
FILOMAT 14 (2000), 87–93

DEDUCING ABOUT THE NECESSITY
OF THE PARENTHESIS

Predrag V. Krtolica and Predrag S. Stanimirović

Abstract

In this paper1 we prove the conjecture made in [2]. This con-
jecture establishes the rules for deducing when the insertion of
the parenthesis is needed while converting an postfix expression
to the infix one.

1. Introduction

The simplification of the symbolic expressions is the most important is-
sue in symbolic computation. The reverse Polish notation is oftenly used in
symbolic manipulations with the various expressions. Reverse Polish nota-
tion is the complementary part of many textbooks in computer science (e.g.
[1], [3], [4], [5]).

When we use reverse Polish notation in symbolic calculations, sooner or
later, we should transform the postfix expression to the infix one. During this
transformation we have imposed the following question: When the paren-
thesis around the arguments of an binary operator are needed, and when we
could omit them and still get a rightful precedence of the operations?

In [2] the properties of the reverse Polish notation are investigated. These
properties are further used in the formulation of the rules about inserting
parenthesis around arguments of the binary operation while corresponding
postfix expression is converted into the infix form. In [2] the algorithms
for transformation of the infix expression to the postfix one, and vice versa,
are developed. These algorithms can process the expressions containing the

1Received May 12, 2000

2000 Mathematics Subject Classification: 68Q40

Key words and phrases: Reverse Polish notation, grasp of the operator, symbolic
computation

Typeset by AMS-TEX

87

88 Predrag V. Krtolica and Predrag S. Stanimirović

usual binary arithmetic operators and standard functions. The formulated
rules are incorporated in the algorithm for the transformation of the expres-
sions in postfix to the infix form.

For the sake of completeness, we restate the results from [2]. Note that
the expression in the reverse Polish notation is denoted by postfix, where
postfix[i], for each i ≥ 0, is a string which denotes an expression element,
i.e. a variable, a constant, or an operator.

Definition 1.1. The grasp of the element postfix[i] is the number of its
preceding elements which form operand(s) of the element postfix[i]. We
denote the grasp of the element postfix[i] by GR(postfix[i]). Integer i is
called the index of the element postfix[i]. Index i of the element postfix[i]
will be alternatively denoted by IND(postfix[i]).

Remark 1.1. The element postfix[i] in the array postfix, representing the
reverse Polish notation of the corresponding expression, can be the opera-
tor or the simple operand (variable or constant). We concern every simple
operand as 0-ary operator, and assume that its grasp is zero.

Definition 1.2. The grasped elements of the operator postfix[i] are the
grasping left preceding elements in the array postfix which form operand(s)
of the operator postfix[i]. The index of the most left element among them
is called the left grasp bound. The left grasp bound of the operator postfix[i]
is denoted by LGB(postfix[i]).

Definition 1.3. The element postfix[i] is called the main element or head
for the expression formed by postfix[i] and its grasped elements.

Remark 1.2. An arbitrary element postfix[i] can be considered as the op-
erator acting on operands arg1, . . . , argn. Heads of these operands will be
denoted by op1, . . . , opn.

Lemma 1.1. Assume that postfix[i] is n-ary operator which takes operands
whose heads are op1, . . . opn, respectively. Then, the following statements are
valid:

(a) GR(postfix[i]) = i− LGB(postfix[i]).

(b) GR(postfix[i])=n+
n∑

k=1

GR(opk)=n+
n∑

k=1

(IND(opk)−LGB(opk)).

(c) LGB(postfix[i]) = i− n−
n∑

k=1

(IND(opk)− LGB(opk)).

Deducing about the necessity of the parenthesis 89

(d) i = IND(postfix[i]) = n +
n∑

k=1

IND(opk) + p,

LGB(postfix[i]) =
n∑

k=1

LGB(opk) + p,

for some integer p.

(e) opn−j = postfix

[
i−

j−1∑
k=1

GR(opn−k)− j − 1
]

, j = 0, . . . , n− 1.

Lemma 1.2. If the grasp of an arbitrary n-ary operator postfix[i] is greater
than n, then at least one of its arguments heads is also an operator.

Corollary 1.1. If the grasp of any binary operator postfix[i] is greater than
2, then at least one of the two preceding elements in reverse Polish notation
of the expression (postfix[i−1] and postfix[i−2]) is also the operator (unary
or binary).

Theorem 1.1. Assume that the grasp of an arbitrary binary operator
postfix[i] is greater than 2.

