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A UNIFIED FIXED POINT RESULT IN METRIC SPACES
INVOLVING A TWO VARIABLE FUNCTION

Binayak S. Choudhury and P. N. Dutta

Abstract

In this paper' a unique fixed point theorem in complete metric
spaces for a class of self mappings has been derived which satisfy cer-
tain inequality constraints involving a function of two variables. For
particular choices of the function several fixed point theorems may be
obtained.

1 Introduction

In existing literatures there have been a very large number of fixed point
results for self-mappings satisfying various types of contractive inequalities.
A detailed survey of these may be obtained in [1], [2] and [4]

In particular, fixed point results involving altering distances have been
introduced in [3]. An altering distance is a mapping ® : [0,00) — [0, c0)
which satisfies

a) @ is increasing and continuous, and

b) ®(¢) =0 if and only if ¢t = 0.

Fixed points involving altering distances have also been studied in works like
[5] and [6].

In this paper, we obtain a new fixed point result for self-mappings defined
on complete metric spaces satisfying a contractive inequality which involves
a function of two variables and acts on distances of two pair of points in a
metric space. This function of two variables is an extension of the idea of
altering distances [3].

We begin with the following definition.

Definition 1.1 [Condition — A] A function ¥ : RT x Rt — R™ is said to
satisfy Condition — A if
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(i) ¥ is continuous,
(ii) ¥ is monotone increasing in both the arguments,
(iii) ¥(0,0) = 0 and ¥(e,0) = 0 implies € = 0. (1.1)
Let W(e,e) = 0. Then ¥(e,0) < (e, e) =0, or ¥(e,0) = 0, which implies
e=0 (by (1.1)).
Therefore, ¥(e, €) = 0 implies € = 0. (1.2)
Here R™ is the set of all non-negative real numbers.
Examples of ¥ are:
(i) ¥(a,b) = (a? + b9)*,
(ii) ¥(a,b) = a? - b7 + a*,
where p, ¢ and k are positive real numbers.

2 Fixed point results

Theorem 1 LetT : X — X be a self-mapping from a complete metric space
X to itself which satisfies the following inequality:

U(d(Tz,Ty), d(z,Tx)) + U (d(y, Ty),d(y, T*x))
< cU(d(z,y),d(x, Tz)) + U(d(y, Ty), d(y, Tx)), (2.1)
where0 < c<1,0< ¢ <1, z,y € X and ¥ satisfies condition-A ( Definition
1.1). Then T has a unique fized point.

Proof. For any zp € X, we construct the sequence {x,} by
Tp=Txn 1=T"z9, n=12,.. (2.2)

Substituting y = Tz in (2.1) we have
U(d(Tz,T?z),d(x, Tx)) + Y(d(Tz, T?z),d(Tz, T?x))
< c¥(d(x,Tz),d(z, Tx)) + Y ((d(Tz, T?z),d(Tz, Tx)). (2.3)
As 0 < ¢ <1 and ¥ satisfies condition (ii) of Definition 1.1,
dV(d(Tx, T?x),0) < V(d(Tx, T?x),d(Tx, T?x))
< U(d(Tz,T?x),d(Tz, T?x))

and consequently, from (2.3),
U(d(Tx, T%x),d(z,Tx)) < c¥(d(z,Tz),d(z,Tz) < ¥(d(x, Tz),d(z, Tz))
which implies
d(Tz, T%z) < d(z, Tx). (2.5)
Setting © = x,_1, we have

0 <d(zpt1,2n) < d(zp,Tn-1), n=12, .. (2.6)
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This shows that {d(xy, zn+1)} converges.
Let d(zp, xn+1) = a (say). From (2.4), again setting = x,,—1, we obtain

\I’(d(mTw anrl)a d(xnfla :L‘n) < C\I’(d(l'nfly xn)a d(l‘nfla éUn) (27)

Making n — oo and by virtue of the fact that ¥ is continuous, we have
U(a,a) < c¥(a,a), or ¥((a,a) =0 (as 0 < ¢ < 1), which implies that a = 0
(using (1.2)). Therefore

lim d(xy, zp+1) = 0. (2.8)

n—oo

We next show that {z,} is a Cauchy sequence. Otherwise, there exist
¢ > 0 and corresponding subsequences {x,(x)} and {z,,)} of {x,} such that
for m(k) < n(k)

