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A UNIFIED FIXED POINT RESULT IN METRIC SPACES
INVOLVING A TWO VARIABLE FUNCTION

Binayak S. Choudhury and P. N. Dutta

Abstract

In this paper1 a unique fixed point theorem in complete metric
spaces for a class of self mappings has been derived which satisfy cer-
tain inequality constraints involving a function of two variables. For
particular choices of the function several fixed point theorems may be
obtained.

1 Introduction

In existing literatures there have been a very large number of fixed point
results for self-mappings satisfying various types of contractive inequalities.
A detailed survey of these may be obtained in [1], [2] and [4]

In particular, fixed point results involving altering distances have been
introduced in [3]. An altering distance is a mapping Φ : [0,∞) → [0,∞)
which satisfies

a) Φ is increasing and continuous, and
b) Φ(t) = 0 if and only if t = 0.

Fixed points involving altering distances have also been studied in works like
[5] and [6].

In this paper, we obtain a new fixed point result for self-mappings defined
on complete metric spaces satisfying a contractive inequality which involves
a function of two variables and acts on distances of two pair of points in a
metric space. This function of two variables is an extension of the idea of
altering distances [3].

We begin with the following definition.

Definition 1.1 [Condition – A] A function Ψ : R+×R+ → R+ is said to
satisfy Condition – A if
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(i) Ψ is continuous,
(ii) Ψ is monotone increasing in both the arguments,

(iii) Ψ(0, 0) = 0 and Ψ(ε, 0) = 0 implies ε = 0. (1.1)
Let Ψ(ε, ε) = 0. Then Ψ(ε, 0) ≤ Ψ(ε, ε) = 0, or Ψ(ε, 0) = 0, which implies

ε = 0 (by (1.1)).
Therefore, Ψ(ε, ε) = 0 implies ε = 0. (1.2)

Here R+ is the set of all non-negative real numbers.
Examples of Ψ are:
(i) Ψ(a, b) = (ap + bq)k,

(ii) Ψ(a, b) = ap · bq + ak,
where p, q and k are positive real numbers.

2 Fixed point results

Theorem 1 Let T : X → X be a self-mapping from a complete metric space
X to itself which satisfies the following inequality:

Ψ(d(Tx, Ty), d(x, Tx)) + Ψ(d(y, Ty), d(y, T 2x))
≤ cΨ(d(x, y), d(x, Tx)) + c′Ψ(d(y, Ty), d(y, Tx)), (2.1)

where 0 < c < 1, 0 < c′ ≤ 1, x, y ∈ X and Ψ satisfies condition-A (Definition
1.1). Then T has a unique fixed point.

Proof. For any x0 ∈ X, we construct the sequence {xn} by

xn = Txn−1 = Tnx0, n = 1, 2, ... (2.2)

Substituting y = Tx in (2.1) we have
Ψ(d(Tx, T 2x), d(x, Tx)) + Ψ(d(Tx, T 2x), d(Tx, T 2x))

≤ cΨ(d(x, Tx), d(x, Tx)) + c′Ψ((d(Tx, T 2x), d(Tx, Tx)). (2.3)
As 0 < c′ < 1 and Ψ satisfies condition (ii) of Definition 1.1,

c′Ψ(d(Tx, T 2x), 0) ≤ c′Ψ(d(Tx, T 2x), d(Tx, T 2x))
< Ψ(d(Tx, T 2x), d(Tx, T 2x))

and consequently, from (2.3),

Ψ(d(Tx, T 2x), d(x, Tx)) ≤ cΨ(d(x, Tx), d(x, Tx) ≤ Ψ(d(x, Tx), d(x, Tx))
(2.4)

which implies
d(Tx, T 2x) ≤ d(x, Tx). (2.5)

Setting x = xn−1, we have

0 ≤ d(xn+1, xn) ≤ d(xn, xn−1), n = 1, 2, ... (2.6)
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This shows that {d(xn, xn+1)} converges.
Let d(xn, xn+1) = a (say). From (2.4), again setting x = xn−1, we obtain

Ψ(d(xn, xn+1), d(xn−1, xn) ≤ cΨ(d(xn−1, xn), d(xn−1, xn). (2.7)

Making n → ∞ and by virtue of the fact that Ψ is continuous, we have
Ψ(a, a) ≤ cΨ(a, a), or Ψ((a, a) = 0 (as 0 < c < 1 ), which implies that a = 0
(using (1.2)). Therefore

lim
n→∞ d(xn, xn+1) = 0. (2.8)

We next show that {xn} is a Cauchy sequence. Otherwise, there exist
ε > 0 and corresponding subsequences {xm(k)} and {xn(k)} of {xn} such that
for m(k) < n(k)

d(xn(k), xm(k)) ≥ ε and d(xn(k)−1, xm(k)) < ε. (2.9)

Then we have

ε ≤ d(xn(k), xm(k)) ≤ d(xn(k), xn(k)−1)+d(xn(k)−1, xm(k)) < d(xn(k), xn(k)−1)+ε.

Making k →∞ and using (2.8)

lim
k→∞

d(xn(k), xm(k)) = ε. (2.10)

Again,

d(xn(k), xm(k)) ≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)−1) + d(xm(k)−1, xm(k))

and

d(xn(k)−1, xm(k)−1) ≤ d(xn(k)−1, xn(k)) + d(xn(k), xm(k)) + d(xm(k), xm(k)−1).

