Z) + (n-1)g(Y,Z) - (n-2)(A(Y) + bA(\phi Y))\eta(Z) - A(\xi)g(Y,Z),$$
(39)
since $\phi \xi = 0$

since $\phi \xi = 0$.

In (39) we put $Y = Z = e_i$, $1 \le i \le n$, where $\{e_i\}$ is an orthonormal basis of the tangent space at each point of the manifold. Then summing over i we get

(40)
$$\bar{r} = r + n(n-1) - 2(n-1)A(\xi),$$

where \bar{r} and r denote the scalar curvatures of the manifold with respect to $\bar{\nabla}$ and ∇ respectively.

From (39) it follows that \overline{S} is symmetric if and only if

(41)
$$\eta(Y)(A(Z)) + bA(\phi Z)) = \eta(Z)(A(Y)) + bA(\phi Y)).$$

In particular, if $\bar{S} = 0$, then from (39) we have

$$(42)(Y,Z) = (n-2)(A(Y) + bA(\phi Y))\eta(Z) + A(\xi)g(Y,Z) - (n-1)g(Y,Z).$$

Since S is symmetric, we get from (42),

(43)
$$[A(Y) + bA(\phi Y)]\eta(Z) = [A(Z) + bA(\phi Z)]\eta(Y).$$

Putting $Z = \xi$, we get from the above relation

(44)
$$A(Y) + bA(\phi Y) = A(\xi)\eta(Y).$$

Now, if $\bar{R} = 0$, then $\bar{S} = 0$ and then from (33) and (44) we obtain

since $\eta(\xi) = 1$

where

(46)
$$'R(X,Y,Z,V) = g(R(X,Y)Z,V).$$

Hence we can state the following theorem.

Theorem 3.2 If the curvature tensor of an almost contact metric manifold with respect to the semi-symmetric metric connection vanishes, then the manifold is of quasi-constant curvature.

Next, let us assume that \bar{S} is symmetric. Then (41) holds. Putting $Z = \xi$ in (41) we get

$$A(Y) + bA(\phi Y) = A(\xi)\eta(Y).$$

Using the result from (38) we get

(47)
$$\bar{R}(X,Y)Z + \bar{R}(Y,Z)X + \bar{R}(Z,X)Y = 0.$$

On a type of semi-symmetric metric connection ...

Conversely, we assume that (47) holds, then in virtue of (38) we have

(48)
$$(A(X) + bA(\phi X))(\eta(Z)Y - \eta(Y)Z) + (A(Y) + bA(\phi Y))(\eta(X)Z - \eta(Z)X) + (A(Z) + bA(\phi Z))(\eta(Y)X - \eta(X)Y) = 0.$$

Contracting X, we get from (48)

$$\eta(Y)(A(Z) + bA(\phi Z)) = \eta(Z)(A(Y) + bA(\phi Y)).$$

Hence by (41), \bar{S} is symmetric. Thus we can state:

Theorem 3.3 A necessary and sufficient condition for the Ricci tensor of an almost contact metric manifold with respect to the semi-symmetric metric connection to be symmetric is

$$\bar{R}(X,Y)Z + \bar{R}(Y,Z)X + \bar{R}(Z,X)Y = 0.$$

Next, if $\bar{S} = 0$, then $\bar{r} = 0$ and so from (40) we get,

(49)
$$A(\xi) = \frac{1}{2} \left\{ \frac{r}{n-1} + n \right\}.$$

Putting this value of $A(\xi)$ we get from (49),

(50)
$$S(Y,Z) = \mu g(Y,Z) + \nu \eta(Y)\eta(Z),$$

where

$$\mu = \frac{1}{2} \left\{ \frac{r}{n-1} - n + 2 \right\}$$

and

$$\nu = \frac{1}{2} \left(\frac{n-2}{n-1} \right) (r+n^2 - n).$$

So we can state:

Theorem 3.4 If the Ricci tensor of an almost contact metric manifold with respect to the semi-symmetric metric connection vanishes, then the manifold becomes an η -Einstein manifold.

