On the Stone-Čech compactification of Ω -spaces

Dušan Milovančević

Abstract

In this paper¹ we study some notions related to the space X for which the remainder $\beta X \setminus \beta(X)$ is one-point set.

1 Introduction and definitions

The closure of a subset A of a space X is denoted by $cl_X(A)$ and the one-point compactification of X is denoted by ωX . In this paper we assume that all spaces are noncompact and T_2 . We use the standard definitions for filter-base and filter. For notions and definitions not given here see [3], [6], [8].

Definition 1.1 Let X be a topological space. Then:

(a) The symbol $\P(X)$ denotes the family of all subsets of X.

(b) $\mathfrak{P}(X) = \P(X) \setminus \{\emptyset, \}.$

(c) By $\Re(X)$ we denote the family of all nonempty compact subsets of X.

(d) $\Omega(X) = \{U : U \subset X \land U = X \setminus K, K \in \mathfrak{K}(X)\}.$ $(\Omega(X) \subset \mathfrak{P}(X) \text{ if } X \text{ is noncompact.})$

(e) $\mathfrak{C}^*(X)$ denotes the ring of all bounded continuous real-valued functions defined on X.

It is clear that the family $\mathfrak{P}(X) \setminus \{X\}$ is a refinement of $\Omega(X)$. A filter-base in $\mathfrak{P}(X)$ is a non-empty family $\mathfrak{B} \subset \mathfrak{P}(X)$ such that if $A_1, A_2 \in \mathfrak{B}$, then there exists an $A_3 \in \mathfrak{B}$ such that $A_3 \subset A_1 \cap A_2$ [2]. By a filter in $\mathfrak{P}(X)$ we mean a non-empty subfamily $\mathfrak{F} \subset \mathfrak{P}(X)$ satisfying the following conditions:

(a) If $A_1, A_2 \in \mathfrak{F}$, then $A_1 \cap A_2 \in \mathfrak{F}$.

(b) If $A \in \mathfrak{F}$ and $A \subset A_1 \in \mathfrak{P}(X)$, then $A_1 \in \mathfrak{F}[3]$.

By a filter (filter-base) in a topologigal space X we mean a filter (filter-base) in the family $\mathfrak{P}(X)$.

One readily sees that for any filter-base \mathfrak{B} in $\mathfrak{P}(X)$, the family $\mathfrak{F}_{\mathfrak{B}} = \{A \in \mathfrak{P}(X) : there exists a B \in \mathfrak{B} such that B \subset A\}$ is a filter in $\mathfrak{P}(X)$.

Definition 1.2 ([2]) Filter-bases \mathfrak{B}_1 and \mathfrak{B}_2 are equivalent if $\mathfrak{F}_{\mathfrak{B}_1} = \mathfrak{F}_{\mathfrak{B}_2}$.

¹Presented at the IMC "Filomat 2001", Niš, August 26–30, 2001

²⁰⁰⁰ Mathematics Subject Classification: 54D35, 54D40

Keywords: Ω-space, equiscalar space, Stone-Čech compactification

Lemma 1.1 ([2]) Filter-bases \mathfrak{B}_1 and \mathfrak{B}_2 are equivalent if and only if for every $B_1 \in \mathfrak{B}_1$ there exists a $B_2 \in \mathfrak{B}_2$ such that $B_2 \subset B_1$ and for every $B_2 \in \mathfrak{B}_2$ there exists a $B_1 \in \mathfrak{B}_1$ such that $B_1 \subset B_2$.

A point x is called a cluster point of a filter $\mathfrak{F}($ of a filter-base $\mathfrak{B})$ if x belongs to the closure of every member of $\mathfrak{F}($ of $\mathfrak{B})$. A point x is called a limit of filter \mathfrak{F} (of filter-base \mathfrak{B}) if every neighbourhood of x is a member of $\mathfrak{F}(\mathfrak{F}_{\mathfrak{B}})$; we then say that the filter (filter-base) converges to x.

Proposition 1.2 ([3]) The point x belongs to $cl_X(A)$ if and only if there exists a filter-base consisting of subsets of A and converging to x.

Definition 1.3 A filter base $\mathfrak{B} \subset \mathfrak{P}(X)$ is called a free filter-base if for every point $x \in X$, the point x is not a cluster point of \mathfrak{B} .

2 Ω -spaces

The following proposition gives an information when the family $\Omega(X)$ satisfies the free filter-base property.

Proposition 2.1 Let X be a noncompact T_2 space. Then the family $\Omega(X)$ is a free filter-base in if and only if X is a locally compact space.