(a) If the difference between the grasp of the operator postfix[i] and the
grasp of its first preceding operator is equal to 2, then it is not necessary to
insert parenthesis around at least one of the two operands of the operator
postfix[i]. Specifically,

(i) if the difference of index i and the index of the first preceding operator
with respect to postfix[i] is equal to 1, then it is not necessary to
insert parenthesis around the first expression-operand of the operator
postfix[i];

(ii) if the difference of index i and the index of the first preceding operator
with respect to postfix[i] is equal to 2, then it is not necessary to in-
sert parenthesis around the second expression-operand of the operator
postfix[i].

(b) In the opposite case, when the difference between the above men-
tioned grasps is greater than 2, the parenthesis should be inserted around
both expression-operands. The exception is in the case when one of the
expression-operands is unary operator call. In this case, the parenthesis could
be omitted.

The above results are the base for the following rules concerning the ne-
cessity of inserting parenthesis around arguments of a binary operator.

90 Predrag V. Krtolica and Predrag S. Stanimirović

Rule 1. (a) If the current operator postfix[i] in the reverse Polish notation
of the expression, during postfix to infix transformation, is the binary +,
then it is not necessary to insert the parenthesis around its operands.

(b) If the current operator postfix[i] in the reverse Polish notation of the
expression is the binary −, then the following is valid:

(i) The parenthesis are not necessary around the first argument;
(ii) The parenthesis around the second argument are necessary only if

the element postfix[i− 1] is one of the binary operators + or −.

Rule 2. Let the grasp of the operator postfix[i] be greater than 2.
(i) If GR(postfix[i])−GR(postfix[i− 1]) = 2 and postfix[i− 1] is an

unary or binary operator, then it is not necessary to insert parenthe-
sis around the first expression-operand arg1, which is determined by
the head op1 = postfix[i−GR(postfix[i− 1])− 2].

(ii) If GR(postfix[i])−GR(postfix[i− 2]) = 2 and postfix[i− 2] is an
unary or binary operator, then it is not necessary to insert parenthe-
sis around the second expression-operand arg2, which is determined
by the head op2 = postfix[i− 1].

(iii) The exception of the case (i) is raised when postfix[i] = ∗ and
postfix[i − 1] = ∗ or postfix[i − 1] = /. Also, the exception of
the case (ii) is raised when postfix[i] = ∗ and postfix[i − 2] = ∗ or
postfix[i − 2] = /. Then, the parenthesis are not necessary around
both operands arg1 and arg2. There is another exception of the case
(ii), when postfix[i] = / and postfix[i−2] = ∗ or postfix[i−2] = /.
Then, there is no need for the parenthesis around both of the argu-
ments.

Rule 3. Let the grasp of an arbitrary binary operator postfix[i] be greater
than 2 and the difference between its grasp and the grasp of the first preced-
ing operator be greater than 2. Then, in the general case, the parenthesis
should be inserted around both expression-operands arg1 and arg2. The
exceptions are aroused in the following cases:

(i) One (or both) of the expression-operands arg1 and arg2 is unary
operator call, i.e. when at least one of the heads op1, op2 is unary
operator. Then, the parenthesis should be omitted around this (or
both) argument(s).

(ii) The operator postfix[i] = ∗ and one (or both) of the heads of its ar-
guments are ∗ or /. Then, the parenthesis should be omitted around
this (or both) argument(s).

Deducing about the necessity of the parenthesis 91

(iii) The operator postfix[i] = / and op1 = ∗ or op1 = /. Then, the
parenthesis should be omitted around the first argument arg1.

Rule 4. If postfix[i] is a binary operator and GR(postfix[i]) = 2, then both
of its operands, arg1 and arg2, are simple and parenthesis around them could
be omitted.

2. Are rules 1-4 enough for deducing about parenthesis?

In [2] we made the conjecture that Rules 1-4 remove all unnecessary paren-
thesis because there was no counterexample for this. Now, we are ready to
give a formal proof for this claim.

Theorem 2.1. The Rules 1–4 remove all unnecessary parenthesis.

Proof.When we talk about the necessity of the parenthesis while the bi-
nary operations are applied, we should observe only the head of the ex-
pression, denoted by head = postfix[i], and the heads of its arguments
op1 = postfix[i − GR(postfix[i − 1]) − 2] and op2 = postfix[i − 1]. We
observe the non-trivial cases when head is one of the four arithmetic opera-
tors only. Any of the heads op1 and op2 could be one of the four arithmetic
operators +, −, ∗ and /, or one of the functional operators, or a simple
operand.

Therefore, there are
6× 6× 4 = 144

various possibilities.
If both of the arguments arg1 and arg2 are simple, we have 1× 1× 4 = 4

different cases (one for each of the arithmetic operators), covered by Rule 4.
In

1× 5× 4 + 5× 1× 4 = 40

cases, when exactly one of the arguments arg1 and arg2 is simple, we apply
Rule 2.

