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Abstract

Most mathematical theories start from humble beginnings where a
mathematician while examining some mathematical object makes funda-
mental, but ad hoc, observations. When the significance of these obser-
vations are realized some organised study begins during which these are
explored in detail for some central examples. In this second part of the-
ory building some general themes of investigation are identified. Then, it
seems, one enters a third phase in which several mathematicians join in
developing the theory. Typically this third phase is marked with much in-
novation, rapid expansion and application to other areas of mathematics.
This brief discussion1 of the area of Selection principles in Topology will
be organized according to these three phases.

1 The beginnings

Selection principles appear in diagonalization arguments2 in mathematics. The
early sources for selection principles in topology come from measure theory and
basis theory in metric spaces.

Basis theoretic sources

In [26] K. Menger defined the Menger basis property for metric spaces: A
met/-ric space (X, d) has the Menger basis property if there is for each base B
of X a sequence (Bn : n ∈ N) of sets from the basis such that
limn→∞ diamd(Bn) = 0, and {Bn : n ∈ N} is a cover for X.

Though at first glance this concept does not seem to be related to diagonal-
ization, evidence that it is came quickly when in [17] W. Hurewicz proved two
fundamental theorems about the Menger basis property. The first of the two is
that the metric space (X, d) has the Menger basis property if, and only if, for
each sequence (Un : n ∈ N) of open covers of X there is a sequence (Vn : n ∈ N)

1Invited talk at the IMC “Filomat 2001”, Nǐs, August 26–30, 2001
2000 Mathematics Subject Classification: 54D20, 54B20, 54C35, 03E02, 91A44
Keywords: Selection principles, Ramsey theory, game theory, function spaces, Pixley-Roy space

2similar to Cantor’s diagonalization proof that the set of real numbers is uncountable
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of finite sets such that for each n Vn ⊆ Un, and ∪n∈NVn is an open cover of X.
This statement motivates the following definition:

Let A and B be families of collections of subsets of the infinite set S. The
symbol Sfin(A,B) denotes the statement:

For each sequence (Un : n ∈ N) of members of A there is a sequence
(Vn : n ∈ N) of finite sets such that for each n Vn ⊆ Un, and ∪n∈NVn

is a member of B.

Sfin(A,B) is an example of a selection principle.
Throughout this article we will, for a given topological space, let O denote

the collection of all open covers of that space. In this notation, Hurewicz’s
results is:

Theorem 1 (Hurewicz) A metric space (X, d) has the Menger basis property
if, and only if, Sfin(O,O) holds.

Measure theoretic sources

In [8] E. Borel defined the notion of a Borel measure zero3 metric space as
follows: A metric space (X, d) has Borel measure zero if there is for each
sequence (εn : n ∈ N) of positive real numbers a partition family (Jn : n ∈ N)
of subsets of X such that for each n, diamd(Jn) < εn, and X = ∪n∈NJn.
Originally, Borel called this property as property C. Later this property was
called to as strong measure zero. For practical reasons we will refer to this
property as Borel measure zero.

Also this definition at first glance does not seem to be related to diagonal-
ization. For this example evidence came very slowly. First F. Rothberger in his
study in [31] of Borel measure zero introduced the following statement: For each
sequence (Un : n ∈ N) of open covers of X there is a sequence (Un : n ∈ N) such
that for each n Un ∈ Un, and {Un : n ∈ N} is an open cover of X. Rothberger
pointed out that if a metric space has this property, then it has Borel measure
zero. In the later paper [32] he proved that the converse is not true.

Rothberger’s property motivates the following definition: Again with A and
B families of collections of subsets of the infinite set S, the symbol S1(A,B)
denotes the statement that

For each sequence (Un : n ∈ N) of members of A there is a sequence
(Un : n ∈ N) such that for each n Un ∈ Un, and {Un : n ∈ N} is a
member of B.

S1(A,B) is another example of a selection principle.
In this notation Rothberger’s property is denoted by the symbol S1(O,O).

