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AN EXTENSION OF KELLEY’S CLOSED RELATION
THEOREM TO RELATOR SPACES

Árpád Száz

Abstract
In this paper1 we prove a straightforward extension of the

dual of Kelley’s famous closed relation theorem to a pair of
relations on one relator (generalized uniform) space to another.

In particular, we show that an almost uniformly lower semi-
continuous closed relation on a topologically semisymmetric re-
lator space to a complete metric type relator space is uniformly
lower semicontinuous.

Introduction

The following theorem, proved in [ 13 , p. 202 ] , is usually called Kel-
ley’s closed relation theorem since it easily yields some natural extensions of
Banach’s closed graph theorem [ 44 ] .

Theorem 1. Let R be a closed subset of the product of a complete pseudo-
metric space (X , d ) with the uniform space (Y, V ) and suppose that for
each positive r there is V in V such that R

[
Ur [x]

]− contains V [y ] for
each (x , y ) in R . Then for each r and each positive e it is true that

R
[
Ur+e [x]

] ⊃ R
[
Ur [x]

]− ⊃ V [y ] .

This theorem has subsequently been generalized by several authors in
various directions. See, for instance, Mah–Naimpally [ 18 ] and Wilhelm
[ 45 ] .

However, the F = G particular case of our following extension of the
dual of Theorem 1 is certainly not included in the existing generalizations.
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Theorem 2. If (F , G ) is an almost uniformly lower semicontinuous closed
pair of relations on a topologically semisymmetric relator space X (R) to a
sequentially convergence-adherence complete metric type relator space Y (S )
such that G ⊂ F , then

clR
(

G−1
(
V (y)

))
⊂ F−1

(
W

(
V (y)

))

for all V , W ∈ S and y ∈ Y . Thus, in particular, the relation F and
the pair (G , F ) are uniformly lower semicontinuous.

The necessary prerequisites concerning relations and relators (relational
systems), which are possibly unfamiliar to the reader, will be briefly laid out
in the subsequent preparatory sections. Unfortunately, our present termi-
nology and notation may differ from those of the earlier papers.

1. A few basic facts on relations and relators

A subset F of a product set X×Y is called a relation on X to Y . In
particular, the relations ∆X = { ( x , x ) : x ∈ X } and X2 = X×X are
called the identity and the universal relations on X , respectively.

Namely, if in particular X = Y , then we may simply say that F is a
relation on X . Note that if F is a relation on X to Y , then F is also
a relation on X ∪ Y . Therefore, it is frequently not a severe restriction to
assume that X = Y .

If F is a relation on X to Y , and moreover x ∈ X and A ⊂ X , then
the sets F (x) = { y ∈ Y : (x , y ) ∈ F } and F [A ] =

⋃
x∈A F (x) are

called the images of x and A under F , respectively. Whenever A ∈ X
seems unlikely, we may write F (A) in place of F [ A ] .

If F is a relation on X to Y , then the sets DF = {x ∈ X : F (x) 6= ∅ }
and R

F
= F (D

F
) are called the domain and the range of F , respectively.

Whenever, X = D
F

( and Y = R
F
) , we say that F is a relation of X

into (onto) Y .
A relation F on X to Y is said to be a function if for each x ∈ DF

there exists a unique y ∈ Y such that y ∈ F (x) . In this case, by
identifying singletons with their elements, we usually write F (x) = y in
place of F (x) = {y} .

If F is a relation on X to Y , then the values F (x) , where x ∈ X ,
uniquely determine F since we have F =

⋃
x∈X {x} × F (x) . Therefore,

the inverse F−1 can be defined such that F−1(y) = {x ∈ X : y ∈ F (x) }
for all y ∈ Y .

Moreover, if F is a relation on X to Y , and G is a relation on Z to
W , then the composition G ◦F and the box product F �G can be defined
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such that (G ◦ F )(x) = G
(
F (x)

)
and

(
F �G

)
( x , z ) = F (x) ×G (z)

for all x ∈ X and z ∈ Z .
A relation R on X is called reflexive, symmetric, transitive, and directive

if ∆X ⊂ R , R ⊂ R−1, R ◦ R ⊂ R, and X2 ⊂ R−1 ◦ R , respectively.
Moreover, a reflexive relation is called a preorder (tolerance) if it is transitive
(symmetric), and a directive preorder is called a direction.

If R is a relation on X, then we write R n = R ◦ R n−1 for all n ∈ N
by agreeing that R 0 = ∆X . Moreover, we also write R∞ =

⋃∞
n=0 R n .

Note that thus R∞ is the smallest preorder on X such that R ⊂ R∞ .
A nonvoid family R of relations on a nonvoid set X is called a relator on

X, and the ordered pair X (R) = ( X, R ) is called a relator space. Relator
spaces are straightforward generalizations of ordered sets and uniform spaces
[ 30 ] . They are mainly motivated by the following two facts.

If D is a nonvoid family of certain distance functions on X , then the re-
lator RD consisting of all surroundings Bd

ε = { (x, y ) ∈ X2 : d (x , y ) <
ε } , where d ∈ D and ε > 0 , is a more convenient mean of defining the
basic notions of analysis in the space X (D) , than the family of all open
subsets of X (D) , or even the the family D itself.

Moreover, all reasonable generalizations of the usual topological struc-
tures (such as proximities, closures, topologies, filters and convergences, for
instance) can be easily derived from relators (according to the results of [ 36 ]
and [ 29 ] ), and thus they need not be studied separately.

For instance, if A is a certain generalized topology or a stack (ascending
system) in X , then A can easily be derived (according to the forthcoming
definitions of the families τR , TR and ER ) from the Davis–Pervin relator
RA consisting of all preorders VA = A2 ∪ ( X \ A ) ×X , where A ∈ A .
Note that, in contrast to these preorders, the surroundings Bd

ε are usually
tolerances on X .