Hence, in the rest of the proof, we can assume, without loss of generality,
that both of the arguments are not simple. Then, the possible cases for op1

and op2 are four arithmetic operators and, as the fifth kind of the operators,
unary functional operators. Henceforth, we have

5× 5× 4 = 100

remaining possibilities for op1, op2 and head.

92 Predrag V. Krtolica and Predrag S. Stanimirović

The 5× 5× 1 = 25 cases, when head = + are covered by the part (a) of
Rule 1. The next 5× 5× 1 = 25 cases, when head = −, are covered by the
part (b) of Rule 1.

The remaining 5 × 5 × 2 = 50 cases have head = ∗ or head = /. Two
cases, when op1 and op2 are both functional operators, are covered by the
Rule 3(i). Also,

1× 4× 2 + 4× 1× 2 = 16

cases, when exactly one of the op1 and op2 is the functional operator, are
covered by the Rule 3(i).

What remains is the 4× 4× 2 = 32 cases, 4× 4× 1 = 16 when head = ∗
and 4× 4× 1 = 16 cases when head = /.

Then, the following events should be anticipated.
- In 8 cases we have op1 = +|−, op2 = +|− and head = ∗|/. Then, the

parenthesis are necessary around both arguments. These events are covered
by the general case of Rule 3.

- In 4 cases we have op1 = +|−, op2 = ∗|/ and head = ∗. Then, the
parenthesis around the argument arg2 should be omitted. These cases are
covered by part (ii) of Rule 3.

- Similarly, in 4 cases we have op1 = ∗|/, op2 = +|− and head = ∗. Then,
the parenthesis around the argument arg1 should be omitted. These cases
are covered by part (ii) of Rule 3.

- In 4 cases we have op1 = ∗|/, op2 = ∗|/ and head = ∗. Then, the
parenthesis around both arguments arg1 and arg2 should be omitted. These
cases are covered by part (ii) of Rule 3.

- In remaining 12 cases we have head = /. These cases arise when

op1 = +|−, op2 = ∗|/ or op1 = ∗|/, op2 = +| − or op1 = ∗|/, op2 = ∗|/.

Then, the parenthesis are necessary around the both arguments, except in
8 cases, when op1 = ∗ or op1 = /, and the parenthesis around arg1 are
excessive. These cases are covered by part (iii) of Rule 3.

Hence, we can conclude that all possible cases are covered by the Rules
1–4, so these Rules can correctly deduce whether the parenthesis are needed
or not.

All possibilities for op1, op2 and head as well as the necessity of the
parenthesis are arranged in the Table 2.1. By the sign f we denote that op1

or op2 are some of the unary functional operators, and s denote a simple
operand.

Deducing about the necessity of the parenthesis 93

Table 2.1.
head op1 op2 arg1 or (arg1) arg2 or (arg2) # of cases

+ +| − | ∗ |/|f |s +| − | ∗ |/|f |s arg1 arg2 36

− +| − | ∗ |/|f |s +|− arg1 (arg2) 12

− +| − | ∗ |/|f |s ∗|/|f |s arg1 arg2 24

∗ +|− +|− (arg1) (arg2) 4

∗ +|− ∗|/|f |s (arg1) arg2 8

∗ ∗|/|f |s +|− arg1 (arg2) 8

∗ ∗|/|f |s ∗|/|f |s arg1 arg2 16

/ +|− +| − | ∗ |/ (arg1) (arg2) 8

/ ∗|/|f |s +| − | ∗ |/ arg1 (arg2) 16

/ +|− f |s (arg1) arg2 4

/ ∗|/|f |s f |s arg1 arg2 8

References

[1] D. Gries, Compiler Construction for Digital Computers, John Wiley & Sons, Inc.,
New York, London, Sydney, Toronto, 1971.

[2] P.V. Krtolica and P.S. Stanimirović, On Some Properties of Reverse Polish Notation,
FILOMAT 13 (1999), 157–172.

[3] R. Sedgewick, Algorithms in C, Addison-Wesley Publishing Company, Reading, MA,
1990.

[4] A.S. Tanenbaum, Structured Computer Organization, Prentice Hall, Englewood Cliffs,
NJ, 1990.

[5] J.P. Tremblay and P.G. Sorenson, The Theory and Practice of Compiler Writing,
McGraw-Hill Book Company, New York, 1985.

Faculty of Philosophy
University of Nǐs
Ćirila i Metodija 2
18000 Nǐs, Yugoslavia
E-mail: krca@pmf.pmf.ni.ac.yu
E-mail: pecko@pmf.pmf.ni.ac.yu