Later, in [34], the Borel measure zero property of subspaces of a σ-compact
metric space were characterized as follows: Let X be a metric space, and let Y
be a subspace of X. Let OY denote the covers of Y by sets open in X.

3not the same as measure zero Borel set
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Theorem 2 (Scheepers) For a σ-compact metric space X, subspace Y has
Borel measure zero in each metrization of X if, and only if, X has property
S1(O,OY ).

The two selection principles S1(A,B) and Sfin(A,B) are the classical se-
lection principles. Actually, there is a third, introduced by Hurewicz in [17],
denoted Ufin(A,B), but it was shown in [24] that Hurewicz’s selection principle
is equivalent to one of the form Sfin(A,B), and so we will not define this third
one here.

Infinite games

Some of the tools for studying these classical selection principles come from
Game Theory. Let A and B be families as before. Consider the following
infinite game, denoted Gfin(A,B):

The players, ONE and TWO, play an inning per positive integer.
In the n-th inning ONE first chooses an element On of A, and
TWO responds with a finite set Tn ⊆ On. A play

O1, T1, · · · , On, Tn, · · ·
is won by TWO if ∪n∈NTn ∈ B; otherwise, ONE wins.

Although he did not explicitly introduce this game, Hurewicz proved

Theorem 3 (Hurewicz) A topological space has property Sfin(O,O) if, and
only if, ONE has no winning strategy in the game Gfin(O,O).

Telgársky explitcitly introduced the game Gfin(O,O) in [46].

Analogously to Gfin(A,B) one defines the game G1(A,B):

The players, ONE and TWO, play an inning per positive integer.
In the n-th inning ONE first chooses an element On of A, and
TWO responds with an element Tn ∈ On. A play

O1, T1, · · · , On, Tn, · · ·
is won by TWO if {Tn : n ∈ N} ∈ B; otherwise, ONE wins.

Galvin explicitly introduced the game G1(O,O) in [10]. By hindsight, and
after some reformulation, the games introduced by Telgarsky in [44] are of the
form G1(A,O), where A is a class of open covers of the space in question. In
[30] J. Pawlikowski proved:

Theorem 4 (Pawlikowski) A space has property S1(O,O) if, and only if,
ONE has no winning strategy in the game G1(O,O).

This very brief description of “the beginnings” ignores the appearance of
selection principles outside topology, and some of the ad-hoc appearances of such
principles in topology during the 1970’s and 1980’s. A more complete picture
of the beginnings can be gleaned from the Selection Principles in Mathematics
website (currently, Fall 2001, under development) at the URL

http:\\iunona.pmf.ukim.edu.mk\̃ spm
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2 The second phase: An organized study

During the second phase of work on selection principles an organized study was
undertaken. One can divide the types of results that were obtained into at least
six themes, as we do now in our discussion.

Theme I: Classes of open covers, monotonicity and equivalences

Several of the popular types of open covers appearing in topological studies
were considered. Three of these types of open covers are as follows:

A cover U of a space X is said to be

1. large if for each x in X the set {U ∈ U : x ∈ U} is infinite;

2. an ω–cover if X is not in U and for each finite subset F of X, there is a
set U ∈ U such that F ⊂ U ;

3. a γ–cover if it is infinite and for each x in X the set {U ∈ U : x 6∈ U} is
finite.

Throughout the following notation will be used:

Λ: The collection of all large covers of the space.

Ω: The collection of all ω-covers of the space.

Γ: The collection of all γ-covers of the space.

It is evident that Γ ⊂ Ω ⊂ Λ ⊂ O. Also evident is that for the classical selection
principles one has the implication

S1(A,B) ⇒ Sfin(A,B),

and each of these is anti-monotonic in their first variable, and monotonic in the
second.

Also for Hurewicz’s selection principle Ufin(A,B) these monotonicity prop-
erties hold, and one has

Sfin(A,B) ⇒ Ufin(A,B).

(We did not define Hurewicz’s selection principle because it is equivalent to one
of the form Sfin(A,B) for appropriate A and B.)