2. Structures derived from relators and operations on relators

If R is a relator on X , then for any A, B ⊂ X and x , y ∈ X we
write :

(1) B ∈ IntR (A)
(

B ∈ ClR(A)
)

if R (B ) ⊂ A
(

R (B ) ∩ A 6= ∅ )
for some ( all ) R ∈ R ;

(2) x ∈ intR(A)
(

x ∈ clR(A)
)

if {x} ∈ IntR(A)
( {x} ∈ ClR(A)

)
;

(3) y ∈ σR(x)
(

y ∈ ρR(x)
)

if y ∈ intR
( {x} ) (

y ∈ clR
( {x} )

;
and moreover

(4) A ∈ τR
(

A ∈ τ-R
)

if A ∈ IntR(A)
(

X \A /∈ ClR(A)
)
;

(5) A ∈ TR
(

A ∈ FR
)

if A ⊂ intR(A)
(

clR(A) ⊂ A
)
;

(6) A ∈ ER
(

A ∈ DR
)

if intR(A) 6= ∅ (
clR(A) = X

)
.
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The relations IntR , intR and σR are called the proximal, the topologi-
cal and the infinitesimal interiors induced by R on X , respectively. While,
the members of the families τR , TR and ER are called the proximally open,
the topologically open and the fat subsets of X (R) , respectively.

The interiors and the fat sets are frequently more important tools, then
the open sets. For instance, if ≺ is a preorder on X, then TR and E≺ are
precisely the families of all ascending and residual subsets of the preordered
set X (≺) , respectively.

A function x of a preordered set Γ into a set X is called a Γ-net in
X . The Γ-net x is said to be residually (cofinally) in a subset A of X
if x−1(A) is a residual (cofinal) subset of Γ . Note that these definitions
would actually allow Γ to be an arbitrary relator space.

Moreover, if R is a relator on X , then for any Γ-nets x and y in X
and a ∈ X we write :

(7) y ∈ LimR(x)
(

y ∈ AdhR(x)
)

if the net ( y , x ) is residually
(cofinally) in each R ∈ R ;

(8) a ∈ limR(x)
(

a ∈ adhR(x)
)

if aΓ ∈ LimR(x)
(

aΓ ∈
AdhR(x)

)
, where aΓ = Γ×{a} .

If R is a relator on X , then the relators

R∗ =
{

S ⊂ X2 : ∃ R ∈ R : R ⊂ S
}

,

R# =
{

S ⊂ X2 : ∀ A ⊂ X : A ∈ IntR
(
S (A)

) }
,

R∧ =
{

S ⊂ X2 : ∀ x ∈ X : x ∈ intR
(
S (x)

) }
,

RM =
{

S ⊂ X2 : ∀ x ∈ X : S (x) ∈ ER
}

are called the uniform, the proximal, the topological and the paratopological
refinements of R , respectively.

Moreover, if R is a relator on X , then the relators

R−1 =
{

R−1 : R ∈ R}
and R∞ =

{
R∞ : R ∈ R}

are called the inverse and the preorder modification of R , respectively.
While, if R and S are relators on X , then the relators

R∧S =
{

R∩S : R ∈ R , S ∈ S}
and R�S =

{
R�S : R ∈ R , S ∈ S }

,

where � = ◦ (� = � ) , are called the meet and the composition (the box
product) of R and S , respectively.

The importance of the topological refinement of relators lies mainly in the
next two theorems proved in [ 30 ] and [ 37 ] .
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Theorem 2.1. If R is a relator on X , then R∧ is the largest relator on X
such that intR∧ = intR

(
clR∧ = clR

)
, resp. limR∧ = limR

(
adhR∧ =

adhR
)
.

Therefore, two relators R and S on X are said to be topologically equiv-
alent if R∧ = S∧ . In particular, a relator is called topologically simple if
it is topologically equivalent to a singleton relator. Moreover, the relator R
is called topologically fine if R∧ = R .

Theorem 2.2. If R is a relator on X , then R∧ is the largest relator on
X such that for each A , B ⊂ X we have B ∈ IntR∧ (A)

(
B ∈ ClR∧ (A)

)
if and only if B ⊂ intR(A)

(
B ∩ clR(A) 6= ∅ )

.

By using this theorem, we can at once see that τR∧ = TR
(
τ-R∧ = FR

)
.

Moreover, we can easily prove that R∧−1∧ = { ρR}∧, and thus the relator
R∨ = R∧−1 is always topologically simple.

The importance of the preorder modification of relators lies mainly in the
following theorem proved in [ 20 ] .

Theorem 2.3. If R and S are relators on X , then the assertions TR =
TS , FR = FS , R∧∞ = S∧∞ and R∧∞∧ = S∧∞∧ are equivalent.

Namely, in contrast to Theorem 2.1, we can only state that R∧∞ is the
largest preorder relator on X such that TR∧∞ = TR

( FR∧∞ = FR
)
.

3. Metric type relators

A relator space X (R) is usually said to have a property P if the relator
R has the property P . Among the various useful properties of relators, we
shall only need here some uniform and topological type ones.

Definition 3.1. A relator R on X will be called uniformly countable if
there exists a sequence ( Rn)∞n=1 of relations on X such that

R ∗ =
( {

Rn

}∞
n=1

)∗
.

Moreover, a uniformly countable relator R on X will be said to be of
metric type if it is uniformly symmetric, transitive and filtered in the sense
that

R−1 ⊂ R∗ , R ⊂ (R ◦R )∗ , R ⊂ (R∧R )∗ .

Remark 3.2. Quite similarly, a uniformly countable, transitive and filtered
relator may be called quasi-metric type.

The above terminology is mainly motivated by the following obvious
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Example 3.3. If d is a function of X2 to [ 0 , +∞ ] , then the relator Rd

consisting of all surroundings Bd
ε , where ε > 0 , is uniformly countable and

filtered.
Moreover, if in addition the distance function d is symmetric and satisfies

the triangle inequality, then the relator Rd is of metric type.

