Selective versions of screenability

Liljana Babinkostova

Abstract

In this paper¹ we introduce a new selection principle for topological spaces and consider its connection with the classical selection principles.

1 Introduction

In 1973 in [4] W. Haver introduced a covering property, called property C, for metric spaces. Addis and Gresham reformulated the original definition of C as follows in [1]:

Definition 1 A topological space X has property C if for each sequence $(\mathcal{U}_n : n \in \mathbf{N})$ of open covers of X there is a sequence $(\mathcal{V}_n : n \in \mathbf{N})$ of families of open subsets of X satisfying the following three conditions:

(1) For each $n \mathcal{V}_n$ is a disjoint family;

(2) For each $n \mathcal{V}_n$ refines \mathcal{U}_n (we write $\mathcal{V}_n < \mathcal{U}_n$);

(3) $\bigcup_{n \in \mathbf{N}} \mathcal{V}_n$ is an open cover of X.

The case when for each n we have $\mathcal{U}_n = \mathcal{U}$, some fixed open cover of X, was considered in [3] by Bing, and the corresponding property was called *screenability* by Bing. Addis and Gresham's reformulation of Haver's property C thus is a selective version of screenability.

We now introduce the following new selection hypothesis.

Definition 2 Let \mathcal{A} and \mathcal{B} be collections of open covers of topological space X. The symbol $S_c(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $(\mathcal{U}_n : n \in \mathbf{N})$ of elements of \mathcal{A} there exists a sequence $(\mathcal{V}_n : n \in \mathbf{N})$ of families such that

(i) each \mathcal{V}_n is a pairwise disjoint collection of open sets,

(ii) for each n, if $V \in \mathcal{V}_n$, then $V \subset G$ for some member $G \in \mathcal{U}_n$ and

(iii) the family $\bigcup_{n \in \mathbf{N}} \mathcal{V}_n$ is an element of \mathcal{B} .

In this paper \mathcal{A} and \mathcal{B} will be any of the following classes of open covers:

¹Presented at the IMC "Filomat 2001", Niš, August 26–30, 2001

²⁰⁰⁰ Mathematics Subject Classification: 54D20, 54E99

Keywords: Selection principles, screenability, property C, ω -cover, γ -cover

- \mathcal{O} the collection of all open covers of the space;
- Ω the collection of ω -covers of the space. An open cover \mathcal{U} of X is an ω -*cover* if X does not belong to \mathcal{U} and every finite subset of X is contained
 in a member of \mathcal{U} ;
- Γ the collection of γ -covers of the space. A cover \mathcal{U} of X is said to be a γ -cover if it is infinite and for each $x \in X$ the set $\{U \in \mathcal{U} : x \notin X\}$ is finite.

The property of anti-monotonicity in the first variable, and monotonicity for the second is true for the selection principle $S_c(\mathcal{A}, \mathcal{B})$. This means that if \mathcal{A}, \mathcal{B} and \mathcal{D} are nonempty subsets of \mathcal{O} such that $\mathcal{A} \subset \mathcal{B}$, then we have: $S_c(\mathcal{D}, \mathcal{A}) \subseteq S_c(\mathcal{D}, \mathcal{B})$ and $S_c(\mathcal{A}, \mathcal{D}) \supseteq S_c(\mathcal{B}, \mathcal{D})$. Directly from the inclusions $\Gamma \subseteq \Omega \subseteq \Lambda \subseteq \mathcal{O}$ and the monotonicity properties of the selection principle S_c , we have the following diagram:

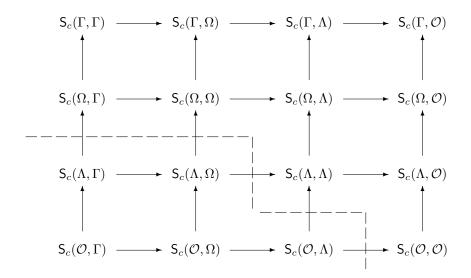


Figure 1: S_c monotonicity diagram

2 Some equivalences for $S_c(\mathcal{O}, \mathcal{O})$

Theorem 1 For a topological space X the following statements are equivalent: (i) X has property $S_c(\mathcal{O}, \mathcal{O})$, (ii) X has property $S_c(\Omega, \mathcal{O})$. **Proof**. We must prove that (ii) implies (i). Let $(\mathcal{U}_n : n \in \mathbf{N})$ be a sequence of open covers of X.