These implications and monotonicity properties lead to a diagram depicting
the basic relationships among the classes when A and B range over the four
classes of open covers. One shows that some of the classes coincide - for ex-
ample S1(Ω,O) ⇔ S1(O,O) and Sfin(Ω,O) ⇔ Sfin(O,O) ⇔ Ufin(Γ,O) - and
after elimination of such coincidences one obtains the following diagram, which
depicts the relationships among distinct classes:
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S1(Ω,Γ) S1(Ω, Ω) S1(O,O)

S1(Γ, Γ) S1(Γ,Ω) S1(Γ, Λ)
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Sfin(Γ, Ω)

Ufin(Γ,Γ) Ufin(Γ, Ω) Ufin(Γ,O)- -
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Figure 1: The basic classes

In [18] it was shown by examples, for some using the Continuum Hypothesis
in their construction, that no two of these classes are equal. The main open
problem remaining in connection with this diagram is whether Ufin(Γ,Γ) ⇒
Sfin(Γ,Ω).

Theme II: Closure under operations

It is natural to consider these selection properties also for subspaces of a
space, using the inherited relative topology, and for new spaces constructed
from given ones. The following summarizes some results regarding closure under
finite powers, finite products or finite unions (this is by no means an exhaustive
list of results):
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Property powers products unions
S1(Ω,Γ) Yes No No
S1(Ω,Ω) Yes No No
S1(O,O) No No Yes
S1(Γ,Γ) No No Yes
Sfin(Ω, Ω) Yes No No
Ufin(Γ, Γ) No No Yes
Sfin(O,O) No No Yes

There are also several results about when a subspace or a continuous image
inherits a property.

Theme III: Cardinality

Several cardinal numbers appear naturally in the context of selection princi-
ples, and have been considered in the context of subspaces of the real line. For
example there is the minimality number : non(S1(A,B)) which is defined to be
min{|X| : X ⊆ R is infinite and X does not have S1(A,B)}. non(Sfin(A,B)) is
defined analogously.

non(Property) Property
p S1(Ω,Γ)
cov(M) S1(Ω,Ω), S1(O,O)
b S1(Γ,Γ), Ufin(Γ, Γ)
d The remaining 6 classes

The symbols p, b, d and cov(M) are defined as follows:

p: The minimal cardinality of an infinite family X of infinite subsets of N
such that:

1. Each finite nonempty subset of X has an infinite intersection and

2. There is no infinite set P such that for each A ∈ X we have P \ A
finite.

d: The minimal cardinality of an infinite family X of functions from N to
N such that: For each function f : N → N there is a g ∈ X with
limn→∞(g(n)− f(n)) = ∞.

b: The minimal cardinality of an infinite family X of functions from N to N
such that: For each function f : N → N there is a g ∈ X with {m ∈ N :
f(m) < g(m)} infinite.

cov(M): The minimal cardinality of an infinite family X of first category subsets
of R such that ∪X = R.
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These cardinality results and consistency results regarding relations among these
cardinals imply that some of the classes in Figure ?? are not equal. For the
remaining inequalities one can use special constructions based for example on
consequences of the Continuum Hypothesis.

Theme IV: Game theory

Complementing Pawlikowski’s result for S1(O,O) it was also shown that:

S1(Ω, Γ) ⇔ ONE has no winning strategy in G1(Ω,Γ)

S1(Ω, Ω) ⇔ ONE has no winning strategy in G1(Ω,Ω)

S1(Γ, Γ) ⇔ ONE has no winning strategy in G1(Γ, Γ)

And complementing Hurewicz’s result for Sfin(O,O) it was shown

Sfin(Ω, Ω) ⇔ ONE has no winning strategy in Gfin(Ω, Ω)

Also, it has been shown that the Hurewicz selection principle Ufin(Γ, Γ) is equiv-
alent to the statement that ONE has no winning strategy in the corresponding
game - but this game was not of the form G1 or Gfin.