Simple applications of the corresponding definitions immediately yield the
following

Proposition 3.4. If R is a relator on X , then the following assertions
hold :

(1) R is uniformly symmetric if and only if R∗ is properly symmetric
in the sense that

(R∗)−1 ⊂ R∗;
(2) R is uniformly filtered if and only if R∗ is properly filtered in the

sense that R∗ ∧ R∗ ⊂ R∗;
(3) if R is a uniformly transitive and filtered, then for each R ∈ R∗

there exists an S ∈ R such that S ⊂ R and S ◦ S ⊂ R .

Hint. To prove the assertion (3), note that if R ∈ R∗, then there exists an
R1 ∈ R such that R1 ⊂ R . Moreover, if R is uniformly transitive, then
there exist R2 , R3 ∈ R such that R2 ◦ R3 ⊂ R1. Furthermore, if R is
uniformly filtered, then there exists an S ∈ R such that S ⊂ R1∩R2∩R3 .
Hence, it is clear that S has the required properties.

Remark 3.5. Note that in the assertions (1) and (2) actually the equalities
are also true.

Now, by using Proposition 3.4, we can also easily prove the following

Theorem 3.6. If R is a relator on X , then the following assertions are
equivalent :

(1) R is of metric type ;
(2) there exists a decreasing sequence

(
Rn

)∞
n=1

of symmetric relations

on X such that R 2
n+1 ⊂ Rn for all n ∈ N and R ∗ =

( {
Rn

}∞
n=1

)∗
.

Proof. If the assertion (1) holds, then there exists a sequence
(
Vn

)∞
n=1

of
relations on X such that

R ∗ =
( {

Vn

}∞
n=1

)∗
.

Define R1 = V1 ∩ V −1
1 . Then, it is clear that R1 is a symmetric relation

on X such that R1 ⊂ V1. Moreover, from the assertions (1) and (2) of
Proposition 3.4, we can see that R1 ∈ R∗. Therefore, by the assertion
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(3) of Proposition 3.4, there exists an S1 ∈ R such that S1 ⊂ R1 and
S1 ◦ S1 ⊂ R1 . Define

R2 = ( S1 ∩ V2) ∩ ( S1 ∩ V2)−1.

Then, it is clear that R2 is a symmetric relation on X such that R2 ⊂ R1 ,
R2 ◦ R2 ⊂ R1 and R2 ⊂ V2 . Moreover, from the assertions (1) and (2) of
Proposition 3.4, we can see that R2 ∈ R∗.

Hence, by induction, it is clear that there exists a decreasing sequence(
Rn

)∞
n=1

of symmetric relations on X such that R 2
n+1 ⊂ Rn ,

Rn ⊂ Vn and Rn ∈ R∗

for all n ∈ N . Therefore, we have

R ∗ =
( {

Vn

}∞
n=1

)∗
⊂

( {
Rn

}∞
n=1

)∗
⊂ R∗∗ = R∗ ,

and thus the assertion (2) also holds.
The proof of the converse implication (2) =⇒ (1) is even more obvious.

Remark 3.7. Note that if
(
Rn

)∞
n=1

is as in the assertion (2) of Theorem
3.6, then by defining Sn = R2n−1 for all n ∈ N we can get a decreasing
sequence

(
Sn

)∞
n=1

of symmetric relations on X such that S 3
n+1 ⊂ Sn

for all n ∈ N and R ∗ =
( {

Sn

}∞
n=1

)∗
.

Therefore, by using a standard construction of pseudo-metrics [ 13 , p.
185 ] , we could prove a certain converse of the second assertion of Example
3.3. However, this converse would be of no particular importance for us now
since the metric type relators are usually more convenient means than the
corresponding generalized metrics.

4. Topological relators

Definition 4.1. If R is a relator on X , then we say that :
(1) R is reflexive if ∆X ⊂ ⋂R ;
(2) R is topologically symmetric if R∧−1 ⊂ R∧ ;
(3) R is topologically semisymmetric if R−1 ⊂ R∧ ;
(4) R is topologically transitive if R ⊂ (R∧ ◦ R )∧ ;
(5) R is uniformly topologically transitive if R ⊂ (R ◦R )∧ ;
(6) R is topologically regular if R ⊂ (R∧−1 ◦ R )∧ ;
(7) R is topologically filtered if R ⊂ (R∧R )∧ .
Moreover, we say that a relator is topological (uniformly topological) if it

is reflexive and topologically (uniformly topologically) transitive.

To let the reader feel the appropriateness of the above definitions, we shall
only mention here the following theorems which were proved in [ 34 ] .
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Theorem 4.2. If R is a relator on X , then the following assertions are
equivalent :

(1) R is reflexive ;
(2) B ∈ IntR(A) implies B ⊂ A for all A , B ⊂ X ;
(3) B ∩A 6= ∅ implies B ∈ ClR(A) for all A , B ⊂ X ;
(4) intR(A) ⊂ A

(
A ⊂ clR(A)

)
for all A ⊂ X ;

(5) ρR is reflexive .

Remark 4.3. To prove the implication (5) =⇒ (1) , it is convenient to note
that

clR(A) =
⋂

R∈R
R−1(A)

for all A ⊂ X , and thus in particular ρR =
⋂ R−1 =

( ⋂ R )−1.

Theorem 4.4. If R is a relator on X , then the following assertions are
equivalent :

(1) R is topologically transitive ;
(2) x ∈ intR

(
intR

(
R (x)

))
for all R ∈ R and x ∈ X ;

(3) intR
(
R (x)

) ∈ TR for all R ∈ R and x ∈ X ;
(4) intR(A) ∈ TR

(
clR(A) ∈ FR

)
for all A ⊂ X ;

(5) R∧ is uniformly topologically transitive .

Remark 4.5. If R is topologically transitive, then we can prove that the
relator S = R∧ is actually strictly proximally transitive in the sense that
S ⊂ (S • S )# , where S • S = {S ◦ S : S ∈ S } .

Theorem 4.6. If R is a relator on X , then the following assertions are
equivalent :

(1) R is topological ;
(2) intR(A) =

⋃ {
V ∈ TR : V ⊂ A

}
for all A ⊂ X ;

(3) clR(A) =
⋂ {

W ∈ FR : A ⊂ W
}

for all A ⊂ X ;
(4) R is topologicaly equivalent to RTR

( R∧∞)
;

(5) R is topologicaly equivalent to a preorder relator on X .