Let $(Y_n : n \in \mathbf{N})$ be a pairwise disjoint sequence of infinite sets of positive integers whose union is the set \mathbf{N} . For each n define \mathcal{W}_n to be the set whose elements are of the form $U_{n_1} \cup U_{n_2} \cup ... \cup U_{n_k}$, where k is any positive integer and $n_1 < n_2 < ... < n_k$ are elements of Y_n and each U_{n_j} is an element of \mathcal{U}_{n_j} .

If there is an n for which $X \in \mathcal{W}_n$, then $X = U_{n_1} \cup U_{n_2} \cup \ldots \cup U_{n_k}$ for k a positive integer and $n_1 < n_2 < \ldots < n_k$ elements of Y_n .

For n_i put $\mathcal{V}_{n_i} = \{U_{n_i}\}, i \leq k$, and for $j \in \mathbf{N} \setminus \{n_1, \dots, n_k\}$ pick $U_j \in \mathcal{U}_j$ arbitrarily, and set $\mathcal{V}_j = \{U_j\}$. Then the sequence $(\mathcal{V}_j : j \in \mathbf{N})$ witnesses $\mathsf{S}_c(\mathcal{O}, \mathcal{O})$ for X for the sequence of \mathcal{U}_n 's.

So, we may assume that X is in no \mathcal{W}_n . Then each \mathcal{W}_n is an ω -cover of X. Now apply the fact that X is in $S_c(\Omega, \mathcal{O})$ and choose for each $n \in W_n$ such that W_n refines \mathcal{W}_n and W_n is pairwise disjoint collection of open sets, and $\cup \{W_n : n \in \mathbf{N}\}$ is an open cover of X. For each n and for each $U \in W_n$ we take $F(U) \in \mathcal{W}_n$ such that $U \subset F(U)$. Fix for each such U a representation

$$F(U) = U_{i_1} \cup U_{i_2} \cup \ldots \cup U_{i_k}, \, i_1 < i_2 < \ldots < i_k \in Y_n$$

and define $Ind(U) = \{i_1, i_2, ..., i_k\}$. Then W_n is used as follows to define a refinement for each \mathcal{U}_m with $m \in Y_n$: For each $i \in Y_n$, we define \mathcal{V}_i in the following way: If $U \in W_n$ has $i \in Ind(U)$ we put $S_i(U) = U \cap U_i$. Then we define $\mathcal{V}_i = \{S_i(U) : U \in W_n \text{ and } i \in Ind(U)\} \setminus \{\emptyset\}$. Then \mathcal{V}_i is a pairwise disjoint collection of open sets and refines \mathcal{U}_i and the union $\cup \{\mathcal{V}_i : i \in \mathbf{N}\}$ is an open cover of X. \diamondsuit

Theorem 2 $S_c(\mathcal{O}, \mathcal{O}) = S_c(\Lambda, \Lambda)$

Proof. Let $(\mathcal{U}_n : n \in \mathbf{N})$ be a sequence of λ -covers for a space X. From each cover \mathcal{U}_n we choose λ -cover $\mathcal{V}_n \subset \mathcal{U}_n$, such that for each $m \neq n$, $\mathcal{V}_n \cap \mathcal{V}_m = \emptyset$. Let $(Y_n : n \in \mathbf{N})$ be a pairwise disjoint sequence of infinite sets of positive numbers. We use the fact that X belongs to the class $S_c(\mathcal{O}, \mathcal{O})$ for each sequence $(\mathcal{V}_m : m \in Y_n)$ of open covers for the space X. For each m, we choose sequence $(U_n : n \in Y_m)$, such that for each $n \in Y_m$, the family U_n refines \mathcal{V}_n and $\bigcup_{n \in \mathbf{N}} U_n$ is open cover for X. Then the family $\bigcup_{n \in \mathbf{N}} U_n$ is λ -cover for X, such that:

- 1. for each sequence U_n is pairwise disjoint family of open sets;
- 2. for each n, if $G \in U_n$, then $G \subset V$ and V is an element of the sequence \mathcal{V}_n ;

From the fact that $\Omega \subseteq \Lambda$ we have that $\mathsf{S}_c(\Lambda, \Lambda) \Rightarrow \mathsf{S}_c(\Omega, \mathcal{O})$, i.e. $\mathsf{S}_c(\mathcal{O}, \mathcal{O}) = \mathsf{S}_c(\Omega, \mathcal{O}) = \mathsf{S}_c(\Omega, \Lambda)$.

3 Relations between S_c and the classical selection principles

About the relations among the selection principles $S_c(\mathcal{A}, \mathcal{B})$ and $S_1(\mathcal{A}, \mathcal{B})$ and $S_{fin}(\mathcal{A}, \mathcal{B})$, we show the following results:

Theorem 3 (1) $S_c(\mathcal{O}, \mathcal{O})$ does not imply $S_{fin}(\mathcal{O}, \mathcal{O})$. (2) $S_{fin}(\mathcal{O}, \mathcal{O})$ does not imply $S_c(\mathcal{O}, \mathcal{O})$.

Proof. (1) Addis and Gresham showed that the Hilbert cube is not a *C*-space. From the fact that the Hilbert cube is a compact space and thus has $S_{fin}(\mathcal{O}, \mathcal{O})$, we obtain that $S_c(\mathcal{O}, \mathcal{O})$ does not imply $S_{fin}(\mathcal{O}, \mathcal{O})$.

(2) Consider N^N with the usual Tychonoff product topology (N is considered discrete and N^N is the countable power of N). This topology is metrizable and in fact the metric d(g, h) = 1/n where n is least with $g(n) \neq h(n)$ generates this topology. In the literature (N^N, d) is often called "the Baire space". Let \mathcal{R} denote the set of rational numbers in [0, 1] and let \mathcal{N} denote the set of irrational numbers in [0,1]. The map from N^N to \mathcal{N} which maps a sequence to the irrational number having that sequence as continued fraction expansion, is a homeomorphism. Thus, for topological purposes, we may replace the set of irrational numbers in [0,1] with N^N . Addis and Gresham showed that zerodimensional paracompact spaces have property $S_c(\mathcal{O}, \mathcal{O})$. Thus, as N^N is zerodimensional and paracompact, it has property $S_{c}(\mathcal{O}, \mathcal{O})$. According to an old result of Hurewicz, N^N does not have property $S_{tin}(\mathcal{O}, \mathcal{O})$.

Theorem 4 For each $\mathcal{A}, \mathcal{B} \subseteq \mathcal{O}$: If the topological space X has selection property $\mathsf{S}_1(\mathcal{A}, \mathcal{B})$, then X has selection property $\mathsf{S}_c(\mathcal{A}, \mathcal{B})$.

Proof. Let $(\mathcal{U}_n : n \in \mathbf{N})$ be any sequence of covers from \mathcal{A} for the space X. Since the space X satisfies $S_1(\mathcal{A}, \mathcal{B})$, choose a sequence $(\mathcal{U}_n : n \in \mathbf{N})$ such that each $\mathcal{U}_n \in \mathcal{U}_n$ and the set $\{\mathcal{U}_n : n \in \mathbf{N}\}$ is a cover for X and belongs to \mathcal{B} .

Consider the sequence $(\mathcal{V}_n : n \in \mathbf{N})$ where \mathcal{V}_n is the one-point $\{U_n\}$. It is clear that this sequence satisfies the conditions for $S_c(\mathcal{A}, \mathcal{B})$ of the space X.