Proof. \Rightarrow : Let $\Omega(X)$ is a free filter-base in X. Then for every point $x \in X$ there exists an open neighbourhood U_x such that for some $A \in \Omega(X)$ the set $A \cap U_x = \emptyset$. Hence $U_x \subset X \setminus A = K \in \mathfrak{K}(X)$. The closure $cl_X(U_x) \in \mathfrak{K}(X)$. This proves that X is locally compact space.

 $\begin{array}{l} \Leftarrow: \text{It suffices to show that if } A_1, \ A_2 \in \Omega(X), \text{ then there exists an } A_3 \in \Omega(X) \\ \text{such that } A_3 \subset A_1 \cap A_2. \text{ Let } A_1 = X \setminus K_1, \ A_2 = X \setminus K_2; \ K_1, \ K_2 \in \mathfrak{K}(X). \text{ As } \\ K_1 \cup K_2 \in \mathfrak{K}(X) \text{ the set } A_3 = A_1 \cap A_2 = (X \setminus K_1) \cap (X \setminus K_2) = X \setminus (K_1 \cup K_2) \in \\ \Omega(X). \text{ Since } X \text{ is locally compact, for every } x \in X \text{ there exists a neighbourhood } \\ U \text{ of the point } x \text{ such that } cl_X(U) \in \mathfrak{K}(X). \text{ Then the set } U \cap (X \setminus cl_X(U)) = \emptyset. \\ \text{Hence, the point } x \text{ does not belong to the closure of every member of } \Omega(X). \text{ It follows that } x \text{ is not a cluster point of the filter base } \Omega(X). \ \Box \end{array}$

Definition 2.1 A topological space X is called an Ω -space if all free filter-bases in X are equivalent to the $\Omega(X)$.

Example 2.1 Let $X = [0, \omega_1)$ be the space of ordinals less than the first uncountable ordinal with the order topology. It is clear (by the order topology and Lemma 1.1.) that every free filter-base in $[0, \omega_1)$ is equivalet to the $\Omega([0, \omega_1))$.

A pair (Y, c), where Y is a compact space and $c : X \longrightarrow Y$ is a homeomorphic embedding of X in Y such that $cl_Y(c(X)) = Y$, is called a compactification of the space X (see [3]). Compactifications c_1X and c_2X of a space X are equivalent if there exists a homeomorphism $f: c_1X \longrightarrow c_2X$ such that $f(c_1x) = c_2(x)$ for every $x \in X$.

The following theorem shows that when in Ω -spaces the one-point compactification is equivalent to the Stone-Čech compactification.

Theorem 2.2 Let X be an Ω -space. Then the one-point compactification of X is equivalent to the Stone-Čech compactification of X.

Proof. It suffices to show that for every compactificatition cX of the space X the remainder $cX \setminus c(X)$ is a one point set. Assume that the remainder $cX \setminus c(X)$ contains two distinct points x_1 and x_2 . By Proposition 1.2, there exist filterbases \mathfrak{B}_1 and \mathfrak{B}_2 consisting of subsets of c(X) such that \mathfrak{B}_1 converging to x_1 and \mathfrak{B}_2 to x_2 . It is known that a space X is a Hausdorff space if and only if every filter in X has at most one limit. This implies, in particular, that filterbases \mathfrak{B}_1 and \mathfrak{B}_2 are free filter-bases in the space c(X) and \mathfrak{B}_1 is not equivalent to \mathfrak{B}_2 . Denote $\mathfrak{A}_1 = c^{-1}(\mathfrak{B}_1) = \{c^{-1}(B_1) : B_1 \in \mathfrak{B}_1\}, \mathfrak{A}_2 = c^{-1}(\mathfrak{B}_2) = \{c^{-1}(B_2) : B_2 \in \mathfrak{B}_2\}$. Since the space X is homeomorphic to c(X), we have that \mathfrak{A}_1 and \mathfrak{A}_2 are free filter-bases in the space X and \mathfrak{A}_1 is not equivalent to \mathfrak{A}_2 . By assumption X is an Ω - space, a contradiction. Hence, for every compactification cX of the space X, the remainder $cX \setminus c(X)$ is a one point set. Furthermore, the mapping of cX to $\omega X = X \cup {\Omega}$ defined by

$$f(x) = \begin{cases} i \circ c^{-1}(x), & \text{if } x \in c(X), \\ \Omega, & \text{if } x \in cX \setminus c(X) \end{cases}$$

is a homeomorphism. This proves that ωX is equivalent to βX . \Box

Remark 2.1 The result of Theorem 2.2, can be also described in terms of nets. By Theorem 2.2, every Ω - space has a unique (up to equivalence) compactification. The following example shows that there exists a space X which has a unique compactification and is not a Ω -space.