Because of Theorem 4.4, in addition to Definition 4.1, we may also have

Definition 4.7. If R is a relator on X , then we say that :
(1) R is weakly topologically transitive if ρR(x) ∈ FR for all x ∈ X ;
(2) R is strongly topologically transitive if R (x) ∈ TR for all R ∈ R

and x ∈ X .
Moreover, we say that a relator is weakly (strongly) topological if it is

reflexive and weakly (strongly) topologically transitive.

Namely, in addition to Theorem 4.6, we can also prove
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Theorem 4.8. If R is a relator on X and R◦ is a relation on X for
each R ∈ R such that

R◦(x) = intR
(
R (x)

) (
x ∈ X

)
,

then R◦ =
{

R◦ : R ∈ R}
is a strongly topological relator on X such

that R and R◦ are topologically equivalent if and only if R is topological.

Unfortunately, concerning the pointwise closures of relators we can only
prove

Theorem 4.9. If R is a reflexive, topologically regular relator on X and
R− is a relation on X for each R ∈ R such that

R−(x) = clR
(
R (x)

) (
x ∈ X

)
,

then R− =
{

R− : R ∈ R}
is a reflexive relator on X such that R

and R− are topologically equivalent.

Proof. Since R is reflexive, by Theorem 4.2, it is clear that R ⊂ R− for all
R ∈ R . Thus, in particular R ⊂ R∗ ⊂ R∧, and hence R∧ ⊂ R∧∧ = R∧.

Moreover, since R is topologically regular for each R ∈ R and x ∈ X
there exist U ∈ R and V ∈ R∧ such that V −1

(
U (x)

) ⊂ R (x) . Hence,
by Theorem 2.1 and Remark 4.3, it is clear that

U−(x) = clR
(
U (x)

)
= clR∧

(
U (x)

)
=

⋂

V ∈R∧
V −1

(
U (x)

) ⊂ R (x) .

Therefore, R ⊂ R−∧, and hence R∧ ⊂ R−∧∧ = R−∧ is also true.

Remark 4.10. If in particular R is topologically semisymmetric and uni-
formly topological, then we can prove that R− is also uniformly topological.

5. Complete relators

The following natural definition of Cauchy nets has been established in
[ 38 ] .

Definition 5.1. A net x in a relator space X (R) is called convergent
(adherent) if limR(x) 6= ∅ (

adhR(x) 6= ∅ )
.

In particular, a net x in a relator space X (R) is called convergence (ad-
herence) Cauchy if it is convergent (adherent) in each of the spaces X (R) ,
where R ∈ R .
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Remark 5.2. By the corresponding definitions, it is clear that

limR(x) =
⋂

R∈R
limR (x)

(
adhR(x) =

⋂

R∈R
adhR (x)

)
.

Therefore, a convergent (adherent) net is, in particular, convergence (adher-
ence) Cauchy.

Moreover, in [ 38 ] we have shown that a net x in a relator a space
X (R) is convergent (adherent) if and only if it is convergence (adherence)
Cauchy in the space X (R∧) . In contrast to this, note that the net x is
convergence (adherence) Cauchy in the space X (R∗) if and only if it is
convergence (adherence) Cauchy in X (R) .

Now, by applying Definition 5.1, we may also have the following important

Definition 5.3. A relator R on X is called convergence-adherence com-
plete if each convergence Cauchy net in X (R) is adherent.

Moreover, the relator R is called directedly (sequentially) convergence-
adherence complete if each directed convergence Cauchy net (convergence
Cauchy sequence) in X (R) is adherent.

Remark 5.4. In [ 38 ] we have shown that an adherent convergence Cauchy
net in an uniformly topologically transitive, proximally symmetric and uni-
formly filtered relator space is convergent.

Therefore, a metric type relator R on X is, in particular, directedly
(sequentially) convergence-adherence complete if and only if it is directedly
(sequentially) convergence-convergence complete in the sense that each di-
rected convergence Cauchy net (convergence Cauchy sequence) in X (R) is
convergent.

Concerning metric type relators, we can also prove the next useful

Theorem 5.5. If R is a metric type relator on X , then the following
assertions are equivalent ;

(1) R is sequentially convergence-adherence complete ;
(2) R is directedly convergence-adherence complete .

Proof. Since R is of metric type, by Theorem 3.6, there exists a decreasing
sequence ( Rn)∞n=1 of symmetric relations on X such that

R 2
n+1 ⊂ Rn

(
n ∈ N )

and R∗ =
( {

Rn

}∞
n=1

)∗
.

Therefore, if ( xα)α∈Γ is a convergence Cauchy net in X (R) , then for
each n ∈ N there exist un ∈ X and αn ∈ Γ such that

xα ∈ Rn(un) , i. e. un ∈ Rn(xα)
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for all α ≥ αn . Hence, it is clear that for each k ∈ N , n ≥ k + 1 and
α ∈ Γ , with α ≥ αn and α ≥ αk+1 , we have

un ∈ Rn(xα) ⊂ Rn

(
Rk+1(uk+1)

) ⊂ R 2
k+1(uk+1) ⊂ Rk (uk+1) .

Therefore, if Γ is directed, then the sequence ( un)∞n=1 is also convergence
Cauchy in the space X (R) . Thus, if the assertion (1) holds, then there
exists a u ∈ X such that

u ∈ adhR
(
un)∞n=1 .

This implies that for each k ∈ N there exists an n ≥ k + 1 such that

un ∈ Rk+1(u) .

Therefore, for each α ≥ αn , we have

xα ∈ Rn(un) ⊂ Rn

(
Rk+1(u)

) ⊂ R 2
k+1 (u) ⊂ Rk(u) .

Hence, since Γ is directed, it is clear that we also have

u ∈ adhR (xα)α∈Γ .

Therefore, the assertion (2) also holds. Now, since the converse implication
(2) =⇒ (1) is quite obvious, the proof is complete.