With the next results we show that only for some classes of covers for which X has the S_c -property, X has the S_1 -property.

Theorem 5 $\mathsf{S}_c(\mathcal{A},\Gamma) \Rightarrow \mathsf{S}_{fin}(\mathcal{A},\Gamma).$

Proof. Let $(\mathcal{U}_n : n \in \mathbf{N})$ be a sequence of \mathcal{A} -covers of X. We apply that X has the $\mathsf{S}_c(\mathcal{A}, \Gamma)$ property: there exists a sequence $(\mathcal{V}_n : n \in \mathbf{N})$ of families such that

(i) each \mathcal{V}_n is pairwise disjoint collection of open sets,

(ii) for each n, if $V \in \mathcal{V}_n$, then $V \subset G$ for some member $G \in \mathcal{U}_n$ and

(iii) the family $\mathcal{G} = \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is a γ -cover of X.

Consider an $x \in X$. Then $\{G \in \mathcal{G} : x \notin G\}$ is finite, but \mathcal{G} is infinite. Thus, by (i), each \mathcal{V}_n is finite. \diamondsuit

Selective versions of screenability

Corollary 6 If $\mathcal{A} \in \{\Omega, \Gamma\}$ then $\mathsf{S}_c(\mathcal{A}, \Gamma) \Rightarrow \mathsf{S}_1(\mathcal{A}, \Gamma)$.

Proof. It was shown in [5] that $S_{fin}(\Omega, \Gamma) = S_1(\Omega, \Gamma)$ and that $S_{fin}(\Gamma, \Gamma) = S_1(\Gamma, \Gamma)$. Apply Theorem 5. \Diamond

Theorem 7 $\mathsf{S}_c(\mathcal{A},\Omega) \Rightarrow \mathsf{S}_1(\mathcal{A},\Omega).$

Proof. Let $(\mathcal{U}_n : n \in \mathbf{N})$ be a sequence of covers of X from \mathcal{A} . The space X belongs to the class $S_c(\mathcal{A}, \Omega)$, so choose a sequence $(\mathcal{V}_n : n \in \mathbf{N})$ of families, such that:

- 1. \mathcal{V}_n is pairwise disjoint collection of open sets;
- 2. For each n, if $V \in \mathcal{V}_n$, then $V \subset G$ where G is an element of the sequence \mathcal{U}_n ;
- 3. The family $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is an ω -cover for X.

Consider $x \in X$. For each n, let

$$S_n(x) = \{ V \in \mathcal{V}_n : x \in V \}$$

Because \mathcal{V}_n is pairwise disjoint collection of open sets we have that $|S_n(x)| \leq 1$. For a subset F of X and for each n, let

$$S_n(F) = \{ V \in \mathcal{V}_n : F \subset V \}$$

Also, because \mathcal{V}_n is a pairwise disjoint collection of open sets, we have that $|S_n(F)| \leq 1$. For each finite set $F \subset X$, we have

$$S_n(F \cup \{x\}) \subseteq S_n(x)$$

and $S_n(F \cup \{x\}) \subseteq S_n(F)$

If $S_n(F \cup \{x\}) \neq \emptyset$, then $S_n(F) = S_n(x)$ and because of condition 3) there exists $n \in \mathbf{N}$ such that $S_n(F \cup \{x\}) \neq \emptyset$.

Let X be a non-compact space. Then, the following statements are true:

Lemma 8 For each ω -cover \mathcal{U} there exists a refinement \mathcal{V} , such that:

- 1. \mathcal{V} is an ω -cover for X and
- 2. There is no finite subcover of X from the cover \mathcal{V} .

Proof. Let \mathcal{U} be an ω -cover for the space X. It means that for each finite subset $F \subset X$ there exists an element $U \in \mathcal{U}$, such that $F \subset U$. We choose the cover \mathcal{V} for the space X in the following way: for each finite subset $F \subset X$ there exists $V \in \mathcal{V}$, such that $F \subseteq V \subseteq U$, and U is an element of the cover \mathcal{U} . Then, the cover \mathcal{V} is an ω -cover for X which refines the cover \mathcal{U} .