Making k →∞ and using (2.8) and (2.10), we obtain

lim
k→∞

d(xn(k)−1, xm(k)−1) = ε. (2.11)

Also

d(xm(k)−1, xn(k)+1) ≤ d(xm(k)−1, xm(k)) + d(xm(k), xn(k)) + d(xn(k), xn(k)+1)

and

d(xm(k), xn(k)) ≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k)+1) + d(xn(k)+1, xn(k)).
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Making k →∞ and using (2.8) and (2.10), we obtain

lim
k→∞

d(xm(k)−1, xn(k)+1) = ε. (2.12)

Lastly,

d(xn(k), xm(k)) ≤ d(xn(k), xm(k)−1) + d(xm(k)−1, xm(k))

and
d(xn(k), xm(k)−1) ≤ d(xn(k), xm(k)) + d(xm(k), xm(k)−1).

Making k →∞ and using (2.8) and (2.10), we obtain

lim
k→∞

d(xn(k), xm(k)−1) = ε. (2.13)

Now substituting x = xn(k)−1 and y = xm(k)−1 in (2.1) one has
Ψ(d(xn(k), xm(k)), d(xn(k)−1, xn(k)))+Ψ(d(xm(k)−1, xm(k)), d(xm(k)−1, xn(k)+1)

≤ cΨ(d(xn(k)−1, xm(k)−1), d(xn(k)−1, xn(k)))
+c′Ψ(d(xm(k)−1, xm(k)), d(xm(k)−1, xn(k)).

Making k → ∞ in the above inequality, using (2.8) and (2.10)–(2.13) and
using the fact that Ψ is continuous, we obtain,

Ψ(ε, 0) + Ψ(0, ε) ≤ cΨ(ε, 0) + c′Ψ(0, ε),
which implies Ψ(ε, 0) ≤ cΨ(ε, 0) (as 0 < c′ ≤ 1), and consequently Ψ(ε, 0) = 0
( as 0 < c < 1). So, using condition (iii) of Definition 1.1, we obtain ε = 0,
which is a contradiction. This shows that {xn} is a Cauchy sequence and
hence is convergent in the complete metric space X.

Let xn → z (say) as n → ∞. Again, putting y = z, x = xn in (2.1) we
obtain

Ψ(d(xn+1, T z), d(xn, xn+1)) + Ψ(d(z, Tz), d(z, xn+2))
≤ cΨ(d(xn, z), d(xn, xn+1)) + c′Ψ(d(z, Tz), d(z, xn+1)).

Making n →∞, considering (2.8), xn → z, and using the continuity of Ψ we
obtain

Ψ(d(z, Tz), 0) + Ψ(d(z, Tz), 0) ≤ cΨ(0, 0) + c′Ψ(d(z, Tz), 0),

which implies
Ψ(d(z, Tz), 0) ≤ cΨ(0, 0) ( as 0 < c′ ≤ 1)

≤ cΨ(d(z, Tz), 0) ( using condition (ii) of Definition 1.1 ).
Consequently, Ψ(d(z, Tz), 0) = 0 (as 0 < c < 1), so that d(z, Tz) = 0 (by
(1.1)), which implies that z = Tz.
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Next, we prove the uniqueness of the fixed point. If possible, let z1 and
z2 be two fixed points of T . Then from (2.1) we obtain

Ψ(d(z1, z2), d(z1, z1)) + Ψ(d(z2, z2), d(z2, z1))

≤ cΨ(d(z1, z2), d(z1, z1)) + c′Ψ(d(z2, z2), d(z2, z1)),

or

Ψ(d(z1, z2), 0) + Ψ(0, d(z2, z1)) ≤ cΨ(d(z1, z2), 0) + c′Ψ(0, d(z2, z1)),

or
Ψ(d(z1, z2), 0) ≤ cΨ(d(z1, z2), 0) (as 0 < c′ ≤ 1),

which implies Ψ(d(z1, z2), 0) = 0 and consequently d(z1, z2) = 0 (using con-
dition (iii) of Definition 1.1), or z1 = z2.

This completes the proof of the theorem.

With different choices of Ψ it is possible to obtain different fixed point
theorems. In particular, we have the following corollary.

Corollary 1 Let T : X → X be a self-mapping from a complete metric
space to itself and satisfy

[(d(Tx, Ty)p + r(d(x, Tx))q]k + [(d(y, Ty))p + r(d(y, T 2x))q]k

≤ c[(d(x, y))p + r(d(x, Tx))q]k + c′[(d(y, Ty))p + r(d(y, Tx))q]k,

where x, y ∈ X, p, k > 0, r, q ≥ 0 and 0 < c < 1, 0 < c′ ≤ 1. Then T has a
unique fixed point.

The proof of the corollary follows by the specific choice of the function
Ψ as

Ψ(a, b) = (ap + rbq)k, p, k > 0, r, q ≥ 0.

It may be noted that for particular choice of p = k = 1, r = q = 0 and
c′ = 1, we obtain the Banach fixed point theorem in complete metric spaces
[2].
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