Remark 5.6. The most important directedly convergence-adherence com-
plete relators are the topologically compact ones.

A relator R on X has been called topologically compact in [ 43 ] if its
topological refinement R∧ is properly compact in the sense that for each
R ∈ R∧ there exists a finite subset A of X such that R (A) = X .

6. Upper and lower semicontinuity of relations

The following definitions and theorems have been established in [ 27 ] .

Definition 6.1. A pair ( F , G ) of relations on one relator space X (R) to
another Y (S ) is called uniformly (topologically) upper semicontinuous if

S∗ ◦ F ⊂ (
G ◦ R )∗ (

S∧ ◦ F ⊂ (
G ◦ R )∧ )

.
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Theorem 6.2. If F and G are relations on one relator space X (R) to
another Y (S ) , then the following assertions are equivalent :

(1) (F , G ) is uniformly upper semicontinuous ;
(2) for each S ∈ S there exists an R ∈ R such that for each x ∈ X

we have G
(
R (x)

) ⊂ S
(
F (x)

)
;

(3) for each S ∈ S there exists an R ∈ R such that for each x ∈ X
and u ∈ R (x) we have G (u) ⊂ S

(
F (x)

)
.

Theorem 6.3. If F and G are relations on one relator space X (R) to
another Y (S ) , then the following assertions are equivalent :

(1) (F , G ) is topologically upper semicontinuous ;
(2) for each S ∈ S∧ and x ∈ X there exists an R ∈ R such that

G
(
R (x)

) ⊂ S
(
F (x)

)
;

(3) for each S ∈ S∧ and x ∈ X there exists an R ∈ R such that for
each u ∈ R (x) we have G (u) ⊂ S

(
F (x)

)
.

Theorem 6.4. If F and G are relations on one relator space X (R) to
another Y (S ) , then the following assertions are equivalent :

(1) (F , G ) is topologically upper semicontinuous ;
(2) clR

(
G−1(A)

) ⊂ F−1
(

clS (A)
)

for all A ⊂ Y .

Corollary 6.5. If F and G are relations on an arbitrary relator space
X (R) to a topological relator space Y (S ) , then the following assertions
are equivalent :

(1) (F , G ) is topologically upper semicontinuous ;
(2) clS (B) ⊂ A implies clR

(
G−1(B)

) ⊂ F−1(A) for all A , B ⊂
Y ;

(3) A ∈ FS implies clR
(

G−1(A)
) ⊂ F−1(A) .

Remark 6.6. The implication (1) =⇒ (2) does not require the relator S
to be topological.

Moreover, a pair ( A , B ) of subsets of a relator space X (R) may be
called closed if clR(B) ⊂ A .

Definition 6.7. A pair ( F , G ) of relations on one relator space X (R) to
another Y (S ) is called uniformly (topologicaly) lower semicontinuous if

G−1 ◦ S ⊂ (R∗ ◦ F−1
)∗ (

G−1 ◦ S ⊂ (R∧ ◦ F−1
)∧ )

.

Theorem 6.8. If F and G are relations on one relator space X (R) to
another Y (S ) , then the following assertions are equivalent :

(1) (F , G ) is uniformly lower semicontinuous ;
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(2) for each S ∈ S there exists an R ∈ R such that for each y ∈ Y
we have R

(
F−1(y)

) ⊂ G−1
(
S (y)

)
;

(3) for each S ∈ S there exists an R ∈ R such that for each x ∈ X ,
y ∈ F (x) and u ∈ R (x) we have G (u) ∩ S (y) 6= ∅ ;

Theorem 6.9. If F and G are relations on one relator space X (R) to
another Y (S ) , then the following assertions are equivalent :

(1) (F , G ) is topologically lower semicontinuous ;
(2) for each S ∈ S there exists an R ∈ R∧ such that for each y ∈ Y

we have R
(
F−1(y)

) ⊂ G−1
(
S (y)

)
;

(3) for each S ∈ S , x ∈ X and y ∈ F (x) there exists an R ∈ R
such that for each u ∈ R (x) we have G (u) ∩ S (y) 6= ∅ .

Theorem 6.10. If F and G are relations on one relator space X (R) to
another Y (S ) , then the following assertions are equivalent :

(1) (F , G ) is topologically lower semicontinuous ;
(2) F−1

(
intS (A)

) ⊂ intR
(

G−1(A)
)

for all A ⊂ Y .

Corollary 6.11. If F and G are relations on an arbitrary relator space
X (R) to a topological relator space Y (S ) , then the following assertions
are equivalent :

(1) (F , G ) is topologically lower semicontinuous ;
(2) A ⊂ intS (B) implies F−1(A) ⊂ intR

(
G−1(B)

)
for all A, B ⊂

Y ;
(3) A ∈ TS implies F−1( A) ⊂ intR

(
G−1(A)

)
.

Remark 6.12. The implication (1) =⇒ (2) does not require the relator S
to be topological.

Moreover, a pair (A , B ) of subsets of a relator space X (R) may be
called open if A ⊂ intR(B) .

7. Almost uniform and topological lower
semicontinuity of relations

Analogously to Definition 6.7 and Theorems 6.8 , 6.9 and 6.10, we may
now also have the following definition and theorems.

Definition 7.1. A pair ( F , G ) of relations on one relator space X (R) to
another Y (S ) will be called almost uniformly (topologically) lower semi-
continuous if

(
G−1 ◦ S )− ⊂ (R∗ ◦ F−1

)∗ ( (
G−1 ◦ S )− ⊂ (R∧ ◦ F−1

)∧ )
.
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Theorem 7.2. If F and G are relations on one relator space X (R) to
another Y (S ) , then the following assertions are equivalent :

(1) (F , G ) is almost uniformly lower semicontinuous ;
(2) for each S ∈ S there exists an R ∈ R such that for each y ∈ Y

we have R
(
F−1( y )

) ⊂ clR
(
G−1

(
S ( y )

))
;

(3) for each S ∈ S there exists an R ∈ R such that for each x ∈ X ,
y ∈ F (x) , u ∈ R (x) and U ∈ R there exists a v ∈ U (u) such that
G (v) ∩ S (y) 6= ∅ ;

Hint. If the assertion (1) holds, then for each S ∈ S there exists an R ∈ R
such that R ◦ F−1 ⊂ (

G−1 ◦ V
)−. Hence, it follows that

R
(
F−1( y )

) ⊂ clR
(
G−1

(
S ( y )

))

for all y ∈ Y . Therefore, if x ∈ X and y ∈ F (x) , i. e., x ∈ F−1(y) ,
then

R (x) ⊂ clR
(
G−1

(
S (y)

))
.