The condition 2) is true, because if not, the topological space X will be a compact space which is contradiction. \diamondsuit

Definition 3 ([2]) An open cover \mathcal{U} is weakly groupable if there exists a partition $\mathcal{U} = \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$, such that each \mathcal{V}_n is finite, $\mathcal{V}_m \cap \mathcal{V}_n = \emptyset$ for $m \neq n$ and for each finite subset $F \subset X$ there exists n such that $F \subset \cup \mathcal{U}_n$.

The symbol \mathcal{O}^{wgp} denote the family of all weakly groupable covers for the space X.

Theorem 9 If X is not a compact space, then $S_c(\Gamma, \Omega) \Rightarrow S_c(\Omega, \mathcal{O}^{wgp})$

Proof. Let $(\mathcal{U}_n : n \in \mathbf{N})$ be a sequence of ω -covers for the space X. Because X is not a compact space we apply the previous Lemma to each element of the sequence $(\mathcal{U}_n : n \in \mathbf{N})$: *i.e.*, there exists a sequence $(\mathcal{V}_n : n \in \mathbf{N})$ of ω -covers for X such that each \mathcal{V}_n refines \mathcal{U}_n and no finite subset $F \subset \mathcal{V}_n$ is a cover of X.

For each m define:

$$\mathcal{W}_m = \{ \cup_{m < j \le n} V_j : n \in \mathbf{N} \text{ and } V_j \in \mathcal{V}_j \}$$

Then for each $m \in \mathbf{N}$, \mathcal{W}_m is a γ -cover for X. Because X belongs to the class $\mathsf{S}_c(\Gamma, \Omega)$ there exists a sequence $(\mathcal{K}_m : m \in \mathbf{N})$ such that:

- 1. Each \mathcal{K}_n is a pairwise disjoint family of open sets;
- 2. for each m, if $K \in \mathcal{K}_m$, then there exists an element $V \in \mathcal{W}_m$ such that $K \subset V$ and
- 3. the family $\bigcup_{n \in \mathbb{N}} \mathcal{K}_n$ is an ω -cover for X.

Because $(\mathcal{K}_m : m \in \mathbf{N})$ refines the sequence $(\mathcal{W}_m : m \in \mathbf{N})$ we have that the sequence $(\mathcal{K}_m : m \in \mathbf{N})$ refines the sequence $(\mathcal{U}_m : m \in \mathbf{N})$, and that \mathcal{K}_m is a pairwise disjoint family of open sets for each $m \in \mathbf{N}$.

From the condition 3) it follows that $\bigcup_{m \in \mathbf{N}} \mathcal{K}_m \in \mathcal{O}^{wgp}$.

We have Figure 2 on the next page.

4 Preservation under finite powers

For S_1 and S_{fin} the following statements are true for any space X:

- 1. X has $S_1(\Omega, \Omega)$ if, and only if, each finite power of X has $S_1(\mathcal{O}, \mathcal{O})$ [6].
- 2. X has $\mathsf{S}_{fin}(\Omega, \Omega)$ if, and only if, each finite power of X has $\mathsf{S}_{fin}(\mathcal{O}, \mathcal{O})$ [5].

In the corresponding statement:

X has $\mathsf{S}_c(\Omega, \Omega)$ if, and only if, each finite power of X has $\mathsf{S}_c(\mathcal{O}, \mathcal{O})$

the implication

$$X \text{ has } \mathsf{S}_c(\Omega, \Omega) \Rightarrow \text{ each finite power of } X \text{ has } \mathsf{S}_c(\mathcal{O}, \mathcal{O})$$