A(Tp (ks Trmy) = € and d(Ty k)1, Tp(ry) < € (2.9)
Then we have
€ < d(@nr)s Tm(k)) < ATn)s Tnr)—1) T Tnr)—1: Tm@)) < ATnk), Tnk)—1)FE-
Making k£ — oo and using (2.8)
klingo d(Tn (k) T (k) = € (2.10)
Again,
ATy k), Trm(k)) < ATy Tnk)y—1) T AZnm)—15 Tmk)—1) T AZmk)—1> Tm(k))
and
A@n(k)-1: Tm(k)—1) < AZn)-15 Tage) + ATy Tnihy) + Am)s Ty -1)-
Making k£ — oo and using (2.8) and (2.10), we obtain
im d(Zp(k)—1, Tm(k)—1) = € (2.11)

k—oo

Also

AT (k)=15 Tn(k)+1) < ATmk)—15 Tmk)) + ATmk), Tnk)) + ATnk)> Tnk)+1)

and

A Trm(kys Tnk) < AZmk)s Tmk)—1) T AZm@E)y—1, Tnk)+1) T ATn@)+1> Tn(r))-
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Making k — oo and using (2.8) and (2.10), we obtain

klirglo AT (k) =15 Tn(k)+1) = € (2.12)
Lastly,
AT (k)s Tm(k)) < ATr(r)s Tmk)—1) + ATm@) -1 Tmr))
and

ATk Tm(k)—1) < ATn(ky Tmk)) + ATmk)s Tm(k)—1)-
Making k£ — oo and using (2.8) and (2.10), we obtain
lim d(:cn(k),mm(k),l) = €. (2.13)

k—o0
Now substituting = = z,)—1 and y = @p,y—1 in (2.1) one has
U (d(@n(k)s Tm(r))s AZn)—15 Tne)) T (A Zmm) —15 Tm(r))s ATm(k)—15 Tn(k)+1)
< U (d(Tp(k)—15 Trm(k)—1)> ATp (k)15 Tn(k)))
A+ (AT (k)1 Tm))» AT ()15 Tk ) -
Making k& — oo in the above inequality, using (2.8) and (2.10)—(2.13) and
using the fact that ¥ is continuous, we obtain,
U(e,0)+ U(0,¢e) < c¥(e,0) + T(0,€),
which implies (e, 0) < c¢¥(¢,0) (as 0 < ¢ < 1), and consequently ¥(e,0) =0
(as 0 < ¢ < 1). So, using condition (iii) of Definition 1.1, we obtain € = 0,
which is a contradiction. This shows that {z,} is a Cauchy sequence and
hence is convergent in the complete metric space X.
Let x,, — z (say) as n — oo. Again, putting y = z, x = x, in (2.1) we
obtain
U(d(xni1,T2), d(zn, xnt1)) + V(d(2,T2),d(2, Tn42))
< C\I/(d(:En, 2)7 d(:ETh xn+1)) + CI\IJ(d(Z7 TZ), d(z7 anrl))‘
Making n — oo, considering (2.8), z,, — z, and using the continuity of ¥ we
obtain

U(d(z,Tz),0) +¥(d(z,Tz),0) < c¥(0,0) + ¥(d(z,T%),0),

which implies
U(d(z,Tz),0) <c¥(0,0) (as0< <1)
< c¥(d(z,T%),0) ( using condition (ii) of Definition 1.1 ).
Consequently, ¥(d(z,7z),0) =0 (as 0 < ¢ < 1), so that d(z,Tz) = 0 (by
(1.1)), which implies that z = T'z.
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Next, we prove the uniqueness of the fixed point. If possible, let z; and
z9 be two fixed points of T'. Then from (2.1) we obtain

\I/(d(zl, 2’2), d(Zl, 2’1)) + \I/(d(ZQ, ZQ), d(ZQ, 21))

< eW(d(z1,22),d(21,21)) + U (d(22, 22),d(22,21)),

U(d(21,22),0) + ¥(0,d(29,21)) < c¥(d(21,22),0) + (0, d(22, 21)),

or
U(d(z1, 22),0) < c¥(d(z1,22),0) (as 0 < ¢ < 1),
which implies ¥(d(z1,22),0) = 0 and consequently d(z1,22) = 0 (using con-
dition (iii) of Definition 1.1), or z; = z5.
This completes the proof of the theorem.

With different choices of W it is possible to obtain different fixed point
theorems. In particular, we have the following corollary.

Corollary 1 Let T : X — X be a self-mapping from a complete metric
space to itself and satisfy

[(d(Ta, Ty)? +r(d(x, T2)1* + [(d(y, Ty))? + r(d(y, T?x))7]*
< c[(d(@,y))? + r(d(z, Tx)) )" + [(d(y, Ty))? +r(d(y, Tx)) )",

where z,y € X, p,k>0,7,¢>0and0<c<1,0<d <1. Then T has a
unique fixed point.

The proof of the corollary follows by the specific choice of the function
U as
U(a,b) = (a? + bk, p, k>0, r,q>0.
It may be noted that for particular choice of p =k =1, r =¢ =0 and
¢ =1, we obtain the Banach fixed point theorem in complete metric spaces

12].
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