Thus, for each u ∈ R (x) , we have u ∈ clR
(

G−1
(
S (y)

))
. Hence,

it follows that for each U ∈ R there exist v ∈ U (u) such that v ∈
G−1

(
S (y)

)
, i. e., G (v) ∩ S (y) 6= ∅ . Therefore, the assertion (3) also

holds.

Theorem 7.3. If F and G are relations on one relator space X (R) to
another Y (S ) , then the following assertions are equivalent :

(1) (F , G ) is almost topologically lower semicontinuous ;
(2) for each S ∈ S there exists an R ∈ R∧ such that for each y ∈ Y

we have R
(
F−1( y )

) ⊂ clR
(
G−1

(
S ( y )

))
;

(3) for each S ∈ S , x ∈ X and y ∈ F (x) there exists an R ∈ R
such that for each u ∈ R (x) and U ∈ R there exists a v ∈ U (u) such
that G (v) ∩ S (y) 6= ∅ .

Hint. If the assertion (3) holds, then for each S ∈ S , y ∈ Y and x ∈
F−1(y) there exists an Rx ∈ R such that for each u ∈ R (x) and U ∈ R
there exists a v ∈ U (u) such that G (v)∩S (y) 6= ∅ . Hence, similarly as in
the proof of Theorem 7.2, we can infer that Rx(x) ⊂ clR

(
G−1

(
S (y)

))
.

Therefore,
F−1(y) ⊂ intR

(
clR

(
G−1

(
S (y)

)))
.

Hence, by Theorem 2.2, it follows that

F−1(y) ∈ IntR∧
(
clR

(
G−1

(
S (y)

)))
.
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Therefore, there exists an R ∈ R∧ such that
(
R ◦ F−1

)
( y ) = R

(
F−1(y)

) ⊂ clR
(
G−1

(
S (y)

))
=

(
G−1 ◦ S

)−( y ) .

Therefore,
(
G−1 ◦ S

)− ∈ (R∧ ◦ F−1)∧ , and thus the assertion (1) also
holds.

Theorem 7.4. If F and G are relations on one relator space X (R) to
another Y (S ) , then the following assertions are equivalent :

(1) (F , G ) is almost topologically lower semicontinuous ;
(2) F−1

(
intS (A)

) ⊂ intR
(
clR

(
G−1(A)

))
for all A ⊂ Y .

Hint. If A ⊂ Y and x ∈ F−1
(
intS (A)

)
, then there exists a y ∈ intS (A)

such that x ∈ F−1(y) . Therefore, there exists an S ∈ S such that S (y) ⊂
A . Moreover, if the assertion (1) holds, then by Theorem 7.3 there exists
an R ∈ R∧ such that R

(
F−1(y)

) ⊂ clR
(
G−1

(
S (y)

))
. Hence, it is

clear that R (x) ⊂ clR
(
G−1(A)

)
. Therefore, x ∈ intR

(
clR

(
G−1(A)

))
,

and thus the assertion (2) also holds.

Corollary 7.5. If F and G are relations on an arbitrary relator space
X (R) to a topological relator space Y (S ) , then the following assertions
are equivalent :

(1) (F , G ) is almost topologically lower semicontinuous ;
(2) A ⊂ intS (B) implies F−1(A) ⊂ intR

(
clR

(
G−1(B)

))
for all

A, B ⊂ Y ;
(3) A ∈ TS implies F−1( A) ⊂ intR

(
clR

(
G−1(A)

))
.

Hint. If A ⊂ Y , then by Theorem 4.4 we have intS (A) ∈ TS . Therefore,
if the assertion (2) holds, then

F−1
(

intS (A)
) ⊂ intR

(
clR

(
G−1

(
intS (A)

)))
.

Moreover, by Theorem 4.2, we have intS (A) ⊂ A . Therefore,

F−1
(
intS (A)

) ⊂ intR
(
clR

(
G−1(A)

))
.

Thus, by Theorem 7.4, the assertion (1) also holds.

Remark 7.6. Note that the implication (1) =⇒ (2) does not require the
relator S to be topological.

Moreover, a pair ( A , B) of subsets of a relator space X (R) may be
called almost open if A ⊂ intR

(
clR( B)

)
.

8. Relationships between the closedness and
semicontinuity properties of relations

The following definition and theorems have also been established in [ 27 ] .
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Definition 8.1. A pair (F , G ) of relations on one relator space X (R)
to another Y (S ) is called closed-valued if

(
F (x) , G (x)

)
is a closed pair

of subsets of Y (S) for all x ∈ X .
Moreover, the pair ( F , G ) is called closed if ( F , G ) is a closed pair

of subsets of the product space X×Y (R�S ) .

Remark 8.2. Recall that a pair ( A , B ) of subsets of a relator space
X (R) has been called closed if clR(B) ⊂ A .

Theorem 8.3. If (F , G ) is a closed pair of relations on a reflexive relator
space X (R) to an arbitrary relator space Y (S ) , then (F , G ) is closed-
valued.

Theorem 8.4. If (F , G ) is a closed pair of relations on a topologically
filtered relator space X (R) to a topologically compact relator space Y (S ) ,
then (F , G ) is topologically upper semicontinuous.

Corollary 8.5. If (F , G ) is a closed pair of relations on a topologi-
cally compact relator space X (R) to a topologically filtered relator space
Y (S ) , then

(
F (A) , G (B)

)
is a closed pair of subsets of Y (S ) whenever

(A , B ) is a closed pair of subsets of X (R) .