$$\begin{array}{c} S_{c}(\Gamma,\Gamma) \longrightarrow S_{c}(\Gamma,\Omega^{gp}) \longrightarrow S_{c}(\Gamma,\Omega) \longrightarrow S_{c}(\Gamma,\mathcal{O}^{wgp}) \longrightarrow S_{c}(\Gamma,\Lambda) \longrightarrow S_{c}(\Gamma,\mathcal{O}) \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ S_{1}(\Gamma,\Gamma) \longrightarrow S_{1}(\Gamma,\Omega^{gp}) \longrightarrow S_{1}(\Gamma,\Omega) \longrightarrow S_{1}(\Gamma,\mathcal{O}^{wgp}) \longrightarrow S_{1}(\Gamma,\Lambda) \longrightarrow S_{1}(\Gamma,\mathcal{O}) \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ S_{c}(\Omega,\Gamma) \longrightarrow S_{c}(\Omega,\Omega^{gp}) \longrightarrow S_{1}(\Omega,\Omega) \longrightarrow S_{c}(\Omega,\mathcal{O}^{wgp}) \longrightarrow S_{1}(\Omega,\Lambda) \longrightarrow S_{1}(\Omega,\mathcal{O}) \\ S_{1}(\Omega,\Gamma) \longrightarrow S_{1}(\Omega,\Omega^{gp}) \longrightarrow S_{1}(\Omega,\Omega) \longrightarrow S_{1}(\Omega,\mathcal{O}^{wgp}) \longrightarrow S_{1}(\Omega,\Lambda) \longrightarrow S_{1}(\Omega,\mathcal{O}) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ S_{c}(\Lambda,\Lambda) \longrightarrow S_{1}(\Lambda,\mathcal{O}) \\ \downarrow & \downarrow & \downarrow \\ S_{1}(\Lambda,\Lambda) \longrightarrow S_{1}(\Lambda,\mathcal{O}) \\ \downarrow & \downarrow & \downarrow \\ S_{1}(\mathcal{O},\mathcal{O}) \end{array}$$

Figure 2: $\mathsf{S}_1-\mathsf{S}_c$ - diagram

is true, but the implication

each finite power of X has
$$\mathsf{S}_c(\mathcal{O}, \mathcal{O}) \Rightarrow X$$
 has $\mathsf{S}_c(\Omega, \Omega)$

is false.

To see this, recall from Theorem 7 that if X has property $S_c(\Omega, \Omega)$, then it has property $S_1(\Omega, \Omega)$. Then, by Sakai's theorem [6], each finite power of X has $S_1(\mathcal{O}, \mathcal{O})$. Then by Theorem 4, each finite power of X has $S_c(\mathcal{O}, \mathcal{O})$.

To see that the other implication is false, recall that Addis and Gresham showed that paracompact zerodimensional spaces have property $S_c(\mathcal{O}, \mathcal{O})$. Thus, with X the Baire space, all finite powers of X are paracompact and zerodimensional, and so have property $S_c(\mathcal{O}, \mathcal{O})$. But X does not even have property $S_{fin}(\mathcal{O}, \mathcal{O})$, and so does not have property $S_1(\Omega, \Omega)$ (which by Theorems 4 and 7 is $S_c(\Omega, \Omega)$).

Acknowledgements

I would like to thank L. Rubin for bringing [1] to my attention.

References

- D.F. Addis and J.H. Gresham, Dimension theory and Aleksandroff's problem, Fund. Math. 101:3 (1978), 195–205.
- [2] L. Babinkostova, Lj.D.R. Kočinac and M. Scheepers, Combinatorics of open covers (VIII), preprint.
- [3] R.H. Bing, Metrization of topological spaces, Can. J. Math. 3 (1951), 175– 186.
- [4] W. Haver, A covering property for metric space, Lecture Notes in Mathematics 375, Springer-Verlag, New York (1974), 108–113.
- [5] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, *The combinatorics of open covers (II)*, Topology Appl. **73** (1996), 241–266.
- [6] M. Sakai, Property C" and function spaces, Proc. Amer. Math. Soc. 104:3 (1988), 917–919.

Institute of Mathematics Faculty of Natural Sciences and Mathematics PO Box 162 1000 Skopje Republic of Macedonia liljanab@iunona.pmf.ukim.edu.mk