Example 2.2 Let W be the space of all ordinal numbers $\leq \omega_1$ and W' the subspace consisting of all numbers $\leq \omega_0$; the space $T = W \times W' \setminus \{(\omega_1, \omega_0)\}$ is called the Tychonoff plank. It is known that the Tychonoff plank has a unique compactification. We shall now show that T is not an Ω - space. Consider the subspaces $A = [0, \omega_1) \times \{\omega_0\}$ and $B = \{\omega_1\} \times [0, \omega_0)$. Denote $\mathfrak{A} = \{[\alpha, \omega_1) \times \{\omega_0\} : \alpha \in [0, \omega_1)\}, \mathfrak{B} = \{\{\omega_1\} \times [\beta, \omega_0) : \beta \in [0, \omega_0)\}$. It is clear that \mathfrak{A} and \mathfrak{B} are free filter-bases in the space T and \mathfrak{A} is not equivalent to \mathfrak{B} .

Proposition 2.3 If $f: X \longrightarrow Y$ is a continuous mapping of a Tychonoff space X which has a unique compactification, onto a non-compact Tychonoff space Y, then Y has a unique compactification and f is a perfect mapping.

Proof. It is known that the Tychonoff space X has a unique (up to equivalence) compactification if and only if for any two closed subsets of X which are completely separated, at least one is compact (See [1, IV, 23]). If $P \subset Y, Q \subset Y$ are closed completely separated subsets, then there exists a function $q \in \mathfrak{C}^*(Y)$ such that g(P) = 0 and g(Q) = 1. By continuity, the sets $A = f^{-1}(P)$ and $B = f^{-1}(Q)$ are closed and $A \cap B = \emptyset$. Therefore, $(g \circ f)(A) = g((f \circ f^{-1})(P)) = g((f \circ f^{-1})(P))$ g(P) = 0 and $(g \circ f)(B) = g((f \circ f^{-1})(Q) = g(Q) = 1$. Hence, the subsets A, B are completely separated. By assumption the space X has a unique compactification. If $A = f^{-1}(P)$ is compact in X, then $f(A) = f \circ f^{-1}(P) = P$ is compact in Y. This implies that the space Y has a unique compactification. Hence, $\beta X \approx \omega X = X \cup \{\omega_X\}$ ($\omega_X \notin X$) and $\beta Y \approx \omega Y = X \cup \{\omega_Y\}$ ($\omega_Y \notin Y$). The mapping $f: X \longrightarrow \omega Y$ is extendable to a mapping $F: \omega X \longrightarrow \omega Y$. It is clear that $\omega Y \subseteq F(\omega X)$ and $F(\omega X) \subseteq \omega Y$ which implies that $F(\omega X) = \omega Y$. Since the spaces ωX and ωY are compact, $F: \omega X \longrightarrow \omega Y$ is a perfect mapping. Furthermore, $F(\omega X) = F(X \cup \{\omega_X\}) = F(X) \cup F(\{\omega_X\}) = f(X) \cup F(\{\omega_X\}) =$ $Y \cup F(\{\omega_X\}) = \omega Y = Y \cup \{\omega_Y\}$, which implies that $F(\omega_X) = \omega_Y$. For every $y \in Y$ fibers $f^{-1}(y)$ are compact subsets of X. For every closed subset $A \subset X$ the subset $A \cup \{\omega_X\}$ is compact and closed in ωX . By continuity, $F(A \cup \{\omega_X\}) = F(A) \cup F(\{\omega_X\}) = f(A) \cup \{\omega_Y\}$, is a compact and closed subset of $\omega Y = Y \cup \{\omega_Y\}$. This implies that $f(A) \subset Y$ is a closed subset in Y. Hence f is a perfect mapping. \Box

Proposition 2.4 If there exists a continuous, open mapping $f : X \longrightarrow Y$ of an Ω -space X onto a Hausdorff space Y, then Y is an Ω -space.