Theorem 8.6. If ( F , G ) is a closed-valued and topologically upper semi-
continuous pair of relations on an arbitrary relator space X (R) to a topo-
logically regular relator space Y (S ) such that F ⊂ G , then (F , G ) is
closed.

Theorem 8.7. If (F , G ) is a closed-valued and uniformly lower semi-
continuous pair of relations on a topologically semisymmetric relator space
X (R) to a uniformly topologically transitive relator space Y (S ) such that
G ⊂ F , then (F , G ) is closed.

Corollary 8.8. If (F , G ) is a closed-valued and uniformly lower semicon-
tinuous pair of relations on a topologically semisymmetric and filtered relator
space X (R) to a uniformly topologically transitive and topologically com-
pact relator space Y (S ) such that G ⊂ F , then (F , G ) is topologically
upper semicontinuous.

Remark 8.9. Note that if ( F , G ) is a closed-valued pair of relations on an
arbitrary relator space X (R) to a reflexive relator space Y (S ) , then
G (x) ⊂ clS

(
G (x)

) ⊂ F (x) for all x ∈ X , and thus G ⊂ F .

In view of Corollary 8.8, it is worth mentioning that we also have

Theorem 8.10. If X (R) and Y (S ) are relator spaces and F and G are
relations on X to Y , then following assertions are equivalent :
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(1) (F , G ) is a uniformly lower semicontinuous pair of relations on
X (R) to Y (S ) ;

(2) (G , F ) is an uniformly upper semicontinuous pair of relations on
X

(R−1
)

to Y
(S−1

)
.

Hint. Make use of the facts that U ∗−1 = U−1 ∗ and
(U◦V )−1 = V−1◦U−1

hold for any relators U and V .

Corollary 8.11. If F and G are relations on one uniformly symmetric
relator space X (R) to another Y (S ) , then the following assertions are
equivalent :

(1) (F , G ) is uniformly lower semicontinuous ;
(2) (G , F ) is uniformly upper semicontinuous.

Hint. By the assumptions, we now have R∗ = R∗−1 and S∗ = S∗−1.

Remark 8.12. Unfortunately, the analogues of Theorem 8.10 and Corollary
8.11 fail to hold for the topological lower and upper semicontinuities.

Namely, according to [ 19 , Theorem 6.5 ] , the equality R∧−1 = R−1∧

can hold true if and only if both R and R−1 are topologically simple.

9. An extension of Kelley’s closed relation theorem

Now, having the necessary preparations, we are ready to prove the fol-
lowing generalization of the dual of Kelley’s closed relation theorem.

Theorem 9.1. If ( F , G ) is an almost uniformly lower semicontinuous
closed pair of relations on a topologically semisymmetric relator space X (R)
to a sequentially convergence-adherence complete metric type relator space
Y (S ) such that G ⊂ F , then

clR
(

G−1
(
V (y)

))
⊂ F−1

(
W

(
V (y)

))

for all V ,W ∈ S and y ∈ Y .

Proof. Let V , W ∈ S and y0 ∈ Y , and assume that

x ∈ clR
(

G−1
(
V ( y0)

))
.

Since S is of metric type, we can find a decreasing sequence
(
Sn

)∞
n=1

of
symmetric relations on Y such that

S 3
1 ⊂ W , S 2

n+1 ⊂ Sn

(
n ∈ N )

, S∗ =
({

Sn

}∞
n=1

)∗
.
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Moreover, from the almost uniform lower semicontinuity of F , it follows
that there exists a sequence

(
Rn

)∞
n=1

in R such that

Rn

(
F−1 (y)

) ⊂ clR
(

G−1
(
Sn(y)

) )

for all n ∈ N and y ∈ Y .
Now, since

x ∈ clR
(

G−1
(
V ( y0)

))
⊂ R 1

(
G−1

(
V ( y0)

))
⊂ R 1

(
F−1

(
V ( y0)

))
,

we can see that there exists an y1 ∈ V ( y0) such that

x ∈ R 1

(
F−1( y1)

) ⊂ clR
(

G−1
(
S1( y1)

))
.

Quite similarly, since

x ∈ clR
(

G−1
(
S1( y1)

))
⊂ R 2

(
G−1

(
S1( y1)

))
⊂ R 2

(
F−1

(
S1( y1)

))
,

we can also see that there exists an y2 ∈ S1( y1) such that

x ∈ R 2

(
F−1( y2)

) ⊂ clR
(

G−1
(
S2( y2)

))
.

Hence, by induction, it is clear that there exists a sequence ( yn)∞n=1 in Y
such that

y1 ∈ V ( y0) , yn+1 ∈ Sn( yn) , x ∈ clR
(

G−1
(
Sn( yn)

))

for all n ∈ N .
Now, by noticing that for each S ∈ S there exists a k > 1 such that

Sk−1 ⊂ S , we can easily see that

yk+1 ∈ Sk ( yk ) ⊂ Sk−1( yk ) ⊂ S ( yk ) ,

yk+2 ∈ Sk+1( yk+1) ⊂ Sk+1

(
Sk ( yk )

) ⊂ S2
k ( yk ) ⊂ Sk−1( yk ) ⊂ S ( yk ) ,

yk+3 ∈ Sk+2( yk+2) ⊂ Sk+2

(
Sk+1

(
Sk( yk )

) ) ⊂ S 2
k+1

(
Sk ( yk )

) ⊂
⊂ S2

k ( yk ) ⊂ Sk−1( yk ) ⊂ S ( yk ) .

Hence, it is clear that yn ∈ S ( yk ) for all n > k , and thus

yk ∈ lim{S} ( yn)∞n=1 .
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Therefore, ( yn)∞n=1 is a convergence Cauchy sequence in Y (S ) . And thus,
by the assumed completeness of Y (S ) , there exists an y ∈ Y such that

y ∈ adhS ( yn)∞n=1 .