Theme V: Ramsey theory

The next development during the second phase was to show a connection
between the classical selection principles S1 and Sfin, and a seemingly unrelated
field from combinatorial set theory - Ramsey Theory. For A and B families of
subsets of an infinite set S:

A → (B)n
k

denotes: For each A ∈ A, and for each function f : [A]n → {1, · · · , k} there is a
set B ⊆ A and a j ∈ {1, · · · , k} such that:

1. B ∈ B and

2. for each F ∈ [B]n we have f [F ] = {j}.
In [29] Ramsey proved, for A = B = {A ⊂ N : A infinite}, the theorem that

for all n and k, A → (A)n
k . This is known as Ramsey’s theorem and one of the

motivating results for Ramsey Theory, a research area in finite combinatorics,
and infinitary set theory.

For selection principles of the form S1(A,B) it was shown:

S1(Ω,O) ⇔ For each k, Ω → (O)2k

S1(Ω,Ω) ⇔ For all n and k, Ω → (Ω)n
k

S1(Ω,Γ) ⇔ For all n and k, Ω → (Γ)n
k
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In [7] in their study of the theory of ultrafilters on the positive integers,
Baumgartner and Taylor introduced a Ramseyan-like partition relation which
we will denote with the symbol

A → dBe2k
and which means: For each A ∈ A, and for each function f : [A]2 → {1, · · · , k}
there is a set B ⊆ A, a j ∈ {1, · · · , k} and a partition (Bn : n ∈ N) of B into
pairwise disjoint finite sets such that:

1. B ∈ B and

2. for each {x, y} ∈ [B]2 such that for all n we have |{x, y} ∩ Bn| ≤ 1, it is
the case that f [{x, y}] = {j}.

For selection principles of the form Sfin(A,B) it was shown:

Sfin(Ω,O) ⇔ For each k, Ω → dOe2k
Sfin(Ω, Ω) ⇔ For each k, Ω → dΩe2k

Theme VI: Hyperspace theory

Often topologists have found ingeneous ways of constructing from a given
topological space X a new space N(X) to give an example illustrating some
specific fact. The importance of some of these ad hoc examples have often far
transcended the specific purpose for which they were invented. How does a
selection principle for X manifest itself in the hyperspace N(X)?

One specific example of such a N(X) is as follows: C(X) is the set of con-
tinuous real-valued functions from X. This is a subset of the Tychonoff power
of |X| copies of R - and endowed with the topology inherited from this power,
is denoted by Cp(X). This is the space of real-valued continuous functions,
endowed with the pointwise topology.

For a point f ∈ Cp(X) we define:

Ωf = {A ⊂ Cp(X) \ {f} : f in the closure of A}.

A second example is PR(X), the Pixley-Roy space over X. The elements of
PR(X) are the finite subsets of X, and for S ⊂ X finite and U ⊂ X open with
S ⊂ U , the symbol [S, U ] denotes {T ∈ PR(X) : S ⊆ T ⊂ U}. Set of the form
[S,U ] form a basis for a topology on PR(X).

We define:

D = {U : (∀U ∈ U)(U open and ∪ U dense in X)}

Here is a small sample of results that have been proved (a property listed
under X holds if, and only if, the corresponding property under Cp(X) or under
PR(X) holds).
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X Cp(X) PR(X)
S1(Ω,Ω) S1(Ωf , Ωf ) S1(D,D)

Sfin(Ω, Ω) Sfin(Ωf ,Ωf ) Sfin(D,D)

The result regarding Sfin(Ωf , Ωf ) is due in part to Arhangel’skǐi - [1], and the
result regarding S1(Ωf ,Ωf ) to Sakai - [33]. Precursors of the results regarding
PR(X) are due to P. Daniels - [9] - and the results mentioned here are from [39].

3 Phase 3: Rapid expansion, innovation, appli-
cation

We are now in phase 3 of the development of selection principles in topology.
This phase is marked by the rapid expansion of the subject, by much innovation
and by the appearance of applications to other areas of mathematics. In this
article I give only a small glance of this activity. I will organize it along the
same topics as that for phase 2.