4 Weyl conformal curvature tensor

The Weyl conformal curvature tensor of type (1,3) of the almost contact metric manifold with respect to the semi-symmetric metric connection $\bar{\nabla}$ is defined by

$$(\bar{\mathfrak{A}}\bar{\mathfrak{Q}}X,Y)Z = \bar{R}(X,Y)Z + \bar{\lambda}(Y,Z)X - \bar{\lambda}(X,Z)Y + g(Y,Z)\bar{Q}X - g(X,Z)\bar{Q}Y$$

where

(52)
$$\bar{\lambda}(Y,Z) = \bar{g}(QY,Z) = -\frac{1}{n-1}\bar{S}(Y,Z) + \frac{\bar{r}}{2(n-1)(n-2)}g(Y,Z).$$

Putting the values of \bar{S} and \bar{r} from (39) and (40) respectively in (52) we get ,

(53)
$$\bar{\lambda}(Y,Z) = \lambda(Y,Z) - \frac{1}{2}g(Y,Z) + \eta(Z)(A(Y) + bA(\phi Y)).$$

Combining the results (51), (33) and (53) we get,

(54)
$$\bar{C}(X,Y)Z = C(X,Y)Z$$

So we can state :

Theorem 4.1 The Weyl conformal curvature tensors of an almost contact metric manifold with respect to the Levi-Civita connection and the semisymmetric metric connection are equal.

Next, if in particular $\overline{S} = 0$, then $\overline{r} = 0$. So from (52) we get

(55)
$$\bar{\lambda}(Y,Z) = 0.$$

Putting this result in (52) and using (54) we get

(56)
$$C(X,Y)Z = R(X,Y)Z.$$

Hence we can state :

Theorem 4.2 If the Ricci tensor of an almost contact metric manifold with respect to the semi-symmetric metric connection vanishes, then the Weyl conformal curvature tensor of the manifold is equal to the curvature tensor of the manifold with respect to the semi-symmetric metric connection. On a type of semi-symmetric metric connection ...

5 Projective curvature tensor

The projective curvature tensor of type (1,3) of an almost contact metric manifold with respect to the semi-symmetric metric connection is defined by

(57)
$$\bar{P}(X,Y)Z = \bar{R}(X,Y)Z - \frac{1}{n-1} \left\{ \bar{S}(Y,Z)X - \bar{S}(X,Z)Y \right\}.$$

Using (33) and (39) we get from (57),

$$\bar{P}(X,Y)Z = P(X,Y)Z + \frac{1}{n-1}A(\xi) \{g(Y,Z)X - g(X,Z)Y\} + \{A(X) + bA(\phi X)\} \left\{\frac{1}{n-1}\eta(Z)Y - g(Y,Z)\xi\right\} - \{A(Y) + bA(\phi Y)\} \left\{\frac{1}{n-1}\eta(Z)X - g(X,Z)\xi\right\}.$$
(58)

If, in particular, \bar{S} is symmetric, then we already have,

$$A(Y) + bA(\phi Y) = A(\xi)\eta(Y).$$

Using the above result we get from (58)

$$\bar{P}(X,Y)Z = P(X,Y)Z + \frac{1}{n-1}A(\xi)\left\{g(Y,Z)X - g(X,Z)Y\right\} + A(\xi)\eta(X)\left\{\frac{1}{n-1}\eta(Z)Y - g(Y,Z)\xi\right\} - A(\xi)\eta(Y)\left\{\frac{1}{n-1}\eta(Z)X - g(X,Z)\xi\right\}.$$
(59)

From (59), it follows that $P = \overline{P}$ if $A(\xi) = 0$. So,we have

Theorem 5.1 If the Ricci tensor of an almost contact metric manifold with respect to the semi-symmetric metric connection is symmetric, then a necessary condition for the projective curvature tensors of the manifold with respect to the Levi-Civita connection and the semi-symmetric metric connection to be equal is that $A(\xi) = 0$.

References

 A. Friedmann and J.A. Schouten, Über die Geometric der holbsymmetrischen Übertragurgen, Math. Zeitschr. 21 (1924), 211–233.

- [2] H.A. Hayden, Subspaces of space with torsion, Proc. Lon. Math. Soc. 34 (1932), 27–50.
- [3] D.E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
- [4] A. Sharfuddin and S.I. Hussain, Semi-symmetric metric connexions in almost contact manifolds, Tensor (N.S.) 30 (1976), 133–139.
- [5] M. Prvanović, On some classes of semi symmetric connections in the locally decomposable Riemannian space, Facta. Univ. (Niš), Ser. Math. Inform. 10 (1995), 105–116.
- [6] Y.D. Wang, On some properties of Riemannian spaces of quasiconstant curvature, Tensor (N.S.) 35 (1981), 173–196.
- [7] K. Yano, On semi-symmetric metric connections, Revue Roumaine de Math. Pures et Appliques 15 (1970), 1579–1586.

Department of Mathematics University of Kalyani Kalyani, Nadia West Bengal, India 741235 E-mail: ucde@klyuniv.ernet.in