Proof. Let X be an Ω -space. Hence X is Hausdorff, locally compact and pseudocompact space for which every free filter-base is equivalent to $\Omega(X)$. Since local compactness is an invariant of continuous open mappings we have that Y is a locally compact space. This implies that $\Omega(Y)$ is a free filterbase in Y. Let $\mathfrak{B}_Y \neq \Omega(Y)$ be any free filter-base in Y. By continuity of $f, f^{-1}(\mathfrak{B}_Y)$ and $f^{-1}(\Omega(Y))$ are free filter-bases in X. From the definition of Ω property it follows that free filter-bases $f^{-1}(\mathfrak{B}_Y)$ and $f^{-1}(\Omega(Y))$ are equivalent to the $\Omega(X)$. By Lemma 1.1, $\mathfrak{B}_Y = f(f^{-1}(\mathfrak{B}_Y))$ is equivalent to $\Omega(Y) =$ $f(f^{-1}(\Omega(Y)))$. By Definition 2.1, the space Y is an Ω -space. \Box

Proposition 2.5 Let Y be a closed subspace of an Ω -space X. If for all $U \in \Omega(X)$ the set $U \cap Y \neq \emptyset$, then Y is an Ω -space.

Proof. Since local compactness is hereditary with respect to closed subsets the subspace Y is locally compact. By Proposition 2.1, the family $\Omega(Y)$ is a free filter-base in Y. Let $\mathfrak{B} \neq \Omega(Y)$ be a free filter base in Y. It is clear that the family \mathfrak{B} is a free filter-base in X. By assumption \mathfrak{B} is equivalent to $\Omega(X)$. For all $U \in \Omega(X)$ the sets $U \cap Y$ are nonempty. This implies, in particular, that the free filter-base \mathfrak{B} is equivalent to $\Omega(Y)$. \Box

On the Stone-Čech compactification of Ω -spaces

3 Equiscalar space

Definition 3.1 A topological space X is called equiscalar if for each $f \in \mathfrak{C}^*(X)$ there exists a $U \in \Omega(X)$ such that $f/U : U \longrightarrow R$ is constant.

Remark 3.1 The space X in Example 2.1, is both equiscalar and an Ω -space. By the next theorem, the one-point compactification of X is equivalent to the Stone-Čech compactification.

Theorem 3.1 Let X be an equiscalar space. Then the one-point compactification of X is equivalent to the Stone-Čech compactification.

Proof. Let $\omega X = X \cup \{\infty\}$ be the one-point compactification of X. By Corollary 3.6.3, in [3], it suffices to show that every continuous function $f : X \longrightarrow I$ from the space X to the closed interval I is extendable to a function $F : \omega X \longrightarrow I$. Since the space X is equiscalar, we extend f to the corner point ∞ by assigning the value r, where r = f(U); $U \in \Omega(X)$ (see Definition 3.1) at that point and this gives us a continuous extension of f. By Theorem 3.6.3, in [3] the one-point compactification of X is equivalent to the Stone-Čech compactification. \Box

Proposition 3.2 If there exists a continuous mapping $f : X \longrightarrow Y$ of an equiscalar space X onto a Tychonoff space Y, then Y is an equiscalar space.

Proof. Let X be a equiscalar space and $f: X \longrightarrow Y$ a continuous surjection. Let g be any function of $\mathfrak{C}^*(Y)$. Then $g \circ f \in \mathfrak{C}^*(Y)$, hence there exists a $U \in \Omega(X)$ such that $(g \circ f)/U$ is constant. Since $f(X \setminus U) \in \mathfrak{K}(Y)$, set $V = Y \setminus f(X \setminus U) \in \Omega(Y)$. Therefore, g/V is constant. Hence Y is an equiscalar space. \Box

References

- A.V. Arhangel'skii and V.I. Ponomarev, Osnovy obshei topologii v zadachah i uprazhneniyah, Nauka, Moskva, 1974.
- [2] N. Bourbaki, *Topologie générale*, 4th ed., Actualites Sci Ind., No. 1142, Hermann, Paris, 1965.
- [3] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [4] J. Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24 (1970), 760–766.
- [5] J.K. Kelley, General Topology, New York, 1957.
- [6] D. Milovančević, ΣC-ultrafilters, P-points and HCC property, FILOMAT (Niš) 11 (1997), 33–40.

- [7] D. Milovančević, A property between compact and strongly countably compact, Publ. Inst. Math. 38 (1985), 193–201.
- [8] D. Milovančević, P-tochki, slabye P-tochki i nekotorye obobshcheniya bikompaktnosti, Mat. Vesnik, 39 (1987), 431–440.
- [9] R.C. Walker, The Stone-Čech Compactification, Springer-Verlag, New York, 1974.

Department of Mathematics Faculty of Mechanical Engineering University of Niš 18000 Niš Yugoslavia milodu@masfak.masfak.ni.ac.yu