Theme I: Classes of open covers, monotonicity and equivalences

Several new classes of open covers have been added to the list of four studied
during the second phase. Some of these were motivated by the type of combi-
natorics that was used in phase 2. We define groupable and weakly groupable
versions of covers: An open cover U of a space is

• groupable if there is a partition U = ∪n∈NUn, and an increasing sequence
(mn : n ∈ N) of positive integers such that for each element x of the space,
for all but finitely many n, x ∈ ∪(∪mn≤j<mn+1Uj);

• weakly groupable if there is a partition U = ∪n∈NUn, and an increasing
sequence (mn : n ∈ N) of positive integers such that for each finite subset
F of the space there is an n such that F ⊂ ∪(∪mn≤j<mn+1Uj);

We use the notation Ogp to denote the collection of groupable open covers of
a space, and Λgp to denote the collection of groupable large covers of a space.
The analogous notation for weakly groupable covers is Owgp and Λwgp.

An ω-cover U is ω-groupable if there is a partition U = ∪n∈NUn, and an
increasing sequence (mn : n ∈ N) of positive integers such that for each finite
subset F of the space, for all but finitely many n, there is a U ∈ ∪mn≤j<mn+1Uj

with F ⊂ U . The symbol Ωgp denotes the collection of ω-groupable ω-covers of
a space.

And in [47] Tsaban introduced another new class of open cover, called a
τ -cover, and motivated by the type of combinatorics related to a well-known
open problem in set theory: A large open cover U for a space X is said to be a
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τ -cover if for each x, y ∈ X:
either for all but finitely many U ∈ U we have x ∈ U implies y ∈ U ,
or else for all but finitely many U ∈ U we have y ∈ U implies x ∈ U .

The symbol T is used to denote the collection of τ -covers of X.

Evidently we have the inclusions

Γ ⊂ T ⊂ Ω ⊂ Λ ⊂ O;

Γ ⊂ Ωgp ⊂ Ω ⊂ Λwgp ⊂ Λ ⊂ O;

Ωgp ⊂ Λgp ⊂ Ogp;

Ogp ⊂ Owgp ⊂ O;

Λgp ⊂ Λwgp ⊂ Λ.

These inclusions plus the monotonicity properties of the classical selection
principles give rise, like before, to a more extensive diagram. Moreover, some of
these classes are new and some are not. Most notably the following have been
proven:

Ufin(Γ,Γ) ⇔ Sfin(Ω,Ogp) ⇔ Ufin(T, Γ)

Ufin(Γ,Ω) ⇔ Sfin(Ω,Owgp) ⇔ Ufin(T, Ω)

This reduces Hurewicz’s selection principle Ufin to Sfin. With this, Figure 1
becomes Figure 2 (see the next page).

Two more innovations were the introduction of new selection principles, and
the idea of relative selection principles.

We can call the new selection principles “Balkan selection principles”, since
these were invented and initially studied mostly by some mathematicians in the
Balkans. Among these we have Sc(A,B), introduced and carefully studied in
[2]. Also introduced are Slf (A,B), which is for example used to characterize
paracompactness [6]. And there are several more such selection principles, some
motivated by star covering properties of spaces [19].

The idea of relativization is as follows: A space X and subspace Y of X
are given. A is a collection of open covers of X (for example O, Ω, and so on)
and B is a collection of covers of Y by sets open in X. The study of S1(A,B)
generalizes that for the case when X = Y , called the absolute case. There are
essentially more delicate techniques needed to generalize the absolute theory to
the relative one, as illustrated by some results in [21] and [2].
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S1(Ω, Γ) S1(Ω, Ω) S1(O,O)

S1(Γ,Γ) S1(Γ, Ω) S1(Γ,Λ)
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Sfin(Γ, Ω)

Sfin(Ω,Ogp) Sfin(Ω,Owgp) Sfin(Ω,O)- -
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Figure 2: The basic classes updated

Theme II: Closure under operations

It is shown that Sfin(Ω, Ωgp) is preserved by finite powers, and that a space
has Sfin(Ω, Ωgp) if, and only if, each of its finite powers has Sfin(Ω,Ogp). Weiss
showed that S1(Ω,Ogp) is preserved by finite products, and thus finite powers.
The theory of preservation by finite products or powers is more complicated for
the Balkan selection principles.