Now, by noticing that for each S ∈ S there exist k > 1 and n > k such
that

Sk−1 ⊂ S and yn ∈ Sk (y) ,

we can easily see that

Sn( yn) ⊂ Sn

(
Sk (y)

) ⊂ S 2
k (y) ⊂ Sk−1(y) ⊂ S (y) ,

and thus

x ∈ clR
(

G−1
(
Sn( yn)

))
⊂ clR

(
G−1

(
S (y)

))
.

This implies that for each R ∈ R we have

R (x) ∩ G−1
(
S (y)

)∩ 6= ∅ ,

and hence (
R (x)× S (y)

) ∩ G 6= ∅ .

Therefore, we also have

( x , y ) ∈ clR�S (G ) ⊂ F ,

and hence y ∈ F (x) .
Now, by noticing that there exists a n > 2 such that yn ∈ S1(y) , we

can easily see that

y ∈ S1( yn) ⊂ S1

(
Sn−1

( · · · S1( y1)
))

⊂ S 3
1 ( y1) ⊂ W ( y1) .

Therefore, y ∈ W
(
V ( y0)

)
, and thus we also have

x ∈ F−1(y) ⊂ F−1
(

W
(
V ( y0)

))
.

Remark 9.2. Note that if ( F , G ) is a closed pair of relations on one
reflexive relator space X (R) to another Y (S ) , then G ⊂ clR�S ( G ) ⊂
F .

10. Some useful consequences of the closed relation theorem

A simple application of Theorem 9.1 immediately yields the following
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Theorem 10.1. If (F , G ) is an almost uniformly lower semicontinuous
closed pair of relations on a topologically semisymmetric relator space X (R)
to a sequentially convergence-adherence complete metric type relator space
Y (S ) such that G ⊂ F , then the relation F is uniformly lower semicon-
tinuous.

Proof. If S ∈ S , then because of the uniform transitivity of S , there exist
V , W ∈ S such that

W
(
V (y)

) ⊂ S (y)

for all y ∈ Y . Moreover, because of the almost uniform lower semicontinuity
of ( F , G ) there exists an R ∈ R such that

R
(
F−1 (y)

) ⊂ clR
(

G−1
(
V (y)

) )

for all y ∈ Y .
On the other hand, from Theorem 6.1 we know that

clR
(

G−1
(
V (y)

))
⊂ F−1

(
W

(
V (y)

))

for all y ∈ Y . Therefore, we also have

R
(
F−1 (y)

) ⊂ F−1
(
S (y)

)

for all y ∈ Y . And thus the relation F is uniformly lower semicontinuous.

Remark 10.2. Note that if ( F , G ) is an almost uniformly lower semicon-
tinuous pair of relations on one relator space X (R) to another Y (S ) such
that G ⊂ F , then both F and G are almost uniformly lower semicontinous.

Moreover, if ( F , G ) is a pair of relations on one relator space X (R)
to another Y (S ) such that G ⊂ F and the relation F is uniformly lower
semicontinuous, then the pair ( G , F ) is also uniformly lower semicontinu-
ous.

The F = G particular case of Theorem 10.1 at once gives the next
practically important

Corollary 10.3. If F is an almost uniformly lower semicontinuous closed
relation on a topologically semisymmetric relator space X (R) to a sequen-
tially convergence-adherence complete metric type relator space Y (S ) , then
F is uniformly lower semicontinuous.

Now, combining Corollary 10.3 with the F = G particular cases of
Theorems 8.3 and 8.7, we can also easily establish the following important
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Theorem 10.4. If F is a relation on a reflexive, topologically semisymmet-
ric relator space X (R) to a sequentially convergence-adherence complete
metric type relator space Y (S ) , then the following assertions are equiva-
lent :

(1) F is closed and almost uniformly lower semicontinuous ;
(2) F is closed-valued and uniformly lower semicontinuous .

Proof. If the assertion (1) holds, then Theorem 8.3 shows that F is closed-
valued. Moreover, Corollary 10.3 shows that F is uniformly lower semicon-
tinuous. Therefore, the assertion (2) also holds.

On the other hand, if the assertion (2) holds, then Theorem 8.7 shows
that F is closed. Moreover, because of the reflexivity of R , it is clear that
F is also almost uniformly lower semicontinuous. Therefore, the assertion
(1) also holds.

Combining Theorem 10.1 with the F = G particular case of Corollary
8.11, we can also at once state

Theorem 10.5. If (F , G ) is an almost uniformly lower semicontinuous
closed pair of relations on an uniformly symmetric relator space X (R) to a
sequentially convergence-adherence complete metric type relator space Y (S )
such that G ⊂ F , then the relation F is uniformly upper semicontinuous.

Remark 10.6. Note that if ( F , G ) is a pair of relations on one relator
space X (R) to another Y (S ) such that G ⊂ F and the relation F is
uniformly upper semicontinuous, then the pair ( F , G ) is also uniformly
upper semicontinuous.

In this respect it is also worth mentioning that by using Theorem 9.1 we
can also easily get the following

Theorem 10.7. If ( f , g ) is an almost uniformly lower semicontinuous
closed pair of functions on a topologically semisymmetric relator space X(R)
to a sequentially convergence-adherence complete metric type relator space
Y (S ) such that g ⊂ f , then

clR
(

g−1
(
V (y)

) )
⊂ f−1

(
clS

(
V (y)

) )

for all V ∈ S and y ∈ Y .

Proof. Since f is a function, by Theorem 9.1 and the uniform symmetry of
S , it is clear that

clR
(

g−1
(
V (y)

))
⊂

⋂

S∈S
f−1

(
S

(
V (y)

))
=

= f−1

( ⋂

S∈S

(
S

(
V (y)

)))
= f−1

(
clS

(
V (y)

))
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for all V ∈ S and y ∈ Y .

Remark 10.8. Therefore, if in addition to the conditions of Theorem 10.7
for each A ⊂ Y there exist V ∈ S and y ∈ Y such that A = V (y) , then
by Theorem 6.4, the pair ( f , g ) is topologically upper semicontinuous.

Acknowledgement. The author is indepted to the referee for pointing out
several misprints and suggesting some improvements in the formulation.
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