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Abstract

In this paper1 we study some notions related to the space X for which
the remainder βX \ β(X) is one-point set.

1 Introduction and definitions

The closure of a subset A of a space X is denoted by clX(A) and the one-point
compactification of X is denoted by ωX. In this paper we assume that all
spaces are noncompact and T2. We use the standard definitions for filter-base
and filter. For notions and definitions not given here see [3], [6], [8].

Definition 1.1 Let X be a topological space. Then:
(a) The symbol ¶(X) denotes the family of all subsets of X.
(b) P(X) = ¶(X) \ {∅, }.
(c) By K(X) we denote the family of all nonempty compact subsets of X.
(d) Ω(X) = {U : U ⊂ X ∧U = X \K, K ∈ K(X)}. (Ω(X) ⊂ P(X) if X is

noncompact.)
(e) C∗(X) denotes the ring of all bounded continuous real-valued functions

defined on X.

It is clear that the family P(X) \ {X} is a refinement of Ω(X). A filter-base
in P(X) is a non-empty family B ⊂ P(X) such that if A1, A2 ∈ B, then there
exists an A3 ∈ B such that A3 ⊂ A1 ∩ A2 [2]. By a filter in P(X) we mean a
non-empty subfamily F ⊂ P(X) satisfying the following conditions:

(a) If A1, A2 ∈ F, then A1 ∩A2 ∈ F.
(b) If A ∈ F and A ⊂ A1 ∈ P(X), then A1 ∈ F [3].
By a filter (filter-base) in a topologigal space X we mean a filter (filter-base)

in the family P(X).
One readily sees that for any filter-base B in P(X), the family FB = {A ∈

P(X) : there exists a B ∈ B such thatB ⊂ A} is a filter in P(X).

Definition 1.2 ([2]) Filter-bases B1 and B2 are equivalent if FB1 = FB2 .
1Presented at the IMC “Filomat 2001”, Nǐs, August 26–30, 2001
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Lemma 1.1 ([2]) Filter-bases B1 and B2 are equivalent if and only if for every
B1 ∈ B1 there exists a B2 ∈ B2 such that B2 ⊂ B1 and for every B2 ∈ B2

there exists a B1 ∈ B1 such that B1 ⊂ B2.

A point x is called a cluster point of a filter F( of a filter-base B) if x belongs
to the closure of every member of F(of B). A point x is called a limit of filter F
(of filter-base B) if every neighbourhood of x is a member of F (FB); we then
say that the filter (filter-base) converges to x.

Proposition 1.2 ([3]) The point x belongs to clX(A) if and only if there exists
a filter-base consisting of subsets of A and converging to x.

Definition 1.3 A filter base B ⊂ P(X) is called a free filter-base if for every
point x ∈ X, the point x is not a cluster point of B.

2 Ω-spaces

The following proposition gives an information when the family Ω(X) satisfies
the free filter-base property.

Proposition 2.1 Let X be a noncompact T2 space. Then the family Ω(X) is a
free filter-base in if and only if X is a locally compact space.

Proof. ⇒: Let Ω(X) is a free filter-base in X. Then for every point x ∈ X
there exists an open neighbourhood Ux such that for some A ∈ Ω(X) the set
A ∩ Ux = ∅. Hence Ux ⊂ X \ A = K ∈ K(X). The closure clX(Ux) ∈ K(X).
This proves that X is locally compact space.

⇐: It suffices to show that if A1, A2 ∈ Ω(X), then there exists an A3 ∈ Ω(X)
such that A3 ⊂ A1 ∩A2. Let A1 = X \K1, A2 = X \K2; K1, K2 ∈ K(X). As
K1∪K2 ∈ K(X) the set A3 = A1∩A2 = (X \K1)∩ (X \K2) = X \ (K1∪K2) ∈
Ω(X). Since X is locally compact, for every x ∈ X there exists a neighbourhood
U of the point x such that clX(U) ∈ K(X). Then the set U ∩ (X \ clX(U)) = ∅.
Hence, the point x does not belong to the closure of every member of Ω(X). It
follows that x is not a cluster point of the filter base Ω(X). 2

Definition 2.1 A topological space X is called an Ω-space if all free filter-bases
in X are equivalent to the Ω(X).

Example 2.1 Let X = [0, ω1) be the space of ordinals less than the first un-
countable ordinal with the order topology. It is clear (by the order topology and
Lemma 1.1.) that every free filter-base in [0, ω1) is equivalet to the Ω([0, ω1)).

A pair (Y, c), where Y is a compact space and c : X −→ Y is a homeomorphic
embedding of X in Y such that clY (c(X)) = Y , is called a compactification of
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the space X (see [3]). Compactifications c1X and c2X of a space X are equiva-
lent if there exists a homeomorphism f : c1X −→ c2X such that f(c1x)) = c2(x)
for every x ∈ X.

The following theorem shows that when in Ω-spaces the one-point compact-
ification is equivalent to the Stone-Čech compactification.

Theorem 2.2 Let X be an Ω-space. Then the one-point compactification of X
is equivalent to the Stone-Čech compactification of X.

Proof. It suffices to show that for every compactificatition cX of the space X
the remainder cX\c(X) is a one point set. Assume that the remainder cX\c(X)
contains two distinct points x1 and x2. By Proposition 1.2, there exist filter-
bases B1 and B2 consisting of subsets of c(X) such that B1 converging to x1

and B2 to x2. It is known that a space X is a Hausdorff space if and only if
every filter in X has at most one limit. This implies, in particular, that filter-
bases B1 and B2 are free filter-bases in the space c(X) and B1 is not equivalent
to B2. Denote A1 = c−1(B1) = {c−1(B1) : B1 ∈ B1}, A2 = c−1(B2) =
{c−1(B2) : B2 ∈ B2}. Since the space X is homeomorphic to c(X), we have
that A1 and A2 are free filter-bases in the space X and A1 is not equivalent
to A2. By assumption X is an Ω- space, a contradiction. Hence, for every
compactification cX of the space X, the remainder cX \ c(X) is a one point set.
Furthermore, the mapping of cX to ωX = X ∪ {Ω} defined by

f(x) =
{

i ◦ c−1(x), if x ∈ c(X),
Ω, if x ∈ cX \ c(X)

is a homeomorphism. This proves that ωX is equivalent to βX. 2

Remark 2.1 The result of Theorem 2.2, can be also described in terms of nets.
By Theorem 2.2, every Ω- space has a unique (up to equivalence) compactifi-
cation. The following example shows that there exists a space X which has a
unique compactification and is not a Ω-space.

Example 2.2 Let W be the space of all ordinal numbers ≤ ω1 and W ′ the
subspace consisting of all numbers ≤ ω0; the space T = W ×W ′ \ {(ω1, ω0)} is
called the Tychonoff plank. It is known that the Tychonoff plank has a unique
compactification. We shall now show that T is not an Ω- space. Consider the
subspaces A = [0, ω1) × {ω0} and B = {ω1} × [0, ω0). Denote A = {[α, ω1) ×
{ω0} : α ∈ [0, ω1)}, B = {{ω1} × [β, ω0) : β ∈ [0, ω0)}. It is clear that A and B
are free filter-bases in the space T and A is not equivalent to B.

Proposition 2.3 If f : X −→ Y is a continuous mapping of a Tychonoff space
X which has a unique compactification, onto a non-compact Tychonoff space Y ,
then Y has a unique compactification and f is a perfect mapping.
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Proof. It is known that the Tychonoff space X has a unique( up to equiva-
lence) compactification if and only if for any two closed subsets of X which are
completely separated, at least one is compact (See [1, IV, 23]). If P ⊂ Y, Q ⊂ Y
are closed completely separated subsets, then there exists a function g ∈ C∗(Y )
such that g(P ) = 0 and g(Q) = 1. By continuity,the sets A = f−1(P ) and
B = f−1(Q) are closed and A∩B = ∅. Therefore, (g◦f)(A) = g((f ◦f−1)(P ) =
g(P ) = 0 and (g ◦f)(B) = g((f ◦f−1)(Q) = g(Q) = 1. Hence, the subsets A, B
are completely separated. By assumption the space X has a unique compact-
ification. If A = f−1(P ) is compact in X, then f(A) = f ◦ f−1(P ) = P is
compact in Y . This implies that the space Y has a unique compactification.
Hence, βX ≈ ωX = X ∪{ωX} (ωX /∈ X) and βY ≈ ωY = X ∪{ωY } (ωY /∈ Y ).
The mapping f : X −→ ωY is extendable to a mapping F : ωX −→ ωY . It is
clear that ωY ⊆ F (ωX) and F (ωX) ⊆ ωY which implies that F (ωX) = ωY .
Since the spaces ωX and ωY are compact, F : ωX −→ ωY is a perfect mapping.
Furthermore, F (ωX) = F (X ∪{ωX}) = F (X)∪F ({ωX}) = f(X)∪F ({ωX}) =
Y ∪ F ({ωX}) = ωY = Y ∪ {ωY }, which implies that F (ωX) = ωY . For ev-
ery y ∈ Y fibers f−1(y) are compact subsets of X. For every closed subset
A ⊂ X the subset A ∪ {ωX} is compact and closed in ωX. By continuity,
F (A∪{ωX}) = F (A)∪F ({ωX}) = f(A)∪{ωY }, is a compact and closed subset
of ωY = Y ∪ {ωY }. This implies that f(A) ⊂ Y is a closed subset in Y . Hence
f is a perfect mapping. 2

Proposition 2.4 If there exists a continuous, open mapping f : X −→ Y of
an Ω-space X onto a Hausdorff space Y , then Y is an Ω-space.

Proof. Let X be an Ω-space. Hence X is Hausdorff, locally compact and
pseudocompact space for which every free filter-base is equivalent to Ω(X).
Since local compactness is an invariant of continuous open mappings we have
that Y is a locally compact space. This implies that Ω(Y ) is a free filter-
base in Y . Let BY 6= Ω(Y ) be any free filter-base in Y . By continuity of
f, f−1(BY ) and f−1(Ω(Y )) are free filter-bases in X. From the definition of Ω-
property it follows that free filter-bases f−1(BY ) and f−1(Ω(Y )) are equivalent
to the Ω(X). By Lemma 1.1, BY = f(f−1(BY )) is equivalent to Ω(Y ) =
f(f−1(Ω(Y ))). By Definition 2.1, the space Y is an Ω-space. 2

Proposition 2.5 Let Y be a closed subspace of an Ω-space X. If for all U ∈
Ω(X) the set U ∩ Y 6= ∅, then Y is an Ω-space.

Proof. Since local compactness is hereditary with respect to closed subsets the
subspace Y is locally compact. By Proposition 2.1, the family Ω(Y ) is a free
filter-base in Y . Let B 6= Ω(Y ) be a free filter base in Y . It is clear that the
family B is a free filter-base in X. By assumption B is equivalent to Ω(X). For
all U ∈ Ω(X) the sets U ∩ Y are nonempty. This implies, in particular, that the
free filter-base B is equivalent to Ω(Y ). 2
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3 Equiscalar space

Definition 3.1 A topological space X is called equiscalar if for each f ∈ C∗(X)
there exists a U ∈ Ω(X) such that f/U : U −→ R is constant.

Remark 3.1 The space X in Example 2.1, is both equiscalar and an Ω-space.
By the next theorem, the one-point compactification of X is equivalent to the
Stone-Čech compactification.

Theorem 3.1 Let X be an equiscalar space. Then the one-point compactifica-
tion of X is equivalent to the Stone-Čech compactification.

Proof. Let ωX = X ∪ {∞} be the one-point compactification of X. By
Corollary 3.6.3, in [3], it suffices to show that every continuous function f :
X −→ I from the space X to the closed interval I is extendable to a function
F : ωX −→ I. Since the space X is equiscalar, we extend f to the corner
point ∞ by assigning the value r, where r = f(U); U ∈ Ω(X) (see Definition
3.1) at that point and this gives us a continuous extension of f . By Theorem
3.6.3, in [3] the one-point compactification of X is equivalent to the Stone-Čech
compactification. 2

Proposition 3.2 If there exists a continuous mapping f : X −→ Y of an
equiscalar space X onto a Tychonoff space Y , then Y is an equiscalar space.

Proof. Let X be a equiscalar space and f : X −→ Y a continuous surjection.
Let g be any function of C∗(Y ). Then g ◦ f ∈ C∗(Y ), hence there exists a
U ∈ Ω(X) such that (g ◦ f)/U is constant. Since f(X \ U) ∈ K(Y ), set V =
Y \ f(X \ U) ∈ Ω(Y ). Therefore, g/V is constant. Hence Y is an equiscalar
space. 2
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[6] D. Milovančević, ΣC-ultrafilters, P -points and HCC property, FILOMAT
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