Theme III: Cardinality

Here is a sample of what has been shown:

non(Property) Property
p S1(Ω, T)
t S1(T, Γ)
e S1(Γ, T), Sfin(Γ, T), Ufin(Γ,T)
add(M) S1(Ω,Ogp)
non(BMZ) S1(OR,OX)
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Since it is known from basic results in Set Theory that it is consistent that
p < add(M), and that b 6= add(M), and that cov(M) 6= add(M), it follows that
S1(Ω,Ogp) is a new property.

Similar considerations give that S1(T,Γ) is a new property. Indeed, the
introduction of τ -covers uncovered eleven new classes of spaces not present in
the work of phase 2.

Let BMZ denote the set of subsets of the real line which have Borel measure
zero. For a subset X or R let OX denote the covers of X by sets open in R.
Then X ∈ BMZ if, and only if, S1(OR,OX) holds. The minimal cardinality of a
set of reals without Borel measure zero is denoted non(BMZ). It was shown in
[15] that it is consistent that cov(M) < non(BMZ). Thus it is consistent that
there is a set X or reals satisfying S1(OR,OX), but not S1(O,O). In particular,
the relative theory subsumes the absolute theory.

X is a set of sets of real numbers and each A ∈ X has S1(A,B) but ∪X does
not. add(Sfin(A,B)) is defined analogously.

X is a set of sets of real numbers and each A ∈ X has S1(A,B) and R = ∪X.
cov(Sfin(A,B)) is defined analogously.

Theme IV: Game theory

Additionally it has been shown that Sfin(Ω,Ogp) holds if, and only if, ONE has
no winning strategy in Gfin(Ω,Ogp), and Sfin(Ω,Owgp) holds if, and only if,
ONE has no winning strategy in Gfin(Ω,Owgp). In Figure 2 all classes except
those of form S1(Γ, ·) or Sfin(Γ, ·) have a corresponding Ramsey-theoretic char-
acterization; also all these classes except S1(Γ,Ω) and S1(Γ,O) and Sfin(Γ,Ω)
have characterizations in terms of the corresponding G1 or Gfin- games.

Theme V: Ramsey theory

Sfin(Ω,Ogp) ⇔ For each k, Ω → dOgpe2k
Sfin(Ω,Owgp) ⇔ For each k, Ω → dOwgpe2k

In Figure 2 all classes except those of form S1(Γ, ·) or Sfin(Γ, ·) have a
corresponding Ramsey-theoretic characterization; also all these classes except
S1(Γ, Ω) and S1(Γ,O) and Sfin(Γ,Ω) have characterizations in terms of the
corresponding G1 or Gfin- games.

Theme VI: Hyperspace theory

A very nice generalization of the selection principles theory of Cp(X) has
been developed also for the case of the relative selection principles, and a cor-
responding generalization for PR(X) is in progress.
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4 Final remarks

Due to the pace of innovation much work on these six themes remains for the
Balkan selection principles and for the new classes of open covers. In particular,
it appears that essentially new ideas are needed to develop the game theory and
the Ramsey theory for the Balkan selection principles.

In this brief survey I also did not elaborate on the nice work in connection
with selection principles defined using filters on the positive integers. For a taste
of this effort, the reader can consult for example [12] and [13].

Besides these usual themes, a beautiful selection principle theory for the case
of metrizable spaces has emerged in [2]. In this theory selection principles are
characterized by basis properties of the spaces, and by measure-like properties of
the spaces. These characterizations lend themselves in particular immediately
to applications to topological groups [5